Avian Conservation Areas as a Proxy for Contaminated Soil Remediation
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area and Data
2.2. Systematic Conservation Planning Using Zonation and Evaluation of Identification of Conservation Areas
2.3. Modeling of Heavy Metal Distribution Using U-WEDGE and Sequential Gaussian Simulation
2.4. Analysis of Local and Spatial Uncertainties of Heavy Metal Concentrations
2.5. Decision-Making Concerning Remediation
3. Results
3.1. Species Distribution and Protected Areas
Species | 5% | 10% | 20% | 30% |
---|---|---|---|---|
A. trivirgatus | 0.04 ± 0.01 | 0.08 ± 0.01 | 0.15 ± 0.01 | 0.23 ± 0.02 |
M. migrans | 0.11 ± 0.02 | 0.21 ± 0.03 | 0.36 ± 0.03 | 0.51 ± 0.02 |
H. chirurgus | 0.32 ± 0.11 | 0.48 ± 0.15 | 0.68 ± 0.18 | 0.79 ± 0.19 |
R. benghalensis | 0.15 ± 0.02 | 0.29 ± 0.05 | 0.53 ± 0.1 | 0.7 ± 0.14 |
G. maldirarus | 0.21 ± 0.02 | 0.35 ± 0.01 | 0.62 ± 0.04 | 0.78 ± 0.07 |
O. lettia | 0.05 ± 0.01 | 0.11 ± 0.01 | 0.22 ± 0.02 | 0.33 ± 0.03 |
G. taewanus | 0.07 ± 0.01 | 0.12 ± 0.01 | 0.24 ± 0.02 | 0.38 ± 0.02 |
A. cristatellu | 0.12 ± 0.01 | 0.23 ± 0.01 | 0.44 ± 0.02 | 0.62 ± 0.02 |
3.2. Characteristics and Spatial Patterns of Heavy Metal Concentrations
Metals | Model | Nugget (C0) | Sill (C0+C) | Nugget/Sill(%) C0/(C0+C) | Range (km) | R2 |
---|---|---|---|---|---|---|
ln(As+1) | Exponential | 0.02 | 0.05 | 26.75 | 89.40 | 0.82 |
ln(Cd+1) | Gaussian | 0.00 | 0.00 | 49.86 | 89.10 | 0.66 |
ln(Cr+1) | Linear | 0.03 | 0.03 | 82.24 | 155.10 | 0.19 |
ln(Cu+1) | Spherical | 0.03 | 0.08 | 43.59 | 52.70 | 0.88 |
ln(Hg+1) | Gaussian | 0.00 | 0.04 | 0.25 | 26.80 | 0.57 |
ln(Ni+1) | Spherical | 0.02 | 0.10 | 15.39 | 36.80 | 0.59 |
ln(Pb+1) | Spherical | 0.01 | 0.04 | 31.84 | 117.70 | 0.88 |
ln(Zn+1) | Exponential | 0.04 | 0.09 | 43.97 | 195.60 | 0.90 |
3.3. Simulated Heavy Metal Distribution and Identified Contaminated Areas
HMLN | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|---|---|
CP | ||||||
5% | 0.42 ± 0.16 | 0.29 ± 0.15 | 0.24 ± 0.13 | 0.2 ± 0.11 | 0.19 ± 0.1 | |
10% | 0.41 ± 0.11 | 0.31 ± 0.12 | 0.25 ± 0.1 | 0.21 ± 0.08 | 0.19 ± 0.07 | |
20% | 0.36 ± 0.07 | 0.27 ± 0.08 | 0.21 ± 0.06 | 0.17 ± 0.05 | 0.16 ± 0.04 | |
30% | 0.33 ± 0.05 | 0.25 ± 0.05 | 0.18 ± 0.04 | 0.15 ± 0.03 | 0.14 ± 0.03 |
3.4. Remediation Prioritization and Robustness of Decisions
Expected Decision Efficacy | EVEPI | 50% | 60% | 70% | 80% | 90% | 100% | |
---|---|---|---|---|---|---|---|---|
FPR | ||||||||
Robust 0.8 | 0% | − | 1%–2% | 6%–8% | − | − | − | |
10% | − | − | − | 15%–21% | − | − | ||
20% | − | − | − | − | 30%–32% | − | ||
30% | − | − | − | − | 36%–42% | − | ||
40% | − | − | − | − | 45%–50% | − | ||
Robust 0.9 | 0% | − | 1% | 7%–8% | − | − | − | |
10% | − | − | − | 16%–19% | − | − | ||
20% | − | − | − | − | − | − | ||
30% | − | − | − | − | 37%–41% | − | ||
40% | − | − | − | − | 46%–49% | − | ||
Robust 0.95 | 0% | − | − | − | − | − | − | |
10% | − | − | − | 18% | − | − | ||
20% | − | − | − | − | − | − | ||
30% | − | − | − | − | 38%–40% | − | ||
40% | − | − | − | − | 47%–48% | − |
4. Discussion
4.1. Spatial Pattern and Corresponding Uncertainty in Concentrations of Multiple Soil Heavy Metals Based on Joint- Simulation
4.2. Ecological Hot Spots and Heavy Metal Contaminants in Soil
4.3. Remediation Priority based on Ecological Conservation Priority
