Temporal Variations in Physico-Chemical and Microbiological Characteristics of Mvudi River, South Africa
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Area
2.2. Sampling
2.3. Analysis of Microbiological Parameters
2.4. Anion Analysis
2.5. Validation of Analytical Methodology
2.6. Statistical Analyses
3. Results and Discussion
3.1. Physico-chemical Parameters
Months | pH | Turbidity (NTU) | EC (mS/m) |
---|---|---|---|
January | 7.4 ± 0.04 | 429 ± 31 | 10.5 ± 0.08 |
February | 7.3 ± 0.04 | 20.4 ± 4.3 | 15.9 ± 0.66 |
March | 7.7 ± 0.16 | 17.6 ± 8.2 | 13.6 ± 1.8 |
April | 7.2 ± 0.22 | 8.0 ± 0.67 | 12.8 ± 0.62 |
May | 7.6 ± 0.05 | 7.8 ± 3.5 | 16.1 ± 2.13 |
June | 7.6 ± 0.05 | 1.9 ± 1.16 | 13.8 ± 1.67 |
DWAF guidelines | 6–9 | <0.1 | <70 |
WHO guidelines | 6.5–9.5 | <0.1 | 600 |
3.2. Anions
Anions (mg/L) | Sampling Months | |||||
---|---|---|---|---|---|---|
January | February | March | April | May | June | |
Fluoride | 0.058 ± 0.01 | 0.106 ± 0.01 | 0.15 ± 0.05 | 0.064 ± 0.04 | 0.105 ± 0.06 | 0.105 ± 0.06 |
Chloride | 5.59 ± 0.31 | 8.90 ± 1.27 | 13.56 ± 9.53 | 9.27 ± 0.14 | 15.75 ± 6.21 | 19.48 ± 12.0 |
Nitrate | 5.25 ± 4.72 | 1.97 ± 0.52 | 2.53 ± 1.37 | 4.86 ± 3.88 | 7.75 ± 5.86 | 8.17 ± 5.52 |
Sulphate | 2.79 ± 2.1 | 1.89 ± 0.63 | 5.04 ± 3.36 | 0.66 ± 0.07 | 0.74 ± 0.15 | 0.76 ± 0.15 |
Anions (mg/L) | Sampling Months | |||||
---|---|---|---|---|---|---|
January | February | March | April | May | June | |
Fluoride Us | 0.052 ± 0.01 | 0.098 ± 0.01 | 0.131 ± 0.0 | 0.056 ± 0.04 | 0.068 ± 0.09 | 0.069 ± 0.08 |
Ds | 0.06 ± 0.01 | 0.110 ± 0.01 | 0.159 ± 0.06 | 0.068 ± 0.04 | 0.130 ± 0.06 | 0.113 ± 0.05 |
Chloride Us | 5.32 ± 0.29 | 7.33 ± 0.18 | 9.93 ± 2.97 | 9.15 ± 0.66 | 12.13 ± 3.15 | 12.79 ± 2.95 |
Ds | 5.73 ± 0.23 | 9.68 ± 0.64 | 15.37 ± 11.64 | 9.33 ± 0.12 | 12.31 ± 6.95 | 22.79 ± 13.98 |
Nitrate Us | 4.75 ± 5.92 | 1.43 ± 0.01 | 3.07 ± 1.39 | 2.06 ± 0.85 | 9.36 ± 11.46 | 5.21 ± 1.53 |
Ds | 7.03 ± 6.94 | 2.38 ± 0.40 | 3.01 ± 1.49 | 6.95 ± 4.24 | 9.16 ± 3.30 | 12.56 ± 6.43 |
Sulphate Us | 1.52 ± 0.01 | 1.14 ± 0.33 | 2.29 ± 0.30 | 0.641 ± 0.05 | 0.695 ± 0.13 | 0.834 ± 0.21 |
Ds | 3.35 ± 2.49 | 2.26 ± 0.27 | 6.29 ± 3.36 | 1.34 ± 0.09 | 0.767 ± 0.16 | 0.654 ± 0.09 |
3.3. Microbiological Parameters
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations; WHO. The Right to Water. Fact Sheet No. 35; WHO: Geneva, Switzerland, 2010; pp. 1–10. [Google Scholar]
- WHO; UNICEF. Meeting the MDG Drinking Water and Sanitation Target: The Urban and Rural Challenge of the Decade; WHO: Geneva, Switzerland, 2006; pp. 1–10. [Google Scholar]
- Gwimbi, P. The microbial quality of drinking water in Manonyane community: Maseru District (Lesotho). Afr. Health Sci. 2011, 11, 474–480. [Google Scholar] [PubMed]
- Obi, C.L.; Potgieter, N.; Bessong, P.O.; Matsaung, G. Assessment of the microbial quality of river water sources in rural Venda communities in South Africa. Water SA. 2002, 28, 287–292. [Google Scholar] [CrossRef]
- UNICEF; WHO. Diarrhoea: Why Children Are Still Dying and What Can Be Done. Available online: http://www.unicef.org/health/files/Final_Diarrhoea_Report_October_2009_final.pdf (accessed on 16 January 2015).
