Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.1.1. Study Population and Commuter Routes
2.2. Air Pollution Models
Models | |||
---|---|---|---|
PROKAS | ESCAPE | PolluMap | |
Year | 2010 | 2009 | 2010 |
Grid size | 25 × 25 m | 50 × 50 m | 100 × 100 m |
Method | Gaussian dispersion, integrated building characteristics | Land use regression | Gaussian dispersion |
Availability | Basel-City | Basel-City | Switzerland |
Comparison with measurements | NA | R2 = 0.67 a | R2 = 0.80 b |
Reference | Air Hygiene Department Basel and Lohmeyer 2008 [30] | Beelen et al. 2013 [33] | Federal Office for the Environment Switzerland (FOEN) [34] |
2.3. NO2 Exposure Assessment
3. Results
3.1. Commuter Behavior of the Study Population
Basel-City | Total Area | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
n (subjects) | mean | (sd) | min | max | n (subjects) | mean | (sd) | min | max | |
commute distance (in m) | ||||||||||
all modes | 258 | 6,086 | (4,588) | 52 | 29,095 | 736 | 13,976 | (15,329) | 23 | 88,346 |
walking | 69 | 2,965 | (2,239) | 328 | 16,126 | 140 | 2,480 | (2,043) | 23 | 16,126 |
bicycle | 78 | 5,325 | (3,583) | 52 | 26,426 | 131 | 5,627 | (3,910) | 52 | 26,426 |
motorized transport | 22 | 9,128 | (4,128) | 3,569 | 17,136 | 234 | 21,318 | (17,610) | 877 | 88,346 |
public transport | 83 | 8,801 | (5,082) | 3,261 | 29,095 | 219 | 19,081 | (15,204) | 2033 | 83,182 |
other | 6 | 3,153 | (1,981) | 1,316 | 6,310 | 12 | 2,882 | (2,259) | 1061 | 7,895 |
Commute duration (in minutes) | ||||||||||
all modes | 258 | 42 | (25) | 4 | 155 | 736 | 49 | (33) | 2 | 204 |
walking | 69 | 35 | (24) | 9 | 155 | 140 | 32 | (25) | 2 | 155 |
bicycle | 78 | 30 | (15) | 4 | 90 | 131 | 32 | (19) | 4 | 125 |
motorized transport | 22 | 35 | (14) | 19 | 64 | 234 | 43 | (26) | 4 | 163 |
public transport | 83 | 62 | (24) | 23 | 140 | 219 | 78 | (32) | 23 | 204 |
other | 6 | 32 | (17) | 20 | 63 | 12 | 31 | (20) | 6 | 74 |
3.2. Comparison of Air Pollution Models
Model | n (subjects) | mean | (sd) | min | p5 | median | p95 | max | |
---|---|---|---|---|---|---|---|---|---|
Basel-City | PROKAS | 258 | 39.9 | (6.5) | 20.7 | 29.3 | 40.1 | 49.7 | 61.4 |
ESCAPE | 258 | 40.8 | (5.4) | 23.8 | 31.8 | 41.3 | 49.7 | 53.8 | |
PolluMap | 258 | 38.8 | (4.7) | 24.1 | 30.3 | 39.2 | 46.0 | 51.0 | |
Total area | PolluMap | 736 | 33.7 | (7.7) | 12.4 | 19.8 | 34.8 | 45.0 | 52.2 |
3.3. Commuter NO2 Concentration, Exposure and Dose by Travel Mode
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Physick, W.; Powell, J.; Cope, M.; Boast, K.; Lee, S. Measurements of personal exposure to NO2 and modelling using ambient concentrations and activity data. Atmos. Environ. 2011, 45, 2095–2102. [Google Scholar] [CrossRef]
- Morawska, L.; Ristovski, Z.; Jayaratne, E.R.; Keogh, D.U.; Ling, X. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 2008, 42, 8113–8138. [Google Scholar] [CrossRef] [Green Version]
- Knibbs, L.D.; Cole-Hunter, T.; Morawska, L. A review of commuter exposure to ultrafine particles and its health effects. Atmos. Environ. 2011, 45, 2611–2622. [Google Scholar] [CrossRef] [Green Version]
- Piechocki-Minguy, A.; Plaisance, H.; Schadkowski, C.; Sagnier, I.; Saison, J.Y.; Galloo, J.C.; Guillermo, R. A case study of personal exposure to nitrogen dioxide using a new high sensitive diffusive sampler. Sci. Total Environ. 2006, 366, 55–64. [Google Scholar] [CrossRef]
