Phthalate Exposure and Health-Related Outcomes in Specific Types of Work Environment
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Phthalates Analyses
Compound Name | Precursor Ion | Product Ion | Fragmentor (V) | Collision Energy (V) | RT (min) | LOD (ng/mL) |
---|---|---|---|---|---|---|
MiNP | 291.2 | 141.2 | 95 | 13 | 15.2 | 8.12 |
MiNP-labelled | 295.3 | 79 | 95 | 13 | 15.2 | |
MEHP | 277.1 | 133.9 | 90 | 14 | 14.7 | 0.81 |
MEHP-labelled | 281.1 | 137.1 | 90 | 14 | 14.7 | |
MEP | 193.0 | 77.1 | 60 | 15 | 6.2 | 5.02 |
MEP-labelled | 197.1 | 79.0 | 60 | 15 | 6.2 | |
MnBP | 221.1 | 76.9 | 90 | 10 | 11.8 | 3.23 |
MnBP-labelled | 225.1 | 78.8 | 90 | 10 | 11.8 |
2.3. Anthropometry
2.4. Spirometry
2.5. Statistics
3. Results
Parameter | Men (n = 20) | Women (n = 10) | ||
---|---|---|---|---|
Urban | n = 13 | n = 8 | ||
Rural | n = 7 | n = 2 | ||
Average | SD | Average | SD | |
Age | 46.0 | 8.0 | 45.6 | 11.0 |
Body height | 178.3 | 5.95 | 162.4 | 10.49 |
Weight | 95.2 | 14.37 | 70.0 | 8.51 |
BMI | 29.9 | 4.3 | 26.7 | 3.96 |
Waist circumference | 106.04 | 11.4 | 88.6 | 13.88 |
Hip circumference | 107.78 | 6.87 | 104.2 | 4.8 |
WHR | 0.99 | 0.07 | 0.82 | 0.1 |
WHTR | 0.6 | 0.1 | 0.5 | 0.1 |
Body fat percentage | 29.6 | 6.30 | 38.7 | 9.16 |
Muscle mass percentage | 32.2 | 3.18 | 25.89 | 4.84 |
Visceral fat level | 13.9 | 4.8 | 7.5 | 3.0 |
FMI | 9.1 | 2.9 | 10.7 | 3.7 |
FFMI | 20.8 | 1.6 | 16.1 | 0.95 |
FVC | 5.0 | 0.97 | 3.4 | 1.12 |
FVC % of PV | 105.19 | 16.46 | 109.2 | 23.7 |
FEV1 | 3.73 | 0.91 | 2.6 | 0.68 |
FEV1 % of PV | 96.57 | 20.46 | 97.5 | 17.71 |
FEV1/FVC | 74.1 | 8.39 | 77.8 | 10.32 |
MVV | 81.9 | 23.97 | 46.7 | 18.32 |
MVV % of PV | 60.32 | 16.71 | 100.6 | 12.99 |
VC | 4.37 | 0.82 | 3.2 | 1.01 |
VC % PV | 88.34 | 15.04 | 101.6 | 21.22 |
PEF | 8.03 | 2.08 | 4.81 | 0.62 |
PEF % of PV | 87.63 | 21.01 | 74.99 | 9.68 |
Phthalate Metabolite | n | Mean ± SD | LOD | n < LOD (%) | Percentiles | ||||
---|---|---|---|---|---|---|---|---|---|
25th | 50th | 75th | 90th | 95th | |||||
MEP | 30 | 68.32 ± 43.74 | 5.02 | 23.33 | 40.84 | 49.20 | 77.26 | 89.60 | 344.45 |
MnBP | 30 | 71.42 ± 90.19 | 3.23 | 16.67 | 39.55 | 67.13 | 92.84 | 128.65 | 130.04 |
MEHP | 30 | 15.37 ± 20.09 | 0.81 | 13.33 | 2.72 | 5.94 | 17.43 | 50.60 | 60.71 |
MiNP | 30 | 1.47 ± 4.47 | 8.12 | 90.00 | <LOD | <LOD | <LOD | 12.77 | 14.89 |
Pulmonary function | Parameter | B | Std. Error | Beta | t | Sig |
---|---|---|---|---|---|---|
PEF % of PV a,b | MiNP ng/mL | 1.854 | 1.022 | 0.305 | 1.815 | 0.081 |
p/y | −0.429 | 0.202 | −0.357 | −2.125 | 0.043 | |
p/y | −0.474 | 0.195 | −0.395 | −2.429 | 0.022 | |
FFMI | 0.718 | 0.332 | 0.352 | 2.164 | 0.040 | |
FEV1/FVC a,c | MEHP ng/mL | 0.163 | 0.069 | 0.366 | 2.358 | 0.026 |
p/y | −0.250 | 0.090 | −0.433 | −2.791 | 0.010 | |
FEV1 % of PV a,d,e | p/y | −0.612 | 0.201 | −0.499 | −3.046 | 0.005 |
FVC % of PV d,e | BMI | −1.641 | 0.744 | −0.385 | −2.207 | 0.036 |
transverse chest diameter | −2.274 | 0.969 | −0.406 | −2.348 | 0.026 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Factors of Work Environment and Health Status of Workers in Condition of Plastic Industry of Slovak Republic. Available online: http://ehp.niehs.nih.gov/ehbasel13/p-3-16-17/ (accessed on 21 May 2014).
