Indoor and Outdoor Exposure to Ultrafine, Fine and Microbiologically Derived Particulate Matter Related to Cardiovascular and Respiratory Effects in a Panel of Elderly Urban Citizens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects and Design
2.2. Exposure Assessment
Day of Biological Endpoint Sampling a | 1 | 3 | 8 | 15 | 17 | 22 | 29 |
---|---|---|---|---|---|---|---|
Outdoor pollutants | 48 h prior | 48 h prior | 48 h prior | 48 h prior | 48 h prior | 48 h prior | 48 h prior |
Indoor PM2.5 living and bedroom | Day 1–8 | Day 1–8 | Day 8–15 | Day 15–22 | Day 15–22 | Day 22–29 | |
Indoor PNC | 24 h prior | 24 h prior | 24 h prior | ||||
Indoor settled dust | Day 1–15 | Day 1–15 | Day 1–15 | Day 15–29 | Day 15–29 | Day 15–29 |
2.3. Measurement of Microvascular- and Lung Function
2.4. Measurement of Biomarkers
2.5. Statistical Analysis
3. Results
3.1. Exposure Characterization
3.2. Physiological Functions and Biomarkers
Indoor Air Pollutants | Filtration | Mann-Whitney Test | |
---|---|---|---|
Sham | Active | p-Values | |
PNC (#/cm3) in LR | 7669 (3435, 45,866) | 5618 (1241, 56,654) | 0.08 |
PM2.5_total mass a (µg/m3) in LR | 8.0 (3.4, 20.7) | 4.3 (0.2, 12.2) | 0.00 |
PM2.5_total mass a (µg/m3) in BR | 7.6 (1.4, 19.1) | 3.7 (0, 14) | 0.00 |
Bacteria (CFU/m2/day) in LR | 2529 (458, 10,606) | 2098 (159.5, 6826) | 0.02 |
Endotoxin (EU/m2/day) in LR | 111 (33.3, 502) | 126 (35.9, 374) | 0.85 |
Fungi (CFU/m2/day) in LR | 1743 (398.7, 5366) | 1094 (205, 2939) | 0.00 |
Serine protease (µg/m2/day) in LR | 51.3 (12.0, 93.3) | 56.4 (20.1, 96.4) | 0.04 |
NAGase (pmol 4-MU/m2/day) in LR | 3453 (388, 10,049) | 3841 (388, 12144) | 0.15 |
4. Discussion
Exposure Variables | Indoor Exposure and Sampling Averaging Time | Outdoor | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PNC 24 h (103/cm3) | PM2.5LR 7 days (µg/m3) | PM2.5BR 7 days (µg/m3) | Bacteria 14 days (CFU/m2/day) | Endotoxin 14 days (EU/m2/day) | Fungi 14 days (CFU/m2/day) | Serine Protease 14 days (µg/m2/day) | NAGase 14 days (pmol 4-MU/m2/day) | PNC 48h prior (103/cm3) | PM2.5 48h prior (µg/m3) | PM10 48h prior (µg/m3) | ||
Median (5th, 95th percentile) | 7.1 (1.7, 94.7) | 6.3 (1.8, 17) | 6.3 (0, 18) | 2529 (205, 10,606) | 115 (33.4, 477) | 1196 (205, 5366) | 54.7 (16, 94) | 3841 (388, 12,144) | 5.4 (3.0, 10.4) | 15 (5.2, 42.3) | 22 (7.5, 47) | |
Indoor | PNC | 1.0000 | ||||||||||
PM2.5 LR | 1.0000 | |||||||||||
PM2.5 BR | 0.65 * (0.00) | 1.0000 | ||||||||||
Bacteria | 0.18 * (0.03) | 0.27 * (0.00) | 1.0000 | |||||||||
Endotoxin | 0.33 * (0.00) | 0.32 * (0.00) | 0.58 * (0.00) | 1.0000 | ||||||||
Fungi | 0.20 * (0.01) | 0.21 * (0.01) | −0.07 (0.38) | −0.08 (0.36) | 1.0000 | |||||||
Serine protease | 0.05 (0.60) | 0.16 (0.05) | 0.29 * (0.00) | 0.19* (0.02) | −0.11 (0.19) | 1.0000 | ||||||
NAGase | −0.11 (0.18) | 0.03 (0.70) | 0.13 (0.12) | −0.08 (0.35) | −0.06 (0.47) | −0.09 (0.31) | 1.0000 | |||||
Outdoor | PNC | −0.11 (0.33) | 0.00 (0.98) | 0.03 (0.69) | −0.19 * (0.02) | −0.13 (0.11) | −0.04 (0.65) | −0.05 (0.58) | 0.13 (0.11) | 1.0000 | ||
PM2.5 | −0.12 (0.29) | 0.13 (0.14) | 0.20 * (0.02) | −0.12 (0.14) | −0.02 (0.83) | 0.03 (0.73) | −0.06 (0.45) | 0.00 (0.97) | 0.45 * (0.00) | 1.0000 | ||
PM10 | −0.08 (0.47) | 0.05 (0.56) | 0.15(0.08) | −0.15 (0.07) | −0.07 (0.39) | 0.06 (0.51) | −0.12 (0.14) | 0.00 (0.96) | 0.46 * (0.00) | 0.90 * (0.00) | 1.0000 |
