Relationship between Objectively Measured Transportation Behaviors and Health Characteristics in Older Adults
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Procedures
2.2. Study Participants
2.3. Measures and Procedures
2.3.1. Demographics
2.3.2. Physical Functioning
Variable | Scoring Protocol | Range | Sample Mean (SD) |
---|---|---|---|
Physical functioning | |||
Physical Performance Battery (SPPB) | Sum of scores on the three dimensions (i.e., balance, walk, chairs stands) ranging from 0 to 4 | 0–12 | 8.67 (2.74) |
400 Meter Walk Test | Time in seconds to complete the 400 m | 269–858 | 444.41 (114.04) |
Pain Interference (PROMIS-PI) | T-score of sum across 6 five-level Likert items | 41–64 | 49.72 (7.90) |
Psychological functioning | |||
Fear of Falling (FES-I) | Sum across 16 five-level Likert items | 16–64 | 25.79 (8.11) |
Depression (CESD-10) | Sum across 10 four-level Likert items | 0–18 | 5.51 (4.02) |
Cognitive functioning | |||
Executive functioning, attention, visual search, and motor function (Trail Making Test) | Time in seconds to complete Trails B minus the time in seconds to complete Trails A | −13.09–275.78 | 90.25 (60.24) |
Visual perception and information processing speed (Symbol search) | Number correct minus number incorrect within 2 min | 1–47 | 19.86 (7.13) |
2.3.3. Psychological Functioning
2.3.4. Cognitive Functioning
2.3.5. GPS and Accelerometer
2.4. Data Processing
Data Aggregation
2.5. Analyses
3. Results and Discussion
3.1. Results
Demographic | Mean (SD)/Frequency (%) |
---|---|
Age | 83 (6.3) |
Gender | |
Men | 81 (28.7) |
Women | 201 (71.3) |
Education | |
College and above | 180 (64.7) |
Below college | 98 (35.3) |
Wear-time (hours/day) | 13.6 (1.3) |
GPS Trip Variables | Pedestrian [Mean (SD)] | Vehicle [Mean (SD)] |
---|---|---|
Daily time in trips based on GPS data (minutes) | 10.2 (10.6) | 13.2 (14.6) |
Daily distance in trips based on GPS data (km) | 0.5 (0.6) | 8.7 (18.8) |
Daily activity during trips based on accelerometer data (cpm) | 1188.8 (714.4) | 219.7 (317.1) |
3.1.1. Pedestrian Travel
Mean Daily Number of Pedestrian Trips | Mean Daily Distance Traveled in Pedestrian Trips (per 10 m) | Mean Daily Time Traveled in Pedestrian Trips (per 10 min) | ||||
---|---|---|---|---|---|---|
B (95% CI) | β | B (95% CI) | β | B (95% CI) | β | |
Physical functioning | ||||||
Physical Performance Battery (SPPB) | 0.46 (0.20, 0.72) * | 0.22 | 0.01 (0.00, 0.10) ** | 0.23 | 0.35 (0.20, 0.50) ** | 0.22 |
400 Meter Walk ª | −40.57 (−51.58, −29.57) ** | −0.47 | −0.44 (−0.60, −0.30) ** | −0.37 | −24.47 (−32.10, −1.69) ** | −0.40 |
Pain Interference ª (PROMIS-PI) | −1.29 (−2.14, −0.44) * | −0.26 | −0.02 (−0.03, −0.01) ** | −0.21 | −1.18 (−1.8, −0.60) ** | −0.26 |
Psychological functioning | ||||||
Fear of Falling ª (FES-I) | −1.08 (−1.90, −0.26) * | −0.17 | −0.02 (−0.03, −0.01) * | −0.18 | −0.80 (−1.40, −0.20) * | −0.17 |
Depression ª (CESD-10) | −0.49 (−0.92, −0.06) * | −0.16 | −0.01 (−0.01, −0.00) * | −0.20 | −0.47 (−0.80, −0.20) | −0.20 |