- Blount, B.C.; Silva, M.J.; Caudill, S.P.; Needham, L.L.; Pirkle, J.L.; Sampson, E.J.; Lucier, G.W.; Jackson, R.J.; Brock, J.W. Levels of seven urinary phthalate metabolites in a human reference population. Environ. Health Perspect. 2000, 108, 979–982. [Google Scholar]
- Bornehag, C.G.; Sundell, J.; Weschler, C.J.; Sigsgaard, T.; Lundgren, B.; Hasselgren, M.; Hagerhed-Engman, L. The association between asthma and allergic symptoms in children and phthalates in house dust: A nested case–control study. Environ. Health Perspect. 2004, 112, 1393–1397. [Google Scholar] [CrossRef]
- Jaakkola, J.J.; Knight, T.L. The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: A systematic review and meta-analysis. Environ. Health Perspect. 2008, 116, 845–853. [Google Scholar] [CrossRef]
- Kolarik, B.; Naydenov, K.; Larsson, M.; Bornehag, C.G.; Sundell, J. The association between phthalates in dust and allergic diseases among Bulgarian children. Environ. Health Perspect. 2008, 116, 98–103. [Google Scholar]
- Heudorf, U.; Mersch-Sundermann, V.; Angerer, J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health 2007, 210, 623–634. [Google Scholar] [CrossRef]
- Stanley, M.K.; Robillard, K.A.; Staples, C.A. Anthropogenic compounds. Part 3Q. Phthalate Esters. In The Handbook of Environmental Chemistry; Springer-Verlag: Berlin, Germany, 2003; Volume 3, pp. 1–7. [Google Scholar]
- Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure. Environ. Res. 2011, 111, 329–336. [Google Scholar] [CrossRef]
- Tsai, M.J.; Kuo, P.L.; Ko, Y.C. The association between phthalate exposure and asthma. Kaohsiung J. Med. Sci. 2012, 28, 28–36. [Google Scholar] [CrossRef]
- Jaakkola, J.J.; Oie, L.; Nafstad, P.; Botten, G.; Samuelsen, S.O.; Magnus, P. Interior surface materials in the home and the development of bronchial obstruction in young children in Oslo, Norway. Am. J. Public Health 1999, 89, 188–192. [Google Scholar] [CrossRef]
- Jaakkola, J.J.; Verkasalo, P.K.; Jaakkola, N. Plastic wall materials in the home and respiratory health in young children. Am. J. Public Health 2000, 90, 797–799. [Google Scholar] [CrossRef]
- Oie, L.; Nafstad, P.; Botten, G.; Magnus, P.; Jaakkola, J.J.K. Ventilation in homes and bronchial obstruction in young children. Epidemiology 1999, 10, 294–299. [Google Scholar] [CrossRef]
- Ponsonby, A.L.; Dwyer, T.; Kemp, A.; Cochrane, J.; Couper, D.; Carmichael, A. Synthetic bedding and wheeze in childhood. Epidemiology 2003, 14, 37–44. [Google Scholar] [CrossRef]
- Hoppin, J.A.; Ulmer, R.; London, S.J. Phthalate exposure and pulmonary function. Environ. Health Perspect. 2004, 112, 571–574. [Google Scholar] [CrossRef]
- Cordasco, E.M.; Demeter, S.L.; Kerkay, J.; van Ordstrand, H.S.; Lucas, E.V.; Chen, T.; Golish, J.A. Pulmonary manifestations of vinyl and polyvinyl chloride (interstitial lung disease). Chest 1980, 78, 828–834. [Google Scholar] [CrossRef]
- Lilis, R. Vinyl chloride and polyvinyl chloride exposure and occupational lung disease. Chest 1980, 78, 826–828. [Google Scholar] [CrossRef]