Outcome Variables Median (95% Confidence Interval) | Indoor Exposure Characteristics (IQR) | Outdoor Exposure Characteristics (IQR) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PNC (13.6 103/cm3) | PM2.5 LR (5.7 µg/m3) | PM2.5 BR (6.1 µg/m3) | Bacteria (3383 CFU/m2/day) | Endotoxin (111 EU/m2/day) | Fungi (1934 CFU/m2/day) | Serine protease (27.5µg/m2/day) | NAGase (4826 pmol4−MU/m2/day) | PNC (3.0103/cm3) | PM2.5 (11.9 µg/m3) | PM10 (14.0 µg/m3) | |
MVF | −2.1 | −1.1 | 1.2 | 5.6 * | 1.7 | −2.8 | 2.6 | −1.1 | −3.4 * | −1.2 | −0.5 |
C−reactive protein | −4.2 | −1.3 | −2.3 | −0.7 | 3.0 | 4.2 | 4.1 | 0.2 | 3.4 | −2.8 | −4.3 |
Leukocytes 5.7 (3.9, 8.3; 109 cells/L) | −0.6 (−3.3, 2.2) | −1.7 (−4.4, 0.9) | −0.6 (−3.2, 2.0) | 0.8 (−1.6, 3.2) | 0.5 (−1.0, 2.1) | 2.6 (−0.7, 5.9) | −3.5 (−8.2, 1.5) | 0.5 (−1.9, 2.9) | 0.8 (−1.8, 3.4) | −2.1 (−4.2, 0.1) | −1.9 (−4.4, 0.8) |
Lymphocytes 2.0 (0.9, 3.3; 109 cells/L) | −1.7 (−5.3, 2.1) | −2.9 (−6.1, 0.5) | 0.6 (−2.7, 4.0) | −0.9 (−3.9, 2.1) | 0.9 (−1.1, 2.9) | 0.2 (−3.9, 4.5) | −4.0 (−10.4, 2.7) | 0.6 (−2.5, 3.8) | 1.7 (−1.6, 5.0) | 2.3 (−0.5, 5.3) | 2.1 (−1.2, 5.6) |
Monocytes 0.6 (0.4, 0.9; 109 cells/L) | −1.4 (−4.3, 1.5) | −1.0 (−3.7, 1.8) | 0.8 (−1.8, 3.6) | 1.4 (−1.1, 3.9) | 1.2 (−0.4, 2.9) | 1.2 (−2.2, 4.5) | −1.6 (−6.8, 3.7) | 1.1 (−1.4, 3.7) | 2.0 (−0.6, 4.8) | −0.2 (−2.5, 2.1) | −0.2 (−2.9, 2.5) |
Granulocytes 2.9 (1.8, 5.4; 109 cells/L) | 0.2 (−3.4, 3.9) | −0.6 (−4.5, 3.5) | −1.3 (−5.1, 2.7) | 2.2 (−1.3, 5.8) | 0.05 (−2.2, 2.4) | 3.2 (−1.6, 8.3) | −2.1 (−8.8, 5.1) | 0.5 (−3.0, 4.2) | 0.4 (−3.4, 4.4) | −4.1 * (−7.3, −0.9) | −3.3 (−6.9, 0.5) |
CD31 92.9 (82.1, 97.9; %) | −0.01 (−1.1, 1.1) | 0.1 (−1.6, 1.8) | −1.3 (−2.9, 0.3) | 0.4 (−0.9, 1.7) | 0.6 (−0.3, 1.5) | −3.1 * (−4.8, −1.3) | −2.3 * (−3.9, −0.7) | −0.2 (−1.5, 1.1) | −0.2 (−1.9, 1.5) | 0.8 (−0.7, 2.3) | 0.05 (−1.6, 1.7) |
CD62 62.4 (41.9, 79.1; %) | 0.2 (−2.4, 3.0) | 2.5 (−0.6, 5.8) | 0.2 (−2.9, 3.4) | 1.5 (−1.2, 4.3) | 1.6 (−0.2, 3.4) | −2.9 (−6.5, 0.8) | −1.6 (−6.5, 3.4) | −2.7 (−5.3, 0.003) | −0.7 (−3.7, 2.4) | 2.7 (−0.03, 5.4) | 1.3 (−1.8, 4.5) |
CD11b 38.3 (6.7, 70.0; %) | 1.6 (−6.2, 10.1) | 1.3 (−6.9, 10.1) | 9.1 * (0.6, 18.3) | 8.2 * (0.4, 16.6) | 8.1 * (3.0, 13.4) | −3.9 (−13.1, 6.3) | 5.9 (−10.3, 25.1) | 2.6 (−4.9, 10.7) | 4.3 (−3.7, 13.0) | 3.1 (−3.7, 10.4) | 0.4 (−7.2, 8.6) |
CD49 71.7 (32.6, 95.6; %) | −0.8 (−4.2, 2.7) | −1.0 (−5.5, 3.8) | 3.1 (−1.4, 7.9) | 1.8 (−2.3, 6.1) | 1.3 (−1.4, 4.0) | 4.9 (−0.7, 10.9) | 2.0 (−5.7, 10.4) | 0.4 (−3.7, 4.5) | 1.0 (−3.4, 5.7) | 1.0 (−2.8, 5.1) | 0.3 (−4.2, 5.0) |
FEV1/FVC 0.73 (0.41, 1.24) | −2.9 (−5.8, 0.1) | 0.9 (−3.7, 5.8) | −2.0 (−6.2, 2.5) | 1.5 (−2.2, 5.3) | −0.2 (−2.7, 2.4) | −2.4 (−7.4, 2.9) | −1.2 (−7.2, 5.2) | −1.0 (−4.7, 2.8) | −4.0 (−8.1, 0.5) | −1.9 (−5.5, 1.8) | −1.7 (−5.9, 2.7) |
CC16 4.0 (2.0, 9.4; ng/mL) | −0.7 (−5.1, 3.9) | −0.6 (−5.5, 4.5) | −2.4 (−7.2, 2.5) | −1.3 (−5.8, 3.3) | −1.5 (−4.5, 1.5) | 3.8 (−2.5, 10.4) | 4.7 (−5.7, 16.2) | 5.2 * (0.3, 10.4) | 2.1 (−2.8, 7.3) | 0.6 (−3.6, 5.0) | 0.2 (−4.7, 5.3) |
SPD 98.7 (46.2, 302.8; ng/mL) | −0.2 (−3.5, 3.2) | −0.3 (−3.3, 2.8) | −1.2 (−4.2, 1.7) | −0.9 (−3.7, 1.8) | −2.2 * (−4.0, −0.5) | −1.3 (−4.9, 2.5) | −4.5 (−11.2, 2.7) | 2.7 (−0.2, 5.7) | 0.5 (−2.3, 3.5) | 0.2 (−2.3, 2.8) | 1.1 (−1.8, 4.2) |
Outcome Variable | Exposure Variable | Percent Change without Adjustment for Drug Intake | Percent Change with Adjustment for Drug Intake | Percent Change in 25 Subjects without Any Drug Intake | Percent Change in 23 Subjects with Any Drug Intake | p-Value for Interaction with Drug Intake |
