Recent Evidence Regarding Triclosan and Cancer Risk
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Triclosan Measurement and Estimates of Human Exposure
Medium | Concentrations Observed | Location | Reference |
---|---|---|---|
Surface Water | 0.0002–0.478 μg/L | US, Europe, Asia | Bedoux et al., [14] |
Drinking Water | 0.0002–0.0145 μg/L | US, Europe, Asia | Bedoux et al., [14] |
WW Influent | 0.052–86.2 μg/L Influent | US, Europe, Asia | Bedoux et al., [14] |
WW Effluent | 0.028–5.37 μg/L Effluent | US, Europe, Asia | Bedoux et al., [14] |
Biosolids | 461–30,000 ng/kg | US, Europe, Australia | Dann and Hontela, [6];Bedoux et al., [14] |
Serum | 0.01–354 μg/L | Australia, Sweden | Allmyr et al., [9]; Allmyr et al., [12] |
Urine | 2.4–3,790 μg/L | US | Calafat et al., [11] |
Breast Milk | <0.018–73 μg/L | US, Australia, Sweden | Allmyr et al., [9]; Adolfsson-Erici et al., [10] |
3.2. Studies of Estrogenicity and Cancer in Vitro
Study | Concentrations Utilized | Effect Observed |
---|---|---|
Ahn et al., [21] | 0.0028–28.9 μg/mL | Estradiol Antagonism |
Gee et al., [22] | 0.00002–28.9 μg/mL | Cell Proliferation, Estradiol Antagonism |
Henry and Fair, [23] | 0.002–200 μg/mL | Cell Proliferation, Estradiol Antagonism, Cytotoxicity |
Liu et al., [26] | 0–20 μg/mL | FAS Inhibition, Reduced Cell Viability |
Deepa et al., [27] Deepa et al., [28] Vandhana et al., [29] | 0–100 μg/mL | FAS Inhibition Reduced Cell Viability Non-Toxic to Normal Cells |
Lu and Archer, [30] | 1,000 ppm in diet | Reduced Mammary Tumor Incidence |
3.3. Studies of Fatty Acid Synthesis Inhibition and Cancer in Vitro
3.4. Studies of Triclosan in Animal Experiments
3.5. Triclosan and Cancer in Human Studies
4. Conclusions
Authors Contributions
Conflicts of Interest
References
- Roy, J.R.; Chakraborty, S.; Chakraborty, T.R. Estrogen-like endocrine disrupting chemicals affecting puberty in humans—A review. Med. Sci. Monit. 2009, 15, RA137–145. [Google Scholar]
- Fernandez, S.V.; Russo, J. Estrogen and xenoestrogens in breast cancer. Toxicol. Pathol. 2010, 38, 110–122. [Google Scholar] [CrossRef]
- Erler, C.; Novak, J. Bisphenol a exposure: Human risk and health policy. J. Pediatr. Nurs. 2010, 25, 400–407. [Google Scholar] [CrossRef]
- Darbre, P.D. Environmental oestrogens, cosmetics and breast cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 121–143. [Google Scholar] [CrossRef]
- Bhargava, H.N.; Leonard, P.A. Triclosan: Applications and safety. Am. J. Infect. Control 1996, 24, 209–218. [Google Scholar] [CrossRef]
- Dann, A.B.; Hontela, A. Triclosan: Environmental exposure, toxicity and mechanisms of action. J. Appl. Toxicol. 2011, 31, 285–311. [Google Scholar] [CrossRef]
- Sandborgh-Englund, G.; Adolfsson-Erici, M.; Odham, G.; Ekstrand, J. Pharmacokinetics of triclosan following oral ingestion in humans. J. Toxicol. Environ. health. Part A 2006, 69, 1861–1873. [Google Scholar] [CrossRef]
- Moss, T.; Howes, D.; Williams, F.M. Percutaneous penetration and dermal metabolism of triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether). Food Chem. Toxicol. 2000, 38, 361–370. [Google Scholar] [CrossRef]
- Allmyr, M.; Harden, F.; Toms, L.M.; Mueller, J.F.; McLachlan, M.S.; Adolfsson-Erici, M.; Sandborgh-Englund, G. The influence of age and gender on triclosan concentrations in Australian human blood serum. Sci. Total Environ. 2008, 393, 162–167. [Google Scholar] [CrossRef]
- Adolfsson-Erici, M.; Pettersson, M.; Parkkonen, J.; Sturve, J. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 2002, 46, 1485–1489. [Google Scholar]
- Calafat, A.M.; Ye, X.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Urinary concentrations of triclosan in the U.S. Population: 2003–2004. Environ. Health Perspect. 2008, 116, 303–307. [Google Scholar]
- Allmyr, M.; Adolfsson-Erici, M.; McLachlan, M.S.; Sandborgh-Englund, G. Triclosan in plasma and milk from swedish nursing mothers and their exposure via personal care products. Sci. Total Environ. 2006, 372, 87–93. [Google Scholar] [CrossRef]
- Dayan, A.D. Risk assessment of triclosan [irgasan] in human breast milk. Food Chem. Toxicol. 2007, 45, 125–129. [Google Scholar] [CrossRef]
- Bedoux, G.; Roig, B.; Thomas, O.; Dupont, V.; Le Bot, B. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ. Sci. Pollut. Res. Int. 2012, 19, 1044–1065. [Google Scholar] [CrossRef]
- Rodricks, J.V.; Swenberg, J.A.; Borzelleca, J.F.; Maronpot, R.R.; Shipp, A.M. Triclosan: A critical review of the experimental data and development of margins of safety for consumer products. Crit. Rev. Toxicol. 2010, 40, 422–484. [Google Scholar] [CrossRef]