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fang, S.B.; Jia, X.B.; Yang, X.Y.; Li, Y.D.; An, S.Q. A method of identifying priority spatial patterns for the management of potential ecological risks posed by heavy metals. J. Hazard. Mater. 2012, 237, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhao, C.; Luo, Y.; Liu, C.; Kyzas, G.Z.; Luo, Y.; Zhao, D.; An, S.; Zhu, H. Heavy metals in surface sediments of the jialu river, China: Their relations to environmental factors. J. Hazard. Mater. 2014, 270, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Guarino, C.; Conte, B.; Spada, V.; Arena, S.; Sciarrillo, R.; Scaloni, A. Proteomic analysis of eucalyptus leaves unveils putative mechanisms involved in the plant response to a real condition of soil contamination by multiple heavy metals in the presence or absence of mycorrhizal/rhizobacterial additives. Environ. Sci. Technol. 2014, 48, 11487–11496. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zang, S. Distribution characteristics and ecological risk assessment of toxic heavy metals and metalloid in surface water of lakes in daqing heilongjiang province, China. Ecotoxicology 2014, 23, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Whiting, S.; Reeves, R.D.; Richards, D.; Johnson, M.S.; Cooke, J.A.; Malaisse, F.; Paton, A.; Smith, J.A.C.; Angle, J.S.; Chaney, R.L. Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor. Ecol. 2004, 12, 106–116. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Cheng, B.-Y.; Shyu, G.-S.; Chang, T.-K. Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in chunghua county, central Taiwan. Environ. Pollut. 2010, 158, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-P.; Huang, C.-W.; Ding, T.-S.; Wang, Y.-C.; Hsiao, W.-T.; Crossman, N.D.; Lengyel, S.; Lin, W.-C.; Schmeller, D.S. Conservation planning to zone protected areas under optimal landscape management for bird conservation. Environ. Model. Softw. 2014, 60, 121–133. [Google Scholar] [CrossRef]
- O’Malley, D.; Vesselinov, V. Groundwater remediation using the information gap decision theory. Water Resour. Res. 2014, 50, 246–256. [Google Scholar] [CrossRef]
- Naccari, C.; Cristani, M.; Cimino, F.; Arcoraci, T.; Trombetta, D. Common buzzards (buteo buteo) bio-indicators of heavy metals pollution in sicily (Italy). Environ. Int. 2009, 35, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Ruuskanen, S.; Laaksonen, T.; Morales, J.; Moreno, J.; Mateo, R.; Belskii, E.; Bushuev, A.; Järvinen, A.; Kerimov, A.; Krams, I. Large-scale geographical variation in eggshell metal and calcium content in a passerine bird (ficedula hypoleuca). Environ. Sci. Pollut. Res. 2014, 21, 3304–3317. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, N.A.; Jaspers, V.L.B.; Chaudhry, M.J.I.; Ali, S.; Malik, R.N. Influence of taxa, trophic level, and location on bioaccumulation of toxic metals in bird’s feathers: A preliminary biomonitoring study using multiple bird species from pakistan. Chemosphere 2015, 120, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Bai, J.; Gao, Z.; Zhao, Q.; Wang, J. Spatial and seasonal distribution and risk assessments for metals in a tamarix chinensis wetland, China. Wetlands 2014. [Google Scholar] [CrossRef]