---|---|---|---|---|---|---|
MVF | Indoor Bacteria | 5.6 * (2.6, 8.7) | 5.6 * (2.6, 8,7) | 9.1 * (1.4, 17,4) | 4.9 * (1.8, 8,1) | 0.22 |
MVF | Outdoor PNC | −3.4 * (−6.6, −0.05) | −3.4 * (−6.6, −0.1) | −2.3 (−7.1, 2.8) | −3.9 (−8.2, 0.5) | 0.82 |
Granulocytes | Outdoor PM2.5 | −4.1 * (−7.3, −0.9) | −4.1 * (−7.3, −0.9) | −5.4 * (−10.1, −0.5) | −2.9 (−7.0, 1.4) | 0.27 |
CD31 | Indoor Fungi | −3.1 * (−4.8, −1.3) | −2.9 * (−4.6, −1.2) | −1.0 (−3.1, 1.1) | −3.7 * (−6.1, −1.3) | 0.17 |
CD31 | Indoor Serine protease | −2.3 * (−3.9, −0.7) | −2.4 * (−3.9, −0.9) | −1.5 (−3.0, 0.1) | −2.4 (−4.8, 0.1) | 0.57 |
CD11b | Indoor PM2.5 BR | 9.1 * (0.6, 18.3) | 9.3 (0.8, 18.5) | 2.5 (−9.0, 15.4) | 16.4 * (4.4, 29.7) | 0.21 |
CD11b | Indoor Bacteria | 8.2 * (0.4, 16.6) | 8.1 * (0.4, 16.5) | 5.2 (−10.9, 24.4) | 9.2 * (0.1, 19.0) | 0.97 |
CD11b | Indoor Endotoxin | 8.1 * (3.0, 13.4) | 8.1 * (3.1, 13.4) | 5.1 (−1.2, 11.9) | 9.9 * (2.5, 17.9) | 0.35 |
CC16 | Indoor Nagase | 5.2 * (0.3, 10.4) | 5.2 * (0.3, 10.4) | −1.5 (−8.0, 5.3) | 6.0 (−0.9, 13.5) | 0.27 |
SPD | Indoor Endotoxin | −2.2 * (−4.0, −0.5) | −2.2 * (−4.0, −0.5) | −1.0 (−3.5, 1.6) | −3.2 * (5.6, −0.9) | 0.33 |
5. Conclusions
Abbreviations
BMI | Body mass index |
CC16 | Clara cell pneumoprotein 16 |
CD | Cluster of differentiation |
CRP | C-reactive protein |
EDC | Electrostatic Dust Fall Collectors |
FEV1 | Forced expiratory volume in 1 second |
FVC | Forced vital capacity |
HEPA | High-efficiency particulate arrestance |
IQR | Interquartile range |
MVF | Microvascular function |
NAGase | N-Acetyl-β-d-glucosaminidase |
PBMC | Peripheral blood mononuclear cells |
PM2.5 | Particulate matter with aerodynamic diameter less than 2.5 μm |
PNC | Particle number concentration |
SPD | Surfactant protein D |
UFP | Ultrafine particles |
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12. [Google Scholar] [CrossRef]
- Ruckerl, R.; Schneider, A.; Breitner, S.; Cyrys, J.; Peters, A. Health effects of particulate air pollution: A review of epidemiological evidence. Inhal. Toxicol. 2011, 23, 555–592. [Google Scholar] [CrossRef] [PubMed]
- Putaud, J.P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Hansson, H.C.; et al. A European aerosol phenomenology 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 2010, 44, 1308–1320. [Google Scholar] [CrossRef]
- de Hartog, J.J.; Hoek, G.; Mirme, A.; Tuch, T.; Kos, G.P.; ten Brink, H.M.; Brunekreef, B.; Cyrys, J.; Heinrich, J.; Pitz, M.; et al. Relationship between different size classes of particulate matter and meteorology in three European cities. J. Environ. Monit. 2005, 7, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Boogaard, H.; Knol, A.; De Hartog, J.; Slottje, P.; Ayres, J.G.; Borm, P.; Brunekreef, B.; Donaldson, K.; Forastiere, F.; et al. Concentration response functions for ultrafine particles and all-cause mortality and hospital admissions: Results of a European expert panel elicitation. Environ. Sci. Technol. 2010, 44, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Knol, A.B.; de Hartog, J.J.; Boogaard, H.; Slottje, P.; van der Sluijs, J.P.; Lebret, E.; Cassee, F.R.; Wardekker, J.A.; Ayres, J.G.; Borm, P.J.; et al. Expert elicitation on ultrafine particles: Likelihood of health effects and causal pathways. Part. Fibre. Toxicol. 2009, 6, 19. [Google Scholar] [CrossRef]