Cognitive functioning | ||||||
Trail Making Test ª | −0.46 (−6.25, 5.30) | −0.01 | −0.01 (−0.01, 0.01) | −0.01 | −0.04 (−4.10, 4.10) | −0.00 |
Symbol search | 0.15 (−0.57, 0.88) | 0.03 | 0 (−0.01, 0.01) | 0.01 | 0.04 (−0.50, 0.60) | 0.01 |
3.1.2. Vehicle Transportation
Mean Daily Number of Vehicle Trips | Mean Daily Distance Traveled in Vehicle Trips (per 10 km) | Mean Daily Time Traveled in Vehicle Trips (per 10 min) | ||||
---|---|---|---|---|---|---|
B (95% CI) | β | B (95% CI) | β | B (95% CI) | β | |
Physical functioning | ||||||
Physical Performance Battery (SPPB) | 0.20 (−0.05, 0.45) | 0.09 | 0.04 (−0.10, 0.10) | 0.04 | 0.09 (−0.03, 0.20) | 0.08 |
400 Meter Walk ª | −8.74 (−20.28, 2.80) | −0.09 | −0.30 (−5.0, 4.40) | −0.01 | −2.01 (−7.30, 3.20) | −0.05 |
Pain Interference ª (PROMIS-PI) | −0.11 (−0.95, 0.74) | −0.02 | −0.13 (−0.50, 0.20) | −0.05 | −0.13 (−0.50, 0.30) | −0.04 |
Psychological functioning | ||||||
Fear of Falling ª (FES-I) | −0.89 (−1.70, −0.09) * | −0.13 | −0.05 (−0.40, 0.30) | −0.02 | −0.22 (−0.60, 0.10) | −0.07 |
Depression ª (CESD-10) | −0.23 (−0.65, 0.19) | −0.07 | −0.04 (−0.20, 0.10) | −0.03 | −0.06 (−0.30, 0.10) | −0.04 |
Cognitive functioning | ||||||
Trail Making Test ª | 0.43 (−5.27, 6.12) | 0.01 | −1.61 (−4.0, 0.70) | −0.08 | −1.45 (−4.1, 1.10) | −0.06 |
Symbol search | 0.36 (−0.35, 1.07) | 0.06 | 0.12 (−0.20, 0.40) | 0.05 | 0.22 (−0.10, 0.50) | 0.08 |
3.2. Discussion
3.3. Strengths and Limitations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- ACL. Aging Statistics. Available online: http://www.aoa.gov/Aging_Statistics/ (accessed on 27 October 2015).
- Rice, D.P.; Feldman, J.J. Living longer in the United States: Demographic changes and health needs of the elderly. Milbank Mem. Fund Q. Health Soc. 1983, 61, 362–396. [Google Scholar] [CrossRef] [PubMed]
- Lee, R. The Demographic Transition: Three centuries of fundamental change. J. Econ. Perspect. 2003, 17, 167–190. [Google Scholar] [CrossRef]
- Fries, J.F. Aging, natural death, and the compression of morbidity. N. Engl. J. Med. 1980, 303, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Wert, D.M.; Talkowski, J.B.; Brach, J.; Vanswearingen, J. Characteristics of walking, activity, fear of falling, and falls in community-dwelling older adults by residence. source? J. Geriatr. Phys. Ther. 2010, 33, 41–45. [Google Scholar] [PubMed]
- Webber, S.C.; Porter, M.M.; Menec, V.H. Mobility in older adults: A comprehensive framework. Gerontologist 2010, 50, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Stalvey, B.T.; Owsley, C.; Sloane, M.E.; Ball, K. The Life Space Questionnaire: A Measure of the Extent of Mobility of Older Adults. J. Appl. Gerontol. 1999, 18, 460–478. [Google Scholar] [CrossRef]
- Metz, D.H. Mobility of older people and their quality of life. Transp. Policy 2000, 7, 149–152. [Google Scholar] [CrossRef]
- WHO. |Physical Activity. Available online: http://www.who.int/topics/physical_activity/en/ (accessed on 27 October 2015).