- Luo, J.; Ye, Y.; Gao, Z.; Wang, Y.; Wang, W. Characterization of heavy metal contamination in the habitat of red-crowned crane (Grus Japonensis) in zhalong wetland, northeastern China. Bull. Environ. Contam. Toxicol. 2014, 93, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Markowski, M.; Bańbura, M.; Kaliński, A.; Markowski, J.; Skwarska, J.; Wawrzyniak, J.; Zieliński, P.; Bańbura, J. Spatial and temporal variation of lead, cadmium, and zinc in feathers of great tit and blue tit nestlings in central poland. Arch. Environ. Contam. Toxicol. 2014, 67, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.; Selvaraj, K.; Agoramoorthy, G. Taiwan’s industrial heavy metal pollution threatens terrestrial biota. Environ. Pollut. 2006, 143, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Ives, A.R.; Cardinale, B.J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 2004, 429, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Eeva, T.; Koivunen, V.; Hakkarainen, H. Population densities of forest birds in a heavy metal pollution gradient. Avian Sci. 2002, 2, 227–236. [Google Scholar]
- Eeva, T.; Ahola, M.; Lehikoinen, E. Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environ. Pollut. 2009, 157, 3126–3131. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, J.T.; Herzog, M.P.; Schwarzbach, S.E. Methylmercury is the predominant form of mercury in bird eggs: A synthesis. Environ. Sci. Technol. 2013, 47, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Belskii, E.A.; Lugas’kova, N.V.; Karfidova, A.A. Reproductive parameters of adult birds and morphophysiological characteristics of chicks in the pied flycatcher (Ficedula Hypoleuca Pall.) in technogenically polluted habitats. Russ. J. Ecol. 2005, 36, 329–335. [Google Scholar] [CrossRef]
- Eeva, T.; Lehikoinen, E. Egg shell quality, clutch size and hatching success of the great tit (Parus major) and the pied flycatcher (Ficedula Hypoleuca) in an air pollution gradient. Oecologia 1995, 102, 312–323. [Google Scholar] [CrossRef]
- Moilanen, A. Landscape zonation, benefit functions and target-based planning: Unifying reserve selection strategies. Biol. Conserv. 2007, 134, 571–579. [Google Scholar] [CrossRef]
- Meller, L.; Cabeza, M.; Pironon, S.; Barbet-Massin, M.; Maiorano, L.; Georges, D.; Thuiller, W. Ensemble distribution models in conservation prioritization: From consensus predictions to consensus reserve networks. Divers. Distrib. 2014, 20, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Winiarski, K.J.; Miller, D.L.; Paton, P.W.; McWilliams, S.R. A spatial conservation prioritization approach for protecting marine birds given proposed offshore wind energy development. Biol. Conserv. 2014, 169, 79–88. [Google Scholar] [CrossRef]
- Tajvidi, E.; Monjezi, M.; Asghari, O.; Emery, X.; Foroughi, S. Application of joint conditional simulation to uncertainty quantification and resource classification. Arab. J. Geosci. 2013, 8, 1–9. [Google Scholar] [CrossRef]
- Rondon, O. Teaching aid: Minimum/maximum autocorrelation factors for joint simulation of attributes. Math. Geosci. 2012, 44, 469–504. [Google Scholar] [CrossRef]
- Mueller, U.A.; Ferreira, J. The u-wedge transformation method for multivariate geostatistical simulation. Math. Geosci. 2012, 44, 427–448. [Google Scholar] [CrossRef]
- Tichavsky, P.; Yeredor, A. Fast approximate joint diagonalization incorporating weight matrices. IEEE Trans. Signal Process. 2009, 57, 878–891. [Google Scholar] [CrossRef]
- Bandarian, E. Linear Transformation Methods for Multivariate Geostatistical Simulation. Ph.D. Thesis, Edith Cowan University, Joondalup, Australia, 2008. [Google Scholar]
- Bandarian, E.; Mueller, U.; Ferreira, J.; Richardson, S. Transformation methods for multivariate geostatistical simulation—Minimum/Maximum autocorrelation factors and alternating columns diagonal centres. In Advances in Orebody Modelling and Strategic Mine Planning I; Australasian Institute of Mining and Metallurgy: Carlton, Australia, 2010; Volume 17. [Google Scholar]