- Franck, U.; Odeh, S.; Wiedensohler, A.; Wehner, B.; Herbarth, O. The effect of particle size on cardiovascular disorders—The smaller the worse. Sci. Total Environ. 2011, 409, 4217–4221. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Rittenhouse-Olson, K.; Scheider, W.L.; Mu, L. Effect of particulate matter air pollution on C-reactive protein: A review of epidemiologic studies. Rev. Environ. Health 2012, 27, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.O.; Utter, G.M.; DeBroy, J.A.; Schimke, R.D. Indoor air pollution: An edifice complex. J. Toxicol. Clin. Toxicol. 1991, 29, 315–374. [Google Scholar] [CrossRef] [PubMed]
- Simoni, M.; Jaakkola, M.S.; Carrozzi, L.; Baldacci, S.; Di, P.F.; Viegi, G. Indoor air pollution and respiratory health in the elderly. Eur. Respir. J. 2003, 40, 15s–20s. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Stephens, B.; Siegel, J.A. Penetration of ambient submicron particles into single-family residences and associations with building characteristics. Indoor Air 2012, 22, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Rim, D.; Wallace, L.; Persily, A. Infiltration of outdoor ultrafine particles into a test house. Environ. Sci. Technol. 2010, 44, 5908–5913. [Google Scholar] [CrossRef] [PubMed]
- Long, C.M.; Suh, H.H.; Koutrakis, P. Characterization of indoor particle sources using continuous mass and size monitors. J. Air Waste Manag. Assoc. 2000, 50, 1236–1250. [Google Scholar] [CrossRef] [PubMed]
- Bekö, G.; Weschler, C.J.; Wierzbicka, A.; Karottki, D.G.; Toftum, J.; Loft, S.; Clausen, G. Ultrafine particles: Exposure and source apportionment in 56 danish homes. Environ. Sci. Technol. 2013, 47, 10240–10248. [Google Scholar] [PubMed]
- Wallace, L. Indoor sources of ultrafine and accumulation mode particles: Size distributions, size-resolved concentrations, and source strengths. Aerosol Sci. Technol. 2006, 40, 348–360. [Google Scholar] [CrossRef]
- Wallace, L.; Wang, F.; Howard-Reed, C.; Persily, A. Contribution of gas and electric stoves to residential ultrafine particle concentrations between 2 and 64 nm: Size distributions and emission and coagulation remission and coagulation rates. Environ. Sci. Technol. 2008, 42, 8641–8647. [Google Scholar] [CrossRef] [PubMed]
- Bhangar, S.; Mullen, N.A.; Hering, S.V.; Kreisberg, N.M.; Nazaroff, W.W. Ultrafine particle concentrations and exposures in seven residences in northern California. Indoor Air 2011, 21, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, P.; Sudharsanam, S.; Steinberg, R. Bio-aerosols in indoor environment: Composition, health effects and analysis. Indian J. Med. Microbiol. 2008, 26, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Leung, T.F.; Lam, C.W.; Chan, I.H.; Li, A.M.; Ha, G.; Tang, N.L.; Fok, T.F. Inhalant allergens as risk factors for the development and severity of mild-to-moderate asthma in Hong Kong Chinese children. J. Asthma 2002, 39, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Tischer, C.; Chen, C.M.; Heinrich, J. Association between domestic mould and mould components, and asthma and allergy in children: A systematic review. Eur. Respir. J. 2011, 38, 812–824. [Google Scholar] [CrossRef] [PubMed]