- Hanninen, O.O.; Palonen, J.; Tuomisto, J.T.; Yli-Tuomi, T.; Seppänen, O.; Jantunen, M.J. Reduction potential of urban PM2.5 mortality risk using modern ventilation systems in buildings. Indoor Air 2005, 15, 246–256. [Google Scholar] [CrossRef]
- Health Effects Institute. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects. HEI Special Report 17; Health Effects Institute (HEI): Boston, MA, USA, 2010. [Google Scholar]
- Ragettli, M.S.; Corradi, E.; Braun-Fahrländer, C.; Schindler, C.; de Nazelle, A.; Jerrett, M.; Ducret-Stich, R.E.; Künzli, N.; Phuleria, H.C. Commuter exposure to ultrafine particles in different urban locations, transportation modes and routes. Atmos. Environ. 2013, 77, 376–384. [Google Scholar]
- De Nazelle, A.; Fruin, S.; Westerdahl, D.; Martinez, D.; Ripoll, A.; Kubesch, N.; Nieuwenhuijsen, M. A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos. Environ. 2012, 59, 151–159. [Google Scholar] [CrossRef]
- Harrison, R.M.; Thornton, C.A.; Lawrence, R.G.; Mark, D.; Kinnersley, R.P.; Ayres, J.G. Personal exposure monitoring of particulate matter, nitrogen dioxide, and carbon monoxide, including susceptible groups. Occup. Environ. Med. 2002, 59, 671–679. [Google Scholar] [CrossRef]
- Int Panis, L.; de Geus, B.; Vandenbulcke, G.; Willems, H.; Degraeuwe, B.; Bleux, N.; Mishra, V.; Thomas, I.; Meeusen, R. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmos. Environ. 2010, 44, 2263–2270. [Google Scholar] [CrossRef]
- Dons, E.; Panis, L.I.; Van Poppel, M.; Theunis, J.; Wets, G. Personal exposure to black carbon in transport microenvironments. Atmos. Environ. 2012, 55, 392–398. [Google Scholar] [CrossRef]
- Chau, C.K.; Tu, E.Y.; Chan, D.W.T.; Burnett, J. Estimating the total exposure to air pollutants for different population age groups in Hong Kong. Environ. Int. 2002, 27, 617–630. [Google Scholar]
- Gulliver, J.; Briggs, D.J. Time-space modeling of journey-time exposure to traffic-related air pollution using GIS. Environ. Res. 2005, 97, 10–25. [Google Scholar] [CrossRef]
- Steinle, S.; Reis, S.; Sabel, C.E. Quantifying human exposure to air pollution—Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Total Environ. 2013, 443, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Setton, E.M.; Keller, C.P.; Cloutier-Fisher, D.; Hystad, P.W. Spatial variations in estimated chronic exposure to traffic-related air pollution in working populations: A simulation. Int. J. Health Geogr. 2008, 7. [Google Scholar] [CrossRef]
- Mölter, A.; Lindley, S.; de Vocht, F.; Agius, R.; Kerry, G.; Johnson, K.; Ashmore, M.; Terry, A.; Dimitroulopoulou, S.; Simpson, A. Performance of a microenviromental model for estimating personal NO2 exposure in children. Atmos. Environ. 2012, 51, 225–233. [Google Scholar] [CrossRef]
- Marshall, J.D.; Granvold, P.W.; Hoats, A.S.; McKone, T.E.; Deakin, E.; Nazaroff, W. Inhalation intake of ambient air pollution in California’s South Coast Air Basin. Atmos. Environ. 2006, 40, 4381–4392. [Google Scholar] [CrossRef]
- Beckx, C.; Panis, L.I.; van de Vel, K.; Arentze, T.; Lefebvre, W.; Janssens, D.; Wets, G. The contribution of activity-based transport models to air quality modelling: A validation of the ALBATROSS-AURORA model chain. Sci. Total Environ. 2009, 407, 3814–3822. [Google Scholar]