- Harp, D.R.; Vesselinov, V.V. Contaminant remediation decision analysis using information gap theory. Stoch. Environ. Res. Risk Assess. 2013, 27, 159–168. [Google Scholar] [CrossRef]
- Korteling, B.; Dessai, S.; Kapelan, Z. Using information-gap decision theory for water resources planning under severe uncertainty. Water Resour. Manag. 2013, 27, 1149–1172. [Google Scholar] [CrossRef] [Green Version]
- Matrosov, E.S.; Woods, A.M.; Harou, J.J. Robust decision making and info-gap decision theory for water resource system planning. J. Hydrol. 2013, 494, 43–58. [Google Scholar] [CrossRef]
- Severinghaus, L.; Ding, T.; Fang, W.; Lin, W.; Tsai, M.; Yen, C. The avifauna of Taiwan; Forestry Bureau, Council of Agriculture: Taipei, Taiwan, 2010.
- Ko, C.-Y.; Lin, R.-S.; Ding, T.-S.; Hsieh, C.-H.; Lee, P.-F. Identifying biodiversity hotspots by predictive models: A case study using Taiwan’s endemic bird species. Zool. Stud. 2009, 48, 418–431. [Google Scholar]
- Koh, C.N.; Lee, P.F.; Lin, R.S. Bird species richness patterns of northern Taiwan: Primary productivity, human population density, and habitat heterogeneity. Divers. Distrib. 2006, 12, 546–554. [Google Scholar] [CrossRef]
- Lee, P.F.; Ding, T.S.; Hsu, F.H.; Geng, S. Breeding bird species richness in Taiwan: Distribution on gradients of elevation, primary productivity and urbanization. J. Biogeogr. 2004, 31, 307–314. [Google Scholar] [CrossRef]
- Xie, H.X. Induction response of plasma in nonadiabatic magnetic compression heating. Phys. Plasmas 1995, 2, 633–641. [Google Scholar] [CrossRef]
- Asghari, O.; Soltni, F.; Amnieh, H.B. The comparison between sequential gaussian simulation (sgs) of choghart ore deposit and geostatistical estimation through ordinary kriging. Aust. J. Basic Appl. Sci. 2009, 3, 330–341. [Google Scholar]
- Goovaerts, P.; Webster, R.; Dubois, J.-P. Assessing the risk of soil contamination in the Swiss jura using indicator geostatistics. Environ. Ecol. Stat. 1997, 4, 49–64. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical modelling of uncertainty in soil science. Geoderma 2001, 103, 3–26. [Google Scholar] [CrossRef]
- Juang, K.-W.; Chen, Y.-S.; Lee, D.-Y. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environ. Pollut. 2004, 127, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Goovaerts, P. Medical geography: A promising field of application for geostatistics. Math. Geosci. 2009, 41, 243–264. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Parkin, T.B.; Karlen, D.L.; Novak, J.M.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Amer. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Yang, P.; Mao, R.; Shao, H.; Gao, Y. An investigation on the distribution of eight hazardous heavy metals in the suburban farmland of China. J. Hazard. Mater. 2009, 167, 1246–1251. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.-N.; Li, H.; Sun, D.-F.; Zhou, L.-D.; Li, B.-G. Combining geostatistics with moran’s I analysis for mapping soil heavy metals in Beijing, China. Int. J. Environ. Res. Public Health 2012, 9, 995–1017. [Google Scholar] [CrossRef] [PubMed]
- Kerry, R.; Goovaerts, P.; Haining, R.P.; Ceccato, V. Applying geostatistical analysis to crime data: Car-related thefts in the baltic states. Geogr. Anal. 2010, 42, 53–77. [Google Scholar] [CrossRef] [PubMed]
- Notten, M.; Oosthoek, A.; Rozema, J.; Aerts, R. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Environ. Pollut. 2005