- Blanc, P.D.; Eisner, M.D.; Katz, P.P.; Yen, I.H.; Archea, C.; Earnest, G.; Janson, S.; Masharani, U.B.; Quinlan, P.J.; Hammond, S.K.; et al. Impact of the home indoor environment on adult asthma and rhinitis. J. Occup. Environ. Med. 2005, 47, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Karottki, D.G.; Beko, G.; Clausen, G.; Madsen, A.M.; Andersen, Z.J.; Massling, A.; Ketzel, M.; Ellermann, T.; Lund, R.; Sigsgaard, T.; et al. Cardiovascular and lung function in relation to outdoor and indoor exposure to fine and ultrafine particulate matter in middle-aged subjects. Environ. Int. 2014, 73, 372–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, Y.; Karottki, D.G.; Jensen, D.M.; Bekö, G.; Kjeldsen, B.U.; Clausen, G.; Hersoug, L.G.; Holst, G.J.; Wierzbicka, A.; Sigsgaard, T.; et al. Vascular and lung function related to ultrafine and fine particles exposure assessed by personal and indoor monitoring. Environ. Health 2014, 13, 112. [Google Scholar] [CrossRef]
- Karottki, D.; Spilak, M.; Frederiksen, M.; Gunnarsen, L.; Brauner, E.; Kolarik, B.; Andersen, Z.; Sigsgaard, T.; Barregard, L.; Strandberg, B.; et al. An indoor air filtration study in homes of elderly: Cardiovascular and respiratory effects of exposure to particulate matter. Environ. Health 2013, 12, 116. [Google Scholar] [CrossRef]
- Moller, P.; Mikkelsen, L.; Vesterdal, L.K.; Folkmann, J.K.; Forchhammer, L.; Roursgaard, M.; Danielsen, P.H.; Loft, S. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis. Crit. Rev. Toxicol. 2011, 41, 339–368. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Ellermann, T.; Nojgaard, J.K.; Nordstrom, C.; Brandt, J.; Christensen, J.; Ketzel, M.; Jensen, S.S. The Danish Air Quality Monitoring Programme. Annual Summary for 2012. In Scientific Report from DCE—Danish Centre for Environment and Energy No. 67; DCE—Danish Centre for Environment and Energy Aarhus University: Roskilde, Denmark, 2013. [Google Scholar]
- Madsen, A.M.; Matthiesen, C.B.; Frederiksen, M.W.; Frederiksen, M.; Frankel, M.; Spilak, M.; Gunnarsen, L.; Timm, M. Sampling, extraction and measurement of bacteria, endotoxin, fungi and inflammatory potential of settling indoor dust. J. Environ. Monit. 2012, 14, 3230–3239. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Spilak, M.P.; Karottki, G.D.; Kolarik, B.; Frederiksen, M.; Loft, S.; Gunnarsen, L. Evaluation of building characteristics in 27 dwellings in Denmark and the effect of using particle filtration units on PM2.5 concentrations. Build. Environ. 2013, 73, 55–63. [Google Scholar] [CrossRef]
- Mills, N.L.; Miller, M.R.; Lucking, A.J.; Beveridge, J.; Flint, L.; Boere, A.J.; Fokkens, P.H.; Boon, N.A.; Sandstrom, T.; Blomberg, A.; et al. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation. Eur. Heart J. 2011, 32, 2660–2671. [Google Scholar] [CrossRef] [PubMed]
- Langrish, J.P.; Unosson, J.; Bosson, J.; Barath, S.; Muala, A.; Blackwell, S.; Soderberg, S.; Pourazar, J.; Megson, I.L.; Treweeke, A.; et al. Altered nitric oxide bioavailability contributes to diesel exhaust inhalation-induced cardiovascular dysfunction in man. J. Am. Heart Assoc. 2013, 2. [Google Scholar] [CrossRef]
- Pope, C.A., III; Hansen, J.C.; Kuprov, R.; Sanders, M.D.; Anderson, M.N.; Eatough, D.J. Vascular function and short-term exposure to fine particulate air pollution. J. Air Waste Manag. Assoc. 2011, 61, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Brauner, E.V.; Moller, P.; Barregard, L.; Dragsted, L.O.; Glasius, M.; Wahlin, P.; Vinzents, P.; Raaschou-Nielsen, O.; Loft, S. Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals. Part. Fibre Toxicol. 2008, 5. [Google Scholar] [CrossRef]
