Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Parameters | TP | TDP | Phosphate |
---|---|---|---|
Concentration | 0.94~3.91 | 0.33~2.29 | 0.30~1.94 |
Average | 2.06 | 1.37 | 0.98 |
Standard deviation | 0.73 | 0.49 | 0.44 |
Chemical Compositions | SiO2 | Al2O3 | Fe2O3 | CaO | SO3 | CO3 |
---|---|---|---|---|---|---|
Percentage Composition (Small Size) | 12.10 | 10.14 | 2.12 | 0.73 | 4.60 | 68.47 |
Percentage Composition (Medium Size) | 19.35 | 14.21 | 4.26 | 1.78 | 0.75 | 53.14 |
Percentage Composition (Large Size) | 16.54 | 13.46 | 2.72 | 0.99 | 4.32 | 60.07 |
2.2. Methods of Coating Modification
Modification Methods |
---|
FeCl3 + CaCl2 + Anthracites |
FeCl3 + ZnCl2 + Anthracites |
FeCl3 + MgCl2 + Anthracites |
CoCl3 + CaCl2 + Anthracites |
CoCl3 + ZnCl2 + Anthracites |
CoCl3 + MgCl2 + Anthracites |
AlCl3 + CaCl2 + Anthracites |
AlCl3 + ZnCl2 + Anthracites |
AlCl3 + MgCl2 + Anthracites |
Original Anthracites |
2.3. Property Analysis Methods of Modified Anthracites Coated with LDHs
2.4. Adsorption Isotherms Experiment
3. Results and Discussion
3.1. Apparent Characteristics of Anthracite before and after Modification
3.2. Adsorption Isotherms
Adsorbent (Medium Size Anthracite) | Freundlich Equation | Langmuir Equation | ||||
---|---|---|---|---|---|---|
1/n | lgK | R2 | Γ0 | A | R2 | |
CaFe-LDHs | 0.612 | 0.923 | 0.911 | 43.10 | 4.142 | 0.956 |
ZnFe-LDHs | 0.314 | 1.407 | 0.918 | 40.00 | 0.172 | 0.906 |
MgFe-LDHs | 0.351 | 1.231 | 0.975 | 37.31 | 0.672 | 0.973 |
CaCo-LDHs | 0.489 | 1.262 | 0.900 | 44.64 | 0.955 | 0.932 |
ZnCo-LDHs | 0.347 | 1.733 | 0.916 | 65.79 | 0.059 | 0.958 |
MgCo-LDHs | 0.283 | 1.052 | 0.996 | 20.79 | 0.482 | 0.908 |
CaAl-LDHs | 0.278 | 1.220 | 0.904 | 32.47 | 0.526 | 0.987 |
ZnAl-LDHs | 0.238 | 1.516 | 0.978 | 48.78 | 0.102 | 0.969 |
MgAl-LDHs | 0.265 | 1.449 | 0.956 | 43.67 | 0.135 | 0.976 |
original anthracites | 0.198 | 1.488 | 0.916 | 39.53 | 0.0316 | 0.956 |
3.3. Removal of Phosphorus Pollutants
3.3.1. Removal of Total Phosphorus
Size | TP | PP | TDP | Phosphate |
---|---|---|---|---|
Small | 0.000 *** | 0.215 | 0.372 | 0.044 * |
Medium | 0.248 | 0.740 | 0.096 | 0.024 * |
Large | 0.007 *** | 0.000 *** | 0.000 *** | 0.008 *** |
3.3.2. Removal of Total Dissolved Phosphorus
3.3.3. Removal of Phosphate
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- Sani, A.; Scholz, M.; Babatunde, A.; Wang, Y. Impact of water quality parameters on the clogging of vertical-Flow constructed wetlands treating urban wastewater. Water Air Soil Pollut. 2013, 224. [Google Scholar] [CrossRef]
- Yalcuk, A.; Pakdil, N.B.; Turan, S.Y. Performance evaluation on the treatment of olive mill waste water in vertical subsurface flow constructed wetlands. Desalination 2010, 262, 209–214. [Google Scholar] [CrossRef]
- Kurzbaum, E.; Kirzhner, F.; Armon, R. Improvement of water quality using constructed wetland systems. Rev. Environ. Health 2012, 27, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Prochaska, C.A.; Zouboulis, A.I. Removal of phospates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate. Ecol. Eng. 2006, 26, 293–303. [Google Scholar] [CrossRef]
- Liu, Y. Synthesis and application of layered double hydroxides. Chem. Ind. Times 2005, 19, 59–62. [Google Scholar]
- Goh, K.H.; Lim, T.T.; Dong, Z.L. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42, 1343–1368. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhao, N.; Yang, G.; Tian, L.; Wang, R. Removal of fluoride ions from aqueous solution by the calcination product of Mg-Al-Fe hydrotalcite-like compound. Desalination 2011, 268, 20–26. [Google Scholar] [CrossRef]
- Nie, H.Q.; Hou, W.G. Methods and applications for delamination of layered double hydroxides. Acta Phys. Chim. Sin. 2011, 27, 1783–1796. [Google Scholar]
- Yu, W.H.; Ni, Z.M.; Guo, Z.Q.; Zhou, C.H.; Ge, Z.H. Advances in studies of the technology of preparing hydrotalcites. J. Zhejiang Univ. Technol. 2004, 32, 306–310. [Google Scholar]
- McKenzie, A.L.; Fishel, C.T.; Davis, R.J. Investigation of the surface structure and basic properties of calcined hydrotalcites. J. Catal. 1992, 138, 547–561. [Google Scholar] [CrossRef]