- Dhondt, S.; Beckx, C.; Degraeuwe, B.; Lefebvre, W.; Kochan, B.; Bellemans, T.; Panis, L.I.; Macharis, C.; Putman, K. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates. Environ. Impact Assess. Rev. 2012, 36, 42–51. [Google Scholar] [CrossRef]
- De Nazelle, A.; Rodriguez, D.A.; Crawford-Brown, D. The built environment and health: Impacts of pedestrian-friendly designs on air pollution exposure. Sci. Total Environ. 2009, 407, 2525–2535. [Google Scholar] [CrossRef]
- Setton, E.; Marshall, J.D.; Brauer, M.; Lundquist, K.R.; Hystad, P.; Keller, P.; Cloutier-Fisher, D. The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 42–48. [Google Scholar] [CrossRef]
- Liu, L.-J.S.; Curjuric, I.; Keidel, D.; Heldstab, J.; Künzli, N.; Bayer-Oglesby, L.; Ackermann-Liebrich, U.; Schindler, C.; Team, A.T.S. Characterization of source-specific air pollution exposure for a large population-based Swiss Cohort (SAPALDIA). Environ. Health Perspect. 2007, 115, 1638–1645. [Google Scholar] [CrossRef]
- Nethery, E.; Leckie, S.E.; Teschke, K.; Brauer, M. From measures to models: An evaluation of air pollution exposure assessment for epidemiological studies of pregnant women. Occup. Environ. Med. 2008, 65, 579–586. [Google Scholar] [CrossRef]
- Briggs, D.J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; Pryl, K.; van Reeuwijk, H.; Smallbone, K.; van der Veen, A. Mapping urban air pollution using GIS: A regression-based approach. Int. J. Geogr. Inf. Sci. 1997, 11, 699–718. [Google Scholar] [CrossRef]
- Liu, L.-J.S.; Tsai, M.-Y.; Keidel, D.; Gemperli, A.; Ineichen, A.; Hazenkamp-von Arx, M.; Bayer-Oglesby, L.; Rochat, T.; Künzli, N.; Ackermann-Liebrich, U.; et al. Long-term exposure models for traffic related NO2 across geographically diverse areas over separate years. Atmos. Environ. 2012, 46, 460–471. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef]
- Ragettli, M.S.; Phuleria, H.C.; Tsai, M.-Y.; Schindler, C.; de Nazelle, A.; Ducret-Stich, R.E.; Ineichen, A.; Perez, L.; Probst-Hensch, N.; Braun-Fahrländer, C.; et al. The relevance of commuter and work/school exposure in an epidemiological study on traffic-related air pollution. (manuscript under review).
- Federal Statistical Office (FSO); Federal Office for Spatial Development (ARE). Mobilität in der Schweiz, Ergebnisse des Mikrozensus Mobilität und Verkehr 2010; FSO, ARE: Neuchâtel and Berne, Switzerland, 2012; pp. 1–115. [Google Scholar]
- Federal Statistical Office (FSO); Federal Office for Spatial Development (ARE). Losungsansätze zur Erfassung der Routenwahl mittels Geokodierung wahrend CATI Befragungen; ARE: Neuchatel and Berne, Switzerland, 2008; pp. 1–44. [Google Scholar]
- Lohmeyer, A. PROKAS. Calculation Method to Determine Traffic Induced Pollution Levels; Ingenieurbüro Lohmeyer GmbH & Co. KG: Karlsruhe, Switzerland, 2008; pp. 1–15. [Google Scholar]
- Eichhorn, J. Validation of a Microscale Pollution Dispersal Model. In Air Pollution Modeling and Its Application XI; Gryning, S.-E., Schiermeier, F., Eds.; Springer US: New York, NY, USA, 1996; Volume 21, pp. 539–547. [Google Scholar]
- Janicke Consulting. The Dispersion Model LASAT (Lagrangian Simulation of Aerosol-Transport). A Computer Program for the Calculation of Pollutant Dispersion in the Atmosphere. Available online: http://www.janicke.de (accessed on 11 February 2014).