- Schaefer, M. Water technologies and the environment: Ramping up by scaling down. Technol. Soc. 2008, 30, 415–422. [Google Scholar] [CrossRef]
- CSIR. Diarrhoea. Available online: http://www.csir.co.za/publications/pdfs/09_pdfsam_SSNovforweb_diarrhoea.pdf (accessed on 12 January 2015).
- Gemmell, M.E.; Schmidt, S. Microbiological assessment of river water used for the irrigation of fresh produce in a sub-urban community in Sobantu, South Africa. Food Res. Int. 2012, 47, 300–305. [Google Scholar] [CrossRef]
- Ibenyassine, K.; Aitmhand, R.; Karamoko, Y.; Cohen, N.; Ennaji, M.M. Use of repetitive DNA sequences to determine the persistence of enteropathogenic Escherichia coli in vegetables and in soil grown in fields treated with contaminated irrigation water. Lett. Appl. Microbiol. 2006, 43, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Ebdon, J.; Muniesa, M.; Taylor, H. The application of a recently isolated strain of Bacteroides (GB-124) to identify human sources of faecal pollution in a temperate river catchment. Water Res. 2007, 41, 3683–3690. [Google Scholar] [CrossRef] [PubMed]
- Prüss-Üstün, A.; Bos, R.; Gore, F.; Bartram, J. Safer Water, Better Health: Costs, Benefits and Sustainability of Interventions to Protect and Promote Health. Geneva: World Health Organization. Available online: http://www.who.int/water_sanitation_health/publications/safer_water/en/ (accessed on 12 January 2015).
- Gentry-Shields, J.; Bartram, J. Human health and the water environment: Using the DPSEEA framework to identify the driving forces of disease. Sci. Total Environ. 2014, 468–469, 306–314. [Google Scholar]
- WHO. Guidelines for Safe Recreational Water Environments Volume 1: Coastal and Freshwaters; WHO: Geneva, Switzerland, 2003; p. 219. [Google Scholar]
- WHO. Cholera in Zimbabwe. Available online: http://www.who.int/csr/don/2009_06_09/en/index.html (accessed on 7 January 2015).
- Kabanda, T.A. A First Synthesis of the Environmental, Biological and Cultural Assets of the Soutpansberg Climate. Available online: http//www.Soutpansberg.com/workshop/synthesis/climate.htm (accessed on 30 March 2015).
- APHA. Standard Methods for the Examination of Water and Wastewater, 18th ed.; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- DWAF. South African Water Quality Guidelines. Available online: http://www.waternet.co.za/policy/g_wq.html (accessed on 14 March 2015).
- WHO. Guidelines for drinking-water quality first addendum to 3rd edition. In Recommendations; WHO: Geneva, Switzerland, 2006; Volume 1. [Google Scholar]
- Singh, T.A.; Meetei, N.S.; Meitei, B. Seasonal variation of some physico-chemical characteristics of three major rivers in Imphal, Manipur: A comparative evaluation. Curr. World Environ. 2013, 8, 93–102. [Google Scholar]
- Wilbers, G.; Becker, M.; Nga, L.T.; Sebesvari, Z.; Renaud, F.G. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Sci. Total Environ. 2014, 485–486, 653–665. [Google Scholar]
- Shabalala, A.N.; Combrinck, L.; McCrindle, R. Effect of farming activities on seasonal variation of water quality of Bonsma Dam, KwaZulu-Natal. S. Afr. J. Sci. 2013, 109, 1–7. [Google Scholar] [CrossRef]
- Anhwange, B.A.; Agbaji, E.B.; Gimba, E.C. Impact assessment of human activities and seasonal variation on River Benue, within Makurdi Metropolis. Int. J. Sci. Technol. 2012, 2, 248–259. [Google Scholar]
- Vaishali, P.; Punita, P. Assessment of seasonal variation in water quality of River Mini, at Sindhrot, Vadodara. Int. J. Environ. Sci. 2013, 3, 1424–1436. [Google Scholar]
- Odiyo, J.O.; Chimuka, L.; Mamali, M.A.; Fatoki, O.S. Trophic status of Vondo and Albasini Dams; impacts on aquatic ecosystems and drinking water. Int. J. Environ. Sci. Technol. 2012, 9, 203–211. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Olasoji, S.O. Assessment of heavy metal contamination of Dzindi River, in Limpopo Province, South Africa. Int. J. Nat. Sci. Res. 2014, 2, 185–194. [Google Scholar]
- Lin, J.; Ganesh, A.; Singh, M. Microbial Pathogens in the Umgeni River, South Africa. Available online: http// www.wrc.org.za (accessed on 30 January 2015).