- Brauner, E.V.; Forchhammer, L.; Moller, P.; Barregard, L.; Gunnarsen, L.; Afshari, A.; Wahlin, P.; Glasius, M.; Dragsted, L.O.; Basu, S.; et al. Indoor particles affect vascular function in the aged: An air filtration-based intervention study. Am. J. Respir. Crit. Care Med. 2008, 177, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.W.; Carlsten, C.; Karlen, B.; Leckie, S.; van, E.S.; Vedal, S.; Wong, I.; Brauer, M. An air filter intervention study of endothelial function among healthy adults in a woodsmoke-impacted community. Am. J. Respir. Crit. Care Med. 2011, 183, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Draisma, A.; Bemelmans, R.; van der Hoeven, J.G.; Spronk, P.; Pickkers, P. Microcirculation and vascular reactivity during endotoxemia and endotoxin tolerance in humans. Shock 2009, 31, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Rintala, H.; Pitkaranta, M.; Toivola, M.; Paulin, L.; Nevalainen, A. Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiol. 2008, 8. [Google Scholar] [CrossRef] [PubMed]
- Madjid, M.; Fatemi, O. Components of the complete blood count as risk predictors for coronary heart disease: In-depth review and update. Tex. Heart Inst. J. 2013, 40, 17–29. [Google Scholar] [PubMed]
- Ruckerl, R.; Phipps, R.; Schneider, A.; Frampton, M.; Cyrys, J.; Oberdorster, G.; Wichmann, H.E.; Peters, A. Ultrafine particles and platelet activation in patients with coronary heart disease—Results from a prospective panel study. Part. Fibre Toxicol 2007, 4, 1. [Google Scholar] [CrossRef]
- Ghio, A.J.; Hall, A.; Bassett, M.A.; Cascio, W.E.; Devlin, R.B. Exposure to concentrated ambient air particles alters hematologic indices in humans. Inhal. Toxicol. 2003, 15, 1465–1478. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Linn, W.S.; Sioutas, C.; Terrell, S.L.; Clark, K.W.; Anderson, K.R.; Terrell, L.L. Controlled exposures of healthy and asthmatic volunteers to concentrated ambient fine particles in Los Angeles. Inhal. Toxicol. 2003, 15, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Mills, N.L.; Tornqvist, H.; Robinson, S.D.; Gonzalez, M.; Darnley, K.; MacNee, W.; Boon, N.A.; Donaldson, K.; Blomberg, A.; Sandstrom, T.; et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation 2005, 112, 3930–3936. [Google Scholar] [CrossRef] [PubMed]
- Mills, N.L.; Tornqvist, H.; Gonzalez, M.C.; Vink, E.; Robinson, S.D.; Soderberg, S.; Boon, N.A.; Donaldson, K.; Sandstrom, T.; Blomberg, A.; et al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N. Engl. J. Med. 2007, 357, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Lucking, A.J.; Lundback, M.; Mills, N.L.; Faratian, D.; Barath, S.L.; Pourazar, J.; Cassee, F.R.; Donaldson, K.; Boon, N.A.; Badimon, J.J.; et al. Diesel exhaust inhalation increases thrombus formation in man. Eur. Heart. J. 2008, 29, 3043–3051. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Linn, W.S.; Clark, K.W.; Anderson, K.R.; Sioutas, C.; Alexis, N.E.; Cascio, W.E.; Devlin, R.B. Exposures of healthy and asthmatic volunteers to concentrated ambient ultrafine particles in Los Angeles. Inhal. Toxicol. 2008, 20, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Zuurbier, M.; Hoek, G.; Oldenwening, M.; Meliefste, K.; Krop, E.; van den Hazel, P.; Brunekreef, B. In-traffic air pollution exposure and CC16, blood coagulation, and inflammation markers in healthy adults. Environ. Health Perspect. 2011, 119, 1384–1389. [Google Scholar] [CrossRef] [PubMed]