- May, D.; Nayak, U.S.; Isaacs, B. The life-space diary: A measure of mobility in old people at home. Int. Rehabil. Med. 1985, 7, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Bandeen-Roche, K.; Chaves, P.H.; Johnson, B. A Preclinical mobility disability predicts incident mobility disability in older women. J. Gerontol. A. Biol. Sci. Med. Sci. 2000, 55, 43–52. [Google Scholar] [CrossRef]
- Werner, S.; Auslander, G.K.; Shoval, N.; Gitlitz, T.; Landau, R.; Heinik, J. Caregiving burden and out-of-home mobility of cognitively impaired care-recipients based on GPS tracking. Int. Psychogeriatrics 2012, 24, 1836–1845. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.L.; Edwards, J.D.; Waters, M.P.; Hudak, E.M.; Valdés, E.G. Mediators of the association between driving cessation and mortality among older adults. J. Aging Health 2013, 25, 249–269. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Ferrucci, L.; Pieper, C.F.; Leveille, S.G.; Markides, K.S.; Ostir, G.V.; Studenski, S.; Berkman, L.F.; Wallace, R.B. Lower extremity function and subsequent disability: Consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, 221–231. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.S.; Bodner, E.V.; Allman, R.M. Measuring life-space mobility in community-dwelling older adults. J. Am. Geriatr. Soc. 2003, 51, 1610–1614. [Google Scholar] [CrossRef] [PubMed]
- Golomb, J.; de Leon, M.J.; Kluger, A.; George, A.E.; Tarshish, C.; Ferris, S.H. Hippocampal atrophy in normal aging. An association with recent memory impairment. Arch. Neurol. 1993, 50, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Doherty, A.R.; Hamilton, A.; Matthews, A.; Batterham, A.M.; Nelson, M.; Foster, C.; Cowburn, G. Evaluating the feasibility of measuring travel to school using a wearable camera. Am. J. Prev. Med. 2012, 43, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Hodges, S.; Williams, L.; Berry, E.; Izadi, S.; Srinivasan, J.; Bulter, A.; Smyth, G.; Kapur, N.; Wood, K. SenseCam: A retrospective memory aid. 2006, 4206, 177–193. [Google Scholar]
- Kerr, J.; Duncan, S.; Schipperijn, J.; Schipperjin, J. Using global positioning systems in health research: A practical approach to data collection and processing. Am. J. Prev. Med. 2011, 41, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Doherty, A.; Mizdrak, S.; Marshall, J.; Kerr, A.; Legge, S.; Godbole, H.; Badland, M.; Oliver, C.; Foster, C. High group level validity but high random error of a self-report travel diary, as assessed by wearable cameras. J. Transp. Health 2014, 3, 190–201. [Google Scholar] [CrossRef]
- Carlson, J.A.; Jankowska, M.M.; Meseck, K.; Godbole, S.; Natarajan, L.; Raab, F.; Demchak, B.; Patrick, K.; Kerr, J. Validity of palms GPS scoring of active and passive travel compared to sensecam. Med. Sci. Sports Exerc. 2015, 47, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.A.; Saelens, B.E.; Kerr, J.; Schipperijn, J.; Conway, T.L.; Frank, L.D.; Chapman, J.E.; Glanz, K.; Cain, K.L.; Sallis, J.F. Association between neighborhood walkability and GPS-measured walking, bicycling and vehicle time in adolescents. Health Place 2015, 32, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Oswald, F.; Wahl, H.-W.; Voss, E.; Schilling, O.; Freytag, T.; Auslander, G.; Landau, R. The use of tracking technologies for the analysis of outdoor mobility in the face of dementia: First steps into a project and some illustrative findings from Germany. J. Housing Elder. 2010, 24, 55–73. [Google Scholar] [CrossRef]