- Imamura, S.; Shono, M.; Okamoto, N.; Hamada, A.; Ishida, S. Effect of cerium on the mobility of oxygen on manganese oxides. Appl. Catal. A 1996, 142, 279–288. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, X.R.; Wang, X.Z.; Zhao, B.; Chen, A.; Sun, D. Phosphate adsorption from sewage sludge filtrate using Zinc-aluminum layered double hydroxides. J. Hazard. Mater. 2009, 169, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllidis, K.S.; Peleka, E.N.; Komvokis, V.G.; Mavros, P.P. Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents. J. Colloid Interface Sci. 2010, 342, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Ashekuzzaman, S.M.; Jiang, J.Q. Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water. Chem. Eng. J. 2014, 246, 95–105. [Google Scholar] [CrossRef]
- Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Synthesis and phosphate uptake behavior of Zr4+ incorporated MgAl-layered double hydroxides. J. Colloid Interface Sci. 2007, 313, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Liu, X.T.; Xu, L. Purification effect of vertical flow constructed wetlands using modified substrates coated by MgFe-LDHs. China Environ. Sci. 2013, 33, 1407–1412. [Google Scholar]
- Westholm, L.J. Substrates for phosphorus removal-potential benefits for on-site wastewater treatment. Water Res. 2006, 40, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, A.O.; Zhao, Y.Q.; Burke, A.M.; Morris, M.A.; Hanrahan, J.P. Characterization of aluminium-based water treatment residual for potential phosphorus removal in engineered wetlands. Environ. Pollut. 2009, 157, 2830–2836. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.X. Problems and countermeasures of phosphorus removal in constructed wetland. Environ. Sci. Manag. 2012, 37, 107–109. [Google Scholar]
- Park, J.H.; Jung, D.I. Removal of total phosphorus (TP) from municipal wastewater using loess. Desalination 2011, 269, 104–110. [Google Scholar] [CrossRef]
- Liu, Z.Y.; You, Z.Y.; Xiao, X.Q.; Zhang, D. Current researches on influencing factors of phosphorus removal by substrates in constructed wetland. Technol. Water Treat. 2011, 37, 50–54. [Google Scholar]
- Brix, H.; Arias, C.A.; Del, B.M. Media selection for sustainable phosphorus removal in subsurface flow constructed wetland. Water Sci. Technol. 2001, 44, 47–54. [Google Scholar] [PubMed]
- Wang, Z.; Liu, C.X.; Dong, J.; Liu, L.; Li, P.Y.; Zhang, J.Y. Screening of phosphate-removing filter media for use in constructed wetlands and their phosphorus removal capacities. China Environ. Sci. 2013, 33, 227–233. [Google Scholar]
- Xiong, J.B.; Mahmood, Q. Adsorptive removal of phosphate from aqueous media by peat. Desalination 2010, 259, 59–64. [Google Scholar] [CrossRef]
- Zhang, X.L. Studies on Performance of Purification and Influence on Clogging of Vertical Flow Constructed Wetlands with Different Filter Media. Ph.D. Thesis, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China, 2007. [Google Scholar]
- Sun, Q.; Zheng, Z.; Zhou, T. The procedure of wastewater treatment for constructed wetland. Pollut. Control Technol. 2001, 14, 20–23. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, Q.; Guo, L.; Huang, H.; Ruan, C. Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal. Int. J. Environ. Res. Public Health 2015, 12, 6788-6800. https://doi.org/10.3390/ijerph120606788
Zhang X, Chen Q, Guo L, Huang H, Ruan C. Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal. International Journal of Environmental Research and Public Health. 2015; 12(6):6788-6800. https://doi.org/10.3390/ijerph120606788
Chicago/Turabian StyleZhang, Xiangling, Qiaozhen Chen, Lu Guo, Hualing Huang, and Chongying Ruan. 2015. "Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal" International Journal of Environmental Research and Public Health 12, no. 6: 6788-6800. https://doi.org/10.3390/ijerph120606788
APA StyleZhang, X., Chen, Q., Guo, L., Huang, H., & Ruan, C. (2015). Effects of Varying Particle Sizes and Different Types of LDH-Modified Anthracite in Simulated Test Columns for Phosphorous Removal. International Journal of Environmental Research and Public Health, 12(6), 6788-6800. https://doi.org/10.3390/ijerph120606788