- Laas, E.; Poilroux, C.; Bezu, C.; Coutant, C.; Uzan, S.; Rouzier, R.; Chereau, E. Antibacterial-coated suture in reducing surgical site infection in breast surgery: A prospective study. Int. J. Breast Cancer 2012, 2012, 819578. [Google Scholar]
- Toms, L.M.; Allmyr, M.; Mueller, J.F.; Adolfsson-Erici, M.; McLachlan, M.; Murby, J.; Harden, F.A. Triclosan in individual human milk samples from australia. Chemosphere 2011, 85, 1682–1686. [Google Scholar] [CrossRef]
- Geens, T.; Neels, H.; Covaci, A. Distribution of bisphenol-a, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere 2012, 87, 796–802. [Google Scholar] [CrossRef]
- Calafat, A.M.; Ye, X.; Silva, M.J.; Kuklenyik, Z.; Needham, L.L. Human exposure assessment to environmental chemicals using biomonitoring. Int. J. Androl. 2006, 29, 166–171. [Google Scholar] [CrossRef]
- Calafat, A.M.; M., K.H.; Swan, S.H.; Hauser, R.; Goldman, L.R.; Lanphear, B.P.; Longnecker, M.P.; Rudel, R.A.; Teitelbaum, S.L.; Whyatt, R.M.; Wolff, M.S. Misuse of blood serum to assess exposure to bisphenol a and phthalates. Breast Cancer Res. 2013, 15, 403. [Google Scholar] [CrossRef]
- Ahn, K.C.; Zhao, B.; Chen, J.; Cherednichenko, G.; Sanmarti, E.; Denison, M.S.; Lasley, B.; Pessah, I.N.; Kultz, D.; Chang, D.P.; Gee, S.J.; Hammock, B.D. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: Receptor-based bioassay screens. Environ. Health Perspect. 2008, 116, 1203–1210. [Google Scholar] [CrossRef]
- Gee, R.H.; Charles, A.; Taylor, N.; Darbre, P.D. Oestrogenic and androgenic activity of triclosan in breast cancer cells. J. Appl. Toxicol. 2008, 28, 78–91. [Google Scholar] [CrossRef]
- Henry, N.D.; Fair, P.A. Comparison of in vitro cytotoxicity, estrogenicity and anti-estrogenicity of triclosan, perfluorooctane sulfonate and perfluorooctanoic acid. J. appl. Toxicol. 2013, 33, 265–272. [Google Scholar] [CrossRef]
- Stoker, T.E.; Gibson, E.K.; Zorrilla, L.M. Triclosan exposure modulates estrogen-dependent responses in the female wistar rat. Toxicol. Sci. 2010, 117, 45–53. [Google Scholar] [CrossRef]
- Recchia, A.G.; Vivacqua, A.; Gabriele, S.; Carpino, A.; Fasanella, G.; Rago, V.; Bonofiglio, D.; Maggiolini, M. Xenoestrogens and the induction of proliferative effects in breast cancer cells via direct activation of oestrogen receptor alpha. Food add. Contam. 2004, 21, 134–144. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Fillgrove, K.L.; Anderson, V.E. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to mcf-7 and skbr-3 breast cancer cells. Cancer Chemother Pharm. 2002, 49, 187–193. [Google Scholar] [CrossRef]
- Deepa, P.R.; Vandhana, S.; Muthukumaran, S.; Umashankar, V.; Jayanthi, U.; Krishnakumar, S. Chemical inhibition of fatty acid synthase: Molecular docking analysis and biochemical validation in ocular cancer cells. J. Ocul. Boil. Dis. Informa. 2010, 3, 117–128. [Google Scholar] [CrossRef]
- Deepa, P.R.; Vandhana, S.; Jayanthi, U.; Krishnakumar, S. Therapeutic and toxicologic evaluation of anti-lipogenic agents in cancer cells compared with non-neoplastic cells. Basic Clin. Pharm. Toxicol. 2012, 110, 494–503. [Google Scholar] [CrossRef]
- Vandhana, S.; Coral, K.; Jayanthi, U.; Deepa, P.R.; Krishnakumar, S. Biochemical changes accompanying apoptotic cell death in retinoblastoma cancer cells treated with lipogenic enzyme inhibitors. Biochimica et Biophysica Acta 2013, 1831, 1458–1466. [Google Scholar] [CrossRef]
- Lu, S.; Archer, M.C. Fatty acid synthase is a potential molecular target for the chemoprevention of breast cancer. Carcinogenesis 2005, 26, 153–157. [Google Scholar]
- Kuhajda, F.P. Fatty-acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition 2000, 16, 202–208. [Google Scholar] [CrossRef]
- Flavin, R.; Peluso, S.; Nguyen, P.L.; Loda, M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010, 6, 551–562. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Dinwiddie, M.T.; Terry, P.D.; Chen, J. Recent Evidence Regarding Triclosan and Cancer Risk. Int. J. Environ. Res. Public Health 2014, 11, 2209-2217. https://doi.org/10.3390/ijerph110202209
Dinwiddie MT, Terry PD, Chen J. Recent Evidence Regarding Triclosan and Cancer Risk. International Journal of Environmental Research and Public Health. 2014; 11(2):2209-2217. https://doi.org/10.3390/ijerph110202209
Chicago/Turabian StyleDinwiddie, Michael T., Paul D. Terry, and Jiangang Chen. 2014. "Recent Evidence Regarding Triclosan and Cancer Risk" International Journal of Environmental Research and Public Health 11, no. 2: 2209-2217. https://doi.org/10.3390/ijerph110202209
APA StyleDinwiddie, M. T., Terry, P. D., & Chen, J. (2014). Recent Evidence Regarding Triclosan and Cancer Risk. International Journal of Environmental Research and Public Health, 11(2), 2209-2217. https://doi.org/10.3390/ijerph110202209