- Fatoki, O.S.; Muyima, N.Y.O.; Lujiza, N. Situation analysis of water quality in the Umtata River catchment. Water SA 2001, 27, 467–474. [Google Scholar] [CrossRef]
- Laluraj, C.M.; Gopinath, G. Assessment on seasonal variation of groundwater quality of phreatic aquifers—A river basin system. Environ. Monit. Assess. 2006, 117, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Ameena; Meenakshi; Monika; Rani; Kaushik, A. Seasonal variations in physico-chemical characteristics of River Yamuna in Haryana and its ecological best-designated use. J. Environ. Monit. 2003, 5, 419–426. [Google Scholar]
- Adeyemo, O.K.; Adedokun, O.A.; Yusuf, R.K.; Adeleye, E.A. Seasonal changes in physico-chemical parameter and nutrient load of river sediments in Ibadan city Nigeria. Glob. NEST J. 2008, 10, 326–336. [Google Scholar]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar]
- The Limpopo River Awareness Kit. People and the River. Available online: http://www.limpoporak.com/en/people/socioeconomics+in+the+basin/upstream+vs+downstream.aspx (accessed on 31 March 2015).
- Retamozo, B.; Shabahang, S.; Johnson, N.; Aprecio, R.M.; Torabinejad, M. Minimum contact time and concentration of sodium hypochlorite required to eliminate Enterococcus faecalis. J. Endod. 2010, 36, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Chigor, V.N.; Sibanda, T.; Okoh, A.I. Studies on the bacteriological qualities of the Buffalo River and three source water dams along its course in the Eastern Cape Province of South Africa. Environ. Sci. Pollut. Res. 2013, 20, 4125–4136. [Google Scholar] [CrossRef]
- Sibanda, T.; Chigor, V.N.; Okoh, A.I. Seasonal and spatio-temporal distribution of faecal-indicator bacteria in Tyume River in the Eastern Cape Province, South Africa. Environ. Monit. Assess. 2013, 185, 6579–6590. [Google Scholar] [CrossRef] [PubMed]
- DWAF. Quality of domestic water supplies Volume 1: Assessment Guide, 2nd ed. 1998. Available online: http://www.wrc.org.za/Pages/DisplayItem.aspx?ItemID=7114&FromURL=%2FPages%2FDisplayItem.aspx%3FItemID%3D7125%26FromURL%3D%252fPages%252fDefault.aspx%253f (accessed on 14 March 2015).
- WHO. Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture; Technical Report Series No. 778; WHO: Geneva, Switzerland, 1989. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edokpayi, J.N.; Odiyo, J.O.; Msagati, T.A.M.; Potgieter, N. Temporal Variations in Physico-Chemical and Microbiological Characteristics of Mvudi River, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 4128-4140. https://doi.org/10.3390/ijerph120404128
Edokpayi JN, Odiyo JO, Msagati TAM, Potgieter N. Temporal Variations in Physico-Chemical and Microbiological Characteristics of Mvudi River, South Africa. International Journal of Environmental Research and Public Health. 2015; 12(4):4128-4140. https://doi.org/10.3390/ijerph120404128
Chicago/Turabian StyleEdokpayi, Joshua N., John O. Odiyo, Titus A.M. Msagati, and Natasha Potgieter. 2015. "Temporal Variations in Physico-Chemical and Microbiological Characteristics of Mvudi River, South Africa" International Journal of Environmental Research and Public Health 12, no. 4: 4128-4140. https://doi.org/10.3390/ijerph120404128
APA StyleEdokpayi, J. N., Odiyo, J. O., Msagati, T. A. M., & Potgieter, N. (2015). Temporal Variations in Physico-Chemical and Microbiological Characteristics of Mvudi River, South Africa. International Journal of Environmental Research and Public Health, 12(4), 4128-4140. https://doi.org/10.3390/ijerph120404128