- Bruske, I.; Hampel, R.; Socher, M.M.; Ruckerl, R.; Schneider, A.; Heinrich, J.; Oberdorster, G.; Wichmann, H.E.; Peters, A. Impact of ambient air pollution on the differential white blood cell count in patients with chronic pulmonary disease. Inhal. Toxicol. 2010, 22, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J. Air pollution and blood markers of cardiovascular risk. Environ. Health Perspect. 2001, 109, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Frampton, M.W.; Stewart, J.C.; Oberdorster, G.; Morrow, P.E.; Chalupa, D.; Pietropaoli, A.P.; Frasier, L.M.; Speers, D.M.; Cox, C.; Huang, L.S.; et al. Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans. Environ. Health Perspect. 2006, 114, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Yatera, K.; Hsieh, J.; Hogg, J.C.; Tranfield, E.; Suzuki, H.; Shih, C.H.; Behzad, A.R.; Vincent, R.; van Eeden, S.F. Particulate matter air pollution exposure promotes recruitment of monocytes into atherosclerotic plaques. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H944–H953. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.; Karottki, D.G.; Christensen, J.M.; Bonlokke, J.H.; Sigsgaard, T.; Glasius, M.; Loft, S.; Moller, P. Biomarkers of oxidative stress and inflammation after wood smoke exposure in a reconstructed Viking Age house. Environ. Mol. Mutagen. 2014, 55, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.R.; Mukherjee, S.; Roychoudhury, S.; Bhattacharya, P.; Banerjee, M.; Siddique, S.; Chakraborty, S.; Lahiri, T. Platelet activation, upregulation of CD11b/CD18 expression on leukocytes and increase in circulating leukocyte-platelet aggregates in Indian women chronically exposed to biomass smoke. Hum. Exp. Toxicol. 2006, 25, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Forchhammer, L.; Moller, P.; Riddervold, I.S.; Bonlokke, J.; Massling, A.; Sigsgaard, T.; Loft, S. Controlled human wood smoke exposure: Oxidative stress, inflammation and microvascular function. Part, Fibre Toxicol. 2012, 9, 7. [Google Scholar] [CrossRef]
- Soppa, V.J.; Schins, R.P.; Hennig, F.; Hellack, B.; Quass, U.; Kaminski, H.; Kuhlbusch, T.A.; Hoffmann, B.; Weinmayr, G. Respiratory effects of fine and ultrafine particles from indoor sources—A randomized sham-controlled exposure study of healthy volunteers. Int J. Environ. Res. Public Health 2014, 11, 6871–6889. [Google Scholar] [CrossRef] [PubMed]
- Ebelt, S.T.; Wilson, W.E.; Brauer, M. Exposure to ambient and nonambient components of particulate matter: A comparison of health effects. Epidemiology 2005, 16, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K.L.; Larson, T.V.; Koenig, J.Q.; Mar, T.F.; Fields, C.; Stewart, J.; Lippmann, M. Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ. Health Perspect. 2005, 113, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
- Yeatts, K.B.; El-Sadig, M.; Leith, D.; Kalsbeek, W.; Al-Maskari, F.; Couper, D.; Funk, W.E.; Zoubeidi, T.; Chan, R.L.; Trent, C.; et al. Indoor air pollutants and health in the United Arab Emirates. Environ. Health Perspect. 2012, 120, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Provost, E.B.; Chaumont, A.; Kicinski, M.; Cox, B.; Fierens, F.; Bernard, A.; Nawrot, T.S. Serum levels of club cell secretory protein (Clara) and short- and long-term exposure to particulate air pollution in adolescents. Environ. Int. 2014, 68, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Stockfelt, L.; Sallsten, G.; Olin, A.C.; Almerud, P.; Samuelsson, L.; Johannesson, S.; Molnar, P.; Strandberg, B.; Almstrand, A.C.; Bergemalm-Rynell, K.; et al. Effects on airways of short-term exposure to two kinds of wood smoke in a chamber study of healthy humans. Inhal. Toxicol. 2012, 24, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Michel, O.; Murdoch, R.; Bernard, A. Inhaled LPS induces blood release of Clara cell specific protein (CC16) in human beings. J. Allergy Clin. Immunol. 2005, 115, 1143–1147. [Google Scholar] [CrossRef] [PubMed]