- Shoval, N.; Wahl, H.-W.; Auslander, G.; Isaacson, M.; Oswald, F.; Edry, T.; Heinik, J. Use of the global positioning system to measure the out-of-home mobility of older adults with differing cognitive functioning. Ageing Soc. 2011, 31, 849–869. [Google Scholar] [CrossRef]
- Wettstein, M.; Wahl, H.W.; Shoval, N.; Oswald, F.; Voss, E.; Seidl, U.; Frölich, L.; Auslander, G.; Heinik, J.; Landau, R. Out-of-home behavior and cognitive impairment in older adults: findings of the SenTra Project. J. Appl. Gerontol. 2015, 34, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.A.; Winters, M.; Clarke, P.; McKay, H. Generating GPS activity spaces that shed light upon the mobility habits of older adults: A descriptive analysis. Int. J. Health Geogr. 2014, 12. [Google Scholar] [CrossRef] [PubMed]
- Tung, J.Y.; Rose, R.V.; Gammada, E.; Lam, I.; Roy, E.A.; Black, S.E.; Poupart, P. Measuring life space in older adults with mild-to-moderate Alzheimer’s disease using mobile phone GPS. Gerontology 2014, 60, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.; Rosenberg, D.E.; Nathan, A.; Millstein, R.A.; Carlson, J.A.; Crist, K.; Wasilenko, K.; Bolling, K.; Castro, C.M.; Buchner, D.M.; Marshall, S.J. Applying the ecological model of behavior change to a physical activity trial in retirement communities: Description of the study protocol. Contemp. Clin. Trials 2012, 33, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Shumway-Cook, A.; Brauer, S. Research report predicting the probability for falls in community-dwelling older adults using the timed up and go test. source? Phys. Ther. 2000, 80, 896–903. [Google Scholar] [PubMed]
- Vestergaard, S.; Patel, K.V.; Bandinelli, S.; Ferrucci, L.; Guralnik, J.M. Characteristics of 400-meter walk test performance and subsequent mortality in older adults. Rejuvenation Res. 2009, 12, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Puthoff, M.L. Outcome measures in cardiopulmonary physical therapy: Short physical performance battery. Cardiopulm. Phys. Ther. J. 2008, 19, 17–22. [Google Scholar] [PubMed]
- Amtmann, D.; Cook, K.F.; Jensen, M.P.; Chen, W.-H.; Choi, S.; Revicki, D.; Cella, D.; Rothrock, N.; Keefe, F.; Callahan, L.; Lai, J.-S. Development of a PROMIS item bank to measure pain interference. Pain 2010, 150, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Radloff, L.S. The CES-D Scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Irwin, M.; Haydari, K.; Oxman, M. Screening for depression in the older adult. Arch. Int. Med. 2012, 159, 10–13. [Google Scholar] [CrossRef]
- Delbaere, K.; Close, J.C.T.; Mikolaizak, A.S.; Sachdev, P.S.; Brodaty, H.; Lord, S.R. The falls efficacy scale international (FES-I). A comprehensive longitudinal validation study. Age Ageing 2010, 39, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing 2005, 34, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Kempen, G.I.J.M.; Yardley, L.; van Haastregt, J.C.M.; Zijlstra, G.A.R.; Beyer, N.; Hauer, K.; Todd, C. The short FES-I: A shortened version of the falls efficacy scale-international to assess fear of falling. Age Ageing 2008, 37, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Tombaugh, T.N. Trail making test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 2004, 19, 203–214. [Google Scholar] [CrossRef]
- Salthouse, T.A. What cognitive abilities are involved in trail-making performance? Intelligence 2011, 39, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. WAIS-III Administration and Scoring Manual; Harcourt: San Diego, CA, USA, 1997. [Google Scholar]