- Nielsen, J.; Fåhraeus, C.; Bensryd, I.; Akesson, B.; Welinder, H.; Lindén, K.; Skerfving, S. Small airways function in workers processing polyvinylchloride. Int. Arch. Occup. Environ. Health 1989, 61, 427–430. [Google Scholar]
- Hulin, M.; Simoni, M.; Viegi, G.; Annesi-Maesano, I. Respiratory health and indoor air pollutants based on quantitative exposure assessments. Eur. Respir. J. 2012, 40, 1033–1045. [Google Scholar] [CrossRef]
- Blanc, P.D.; Toren, K. How much adult asthma can be attributed to occupational factors? Am. J. Med. 1999, 107, 580–587. [Google Scholar] [CrossRef]
- Oie, L.; Hersoug, L.G.; Madsen, J.O. Residential exposure to plasticizers and its possible role in the pathogenesis of asthma. Environ. Health Perspect. 1997, 105, 972–978. [Google Scholar] [CrossRef]
- Larsen, S.T.; Hansen, J.S.; Hammer, M.; Alarie, Y.; Nielsen, G.D. Effects of mono-2-ethylhexyl phthalate on the respiratory tract in BALB/c mice. Hum. Exp. Toxicol. 2004, 23, 537–545. [Google Scholar] [CrossRef]
- Ernst, P.; De Guire, L.; Armstrong, B.; Thériault, G. Obstructive and restrictive ventilatory impairment in polyvinylchloride fabrication workers. Am. J. Ind. Med. 1988, 14, 273–279. [Google Scholar] [CrossRef]
- Silva, M.J.; Slakman, A.R.; Reidy, J.A.; Preau, J.L., Jr.; Herbert, A.R.; Samandar, E.; Needham, L.L.; Calafat, A.M. Analysis of human urine for fifteen phthalate metabolites using automated solid-phase extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 805, 161–167. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. ATS/ERS task force. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. Available online: http://www.goldcopd.org (accessed on 13 June 2012).
- Gaudin, R.; Marsan, P.; Ndaw, S.; Robert, A.; Ducos, P. Biological monitoring of exposure to di(2-ethylhexyl) phthalate in six French factories: A field study. Int. Arch. Occup. Environ. Health 2011, 84, 523–531. [Google Scholar] [CrossRef]
- Fromme, H.; Bolte, G.; Koch, H.M.; Angerer, J.; Boehmer, S.; Drexler, H.; Mayer, R.; Liebl, B. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int. J. Hyg. Environ. Health 2007, 210, 21–33. [Google Scholar] [CrossRef]
- Koch, H.M.; Calafat, A.M. Human body burdens of chemicals used in plastic manufacture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2063–2078. [Google Scholar] [CrossRef]
- Koch, H.M.; Rossbach, B.; Drexler, H.; Angerer, J. Internal exposure of the general population to DEHP and other phthalates-determination of secondary and primary phthalate monoester metabolites in urine. Environ. Res. 2003, 93, 177–185. [Google Scholar] [CrossRef]
- Wittassek, M.; Heger, W.; Koch, H.M.; Becker, K.; Angerer, J.; Kolossa-Gehring, M. Daily intake of di(2-ethylhexyl)phthalate (DEHP) by German children—A comparison of two estimation models based on urinary DEHP metabolite levels. Int. J. Hyg. Environ. Health 2007, 210, 35–42. [Google Scholar]
- Saravanabhavan, G.; Guay, M.; Langlois, É.; Giroux, S.; Murray, J.; Haines, D. Biomonitoring of phthalate metabolites in the Canadian population through the Canadian health measures survey (2007–2009). Int. J. Hyg. Environ. Health 2013, 216, 652–661. [Google Scholar] [CrossRef]