- Aul, R.; Armstrong, J.; Duvoix, A.; Lomas, D.; Hayes, B.; Miller, B.E.; Jagger, C.; Singh, D. Inhaled LPS challenges in smokers: A study of pulmonary and systemic effects. Br. J. Clin. Pharmacol. 2012, 74, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Steiner, D.; Jeggli, S.; Tschopp, A.; Bernard, A.; Oppliger, A.; Hilfiker, S.; Hotz, P. Clara cell protein and surfactant protein B in garbage collectors and in wastewater workers exposed to bioaerosols. Int. Arch. Occup. Environ. Health 2005, 78, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Heldal, K.K.; Barregard, L.; Larsson, P.; Ellingsen, D.G. Pneumoproteins in sewage workers exposed to sewage dust. Int. Arch. Occup. Environ. Health 2013, 86, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Brauner, E.V.; Mortensen, J.; Moller, P.; Bernard, A.; Vinzents, P.; Wahlin, P.; Glasius, M.; Loft, S. Effects of ambient air particulate exposure on bloodgas barrier permeability and lung function. Inhal. Toxicol. 2009, 21, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Andersen, Z.J.; Olsen, T.S.; Andersen, K.K.; Loft, S.; Ketzel, M.; Raaschou-Nielsen, O. Association between short-term exposure to ultrafine particles and hospital admissions for stroke in Copenhagen, Denmark. Eur. Heart J. 2010, 31, 2034–2040. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karottki, D.G.; Spilak, M.; Frederiksen, M.; Jovanovic Andersen, Z.; Madsen, A.M.; Ketzel, M.; Massling, A.; Gunnarsen, L.; Møller, P.; Loft, S. Indoor and Outdoor Exposure to Ultrafine, Fine and Microbiologically Derived Particulate Matter Related to Cardiovascular and Respiratory Effects in a Panel of Elderly Urban Citizens. Int. J. Environ. Res. Public Health 2015, 12, 1667-1686. https://doi.org/10.3390/ijerph120201667
Karottki DG, Spilak M, Frederiksen M, Jovanovic Andersen Z, Madsen AM, Ketzel M, Massling A, Gunnarsen L, Møller P, Loft S. Indoor and Outdoor Exposure to Ultrafine, Fine and Microbiologically Derived Particulate Matter Related to Cardiovascular and Respiratory Effects in a Panel of Elderly Urban Citizens. International Journal of Environmental Research and Public Health. 2015; 12(2):1667-1686. https://doi.org/10.3390/ijerph120201667
Chicago/Turabian StyleKarottki, Dorina Gabriela, Michal Spilak, Marie Frederiksen, Zorana Jovanovic Andersen, Anne Mette Madsen, Matthias Ketzel, Andreas Massling, Lars Gunnarsen, Peter Møller, and Steffen Loft. 2015. "Indoor and Outdoor Exposure to Ultrafine, Fine and Microbiologically Derived Particulate Matter Related to Cardiovascular and Respiratory Effects in a Panel of Elderly Urban Citizens" International Journal of Environmental Research and Public Health 12, no. 2: 1667-1686. https://doi.org/10.3390/ijerph120201667
APA StyleKarottki, D. G., Spilak, M., Frederiksen, M., Jovanovic Andersen, Z., Madsen, A. M., Ketzel, M., Massling, A., Gunnarsen, L., Møller, P., & Loft, S. (2015). Indoor and Outdoor Exposure to Ultrafine, Fine and Microbiologically Derived Particulate Matter Related to Cardiovascular and Respiratory Effects in a Panel of Elderly Urban Citizens. International Journal of Environmental Research and Public Health, 12(2), 1667-1686. https://doi.org/10.3390/ijerph120201667