- Sánchez-Cubillo, I.; Periáñez, J.A.; Adrover-Roig, D.; Rodríguez-Sánchez, J.M.; Ríos-Lago, M.; Tirapu, J.; Barceló, F. Construct validity of the trail making test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009, 15, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.; Stewart, T.I.; Oliver, M.; Mavoa, S.; MacRae, D.; Badland, H.M.; Duncan, M.J. Portable global positioning system receivers: Static validity and environmental conditions. Am. J. Prev. Med. 2013, 44, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Mâsse, L.C.; Fuemmeler, B.F.; Anderson, C.B.; Matthews, C.E.; Trost, S.G.; Catellier, D.J.; Treuth, M. Accelerometer data reduction: A comparison of four reduction algorithms on select outcome variables. Med. Sci Sports Exerc. 2005, 37, 544–554. [Google Scholar] [CrossRef]
- Marshall, S.; Kerr, J.; Carlson, J.; Cadmus-Bertram, L.; Patterson, R.; Wasilenko, K.; Crist, K.; Rosenberg, D.; Natarajan, L. Patterns of weekday and weekend sedentary behavior among older adults. J. Aging. Phys. Act. 2015, 23, 534–541. [Google Scholar] [CrossRef] [PubMed]
- PALM. UCSD-PALMS-Project. Available online: http://ucsd-palms-project.wikispaces.com/ (accessed on 17 September 2014).
- Choi, L.; Ward, S.C.; Schnelle, J.F.; Buchowski, M.S. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med. Sci. Sports Exerc. 2012, 44, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.A.; Beckett, L.A.; Albert, M.S.; Hebert, L.E.; Scherr, P.A.; Funkenstein, H.H.; Taylor, J.O. Level of education and change in cognitive function in a community population of older persons. Ann. Epidemiol. 1993, 3, 71–77. [Google Scholar] [CrossRef]
- Chang, J.T.; Morton, S.C.; Rubenstein, L.Z.; Mojica, W.A.; Maglione, M.; Suttorp, M.J.; Roth, E.A.; Shekelle, P.G. Interventions for the prevention of falls in older adults: Systematic review and meta-analysis of randomised clinical trials. BMJ 2004, 328. [Google Scholar] [CrossRef] [PubMed]
- Hindmarsh, J.J. Falls in older persons. Arch. Intern. Med. 1989, 149, 515–521. [Google Scholar] [CrossRef]
- James, B.D.; Boyle, P.A.; Buchman, A.S.; Barnes, L.L.; Bennett, D.A. Life space and risk of Alzheimer disease, mild cognitive impairment, and cognitive decline in old age. Am. J. Geriatric Psych. 2011, 19, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Crowe, M.; Andel, R.; Wadley, V.G.; Okonkwo, O.C.; Sawyer, P.; Allman, R.M. Life-space and cognitive decline in a community-based sample of African American and Caucasian older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takemoto, M.; Carlson, J.A.; Moran, K.; Godbole, S.; Crist, K.; Kerr, J. Relationship between Objectively Measured Transportation Behaviors and Health Characteristics in Older Adults. Int. J. Environ. Res. Public Health 2015, 12, 13923-13937. https://doi.org/10.3390/ijerph121113923
Takemoto M, Carlson JA, Moran K, Godbole S, Crist K, Kerr J. Relationship between Objectively Measured Transportation Behaviors and Health Characteristics in Older Adults. International Journal of Environmental Research and Public Health. 2015; 12(11):13923-13937. https://doi.org/10.3390/ijerph121113923
Chicago/Turabian StyleTakemoto, Michelle, Jordan A. Carlson, Kevin Moran, Suneeta Godbole, Katie Crist, and Jacqueline Kerr. 2015. "Relationship between Objectively Measured Transportation Behaviors and Health Characteristics in Older Adults" International Journal of Environmental Research and Public Health 12, no. 11: 13923-13937. https://doi.org/10.3390/ijerph121113923