- Frederiksen, H.; Nielsen, J.K.; Mørck, T.A.; Hansen, P.W.; Jensen, J.F.; Nielsen, O.; Andersson, A.M.; Knudsen, L.E. Urinary excretion of phthalate metabolites, phenols and parabens in rural and urban Danish mother-child pairs. Int. J. Hyg. Environ. Health 2013, 216, 772–783. [Google Scholar] [CrossRef]
- Saravanabhavan, G.; Murray, J. Human biological monitoring of diisononyl phthalate and diisodecyl phthalate: A review. J. Environ. Public Health 2012, 2012. [Google Scholar] [CrossRef]
- Calafat, A.M.; Wong, L.Y.; Silva, M.J.; Samandar, E.; Preau, J.L., Jr.; Jia, L.T.; Needham, L.L. Selecting adequate exposure biomarkers of diisononyl and diisodecyl phthalates: data from the 2005–2006 National Health and Nutrition Examination Survey. Environ. Health Perspect. 2011, 119, 50–55. [Google Scholar]
- Park, H.Y.; Kim, J.H.; Lim, Y.H.; Bae, S.; Hong, Y.C. Influence of genetic polymorphisms on the association between phthalate exposure and pulmonary function in the elderly. Environmental Res. 2013, 122, 18–24. [Google Scholar] [CrossRef]
- Grün, F.; Blumberg, B. Environmental obesogens: Organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 2006, 147, 50–55. [Google Scholar] [CrossRef]
- Stahlhut, R.W.; van Wijngaarden, E.; Dye, T.D.; Cook, S.; Swan, S.H. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ. Health Perspect. 2007, 115, 876–882. [Google Scholar] [CrossRef]
- Hatch, E.E.; Nelson, J.W.; Qureshi, M.M.; Weinberg, J.; Moore, L.L.; Singer, M.; Webster, T.F. Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: A cross-sectional study of NHANES data, 1999–2002. Environ. Health 2008, 7, 1–15. [Google Scholar] [CrossRef]
- Hsu, J.F.; Peng, L.W.; Li, Y.J.; Lin, L.C.; Liao, P.C. Identification of di-isononyl phthalate metabolites for exposure marker discovery using in vitro/in vivo metabolism and signal mining strategy with LC-MS data. Anal. Chem. 2011, 83, 8725–8731. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kolena, B.; Petrovicova, I.; Pilka, T.; Pucherova, Z.; Munk, M.; Matula, B.; Vankova, V.; Petlus, P.; Jenisova, Z.; Rozova, Z.; et al. Phthalate Exposure and Health-Related Outcomes in Specific Types of Work Environment. Int. J. Environ. Res. Public Health 2014, 11, 5628-5639. https://doi.org/10.3390/ijerph110605628
Kolena B, Petrovicova I, Pilka T, Pucherova Z, Munk M, Matula B, Vankova V, Petlus P, Jenisova Z, Rozova Z, et al. Phthalate Exposure and Health-Related Outcomes in Specific Types of Work Environment. International Journal of Environmental Research and Public Health. 2014; 11(6):5628-5639. https://doi.org/10.3390/ijerph110605628
Chicago/Turabian StyleKolena, Branislav, Ida Petrovicova, Tomas Pilka, Zuzana Pucherova, Michal Munk, Bohumil Matula, Viera Vankova, Peter Petlus, Zita Jenisova, Zdenka Rozova, and et al. 2014. "Phthalate Exposure and Health-Related Outcomes in Specific Types of Work Environment" International Journal of Environmental Research and Public Health 11, no. 6: 5628-5639. https://doi.org/10.3390/ijerph110605628