- Beelen, R.; Hoek, G.; Vienneau, D.; Eeftens, M.; Dimakopoulou, K.; Pedeli, X.; Tsai, M.-Y.; Künzli, N.; Schikowski, T.; Marcon, A.; et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—The ESCAPE project. Atmos. Environ. 2013, 72, 10–23. [Google Scholar] [CrossRef]
- FOEN. NO2 Ambient Concentrations in Switzerland. Modelling Results for 2005, 2010, 2015; Environmental Studies No. 1123; Federal Office for the Environment (FOEN): Berne, Switzerland, 2011; pp. 1–68. [Google Scholar]
- Zuurbier, M.; Hoek, G.; van den Hazel, P.; Brunekreef, B. Minute ventilation of cyclists, car and bus passengers: An experimental study. Environ. Health 2009, 8, 1–10. [Google Scholar] [CrossRef]
- De Nazelle, A.; Seto, E.; Donaire-Gonzalez, D.; Mendez, M.; Matamala, J.; Nieuwenhuijsen, M.J.; Jerrett, M. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ. Pollut. 2013, 176, 92–99. [Google Scholar]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar]
- Hertel, O.; Hvidberg, M.; Ketzel, M.; Storm, L.; Stausgaard, L. A proper choice of route significantly reduces air pollution exposure—A study on bicycle and bus trips in urban streets. Sci. Total Environ. 2008, 389, 58–70. [Google Scholar]
- Cole-Hunter, T.; Morawska, L.; Stewart, I.; Jayaratne, R.; Solomon, C. Inhaled particle counts on bicycle commute routes of low and high proximity to motorised traffic. Atmos. Environ. 2012, 61, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.T.; Chung, M.W. Indoor-outdoor air quality relationships in vehicle: Effect of driving environment and ventilation modes. Atmos. Environ. 2003, 37, 3795–3808. [Google Scholar]
- Dons, E.; Temmerman, P.; van Poppel, M.; Bellemans, T.; Wets, G.; Panis, L.I. Street characteristics and traffic factors determining road users’ exposure to black carbon. Sci. Total Environ. 2013, 447, 72–79. [Google Scholar] [CrossRef]
Supplementary Files
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ragettli, M.S.; Tsai, M.-Y.; Braun-Fahrländer, C.; De Nazelle, A.; Schindler, C.; Ineichen, A.; Ducret-Stich, R.E.; Perez, L.; Probst-Hensch, N.; Künzli, N.; et al. Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models. Int. J. Environ. Res. Public Health 2014, 11, 5049-5068. https://doi.org/10.3390/ijerph110505049
Ragettli MS, Tsai M-Y, Braun-Fahrländer C, De Nazelle A, Schindler C, Ineichen A, Ducret-Stich RE, Perez L, Probst-Hensch N, Künzli N, et al. Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models. International Journal of Environmental Research and Public Health. 2014; 11(5):5049-5068. https://doi.org/10.3390/ijerph110505049
Chicago/Turabian StyleRagettli, Martina S., Ming-Yi Tsai, Charlotte Braun-Fahrländer, Audrey De Nazelle, Christian Schindler, Alex Ineichen, Regina E. Ducret-Stich, Laura Perez, Nicole Probst-Hensch, Nino Künzli, and et al. 2014. "Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models" International Journal of Environmental Research and Public Health 11, no. 5: 5049-5068. https://doi.org/10.3390/ijerph110505049
APA StyleRagettli, M. S., Tsai, M. -Y., Braun-Fahrländer, C., De Nazelle, A., Schindler, C., Ineichen, A., Ducret-Stich, R. E., Perez, L., Probst-Hensch, N., Künzli, N., & Phuleria, H. C. (2014). Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models. International Journal of Environmental Research and Public Health, 11(5), 5049-5068. https://doi.org/10.3390/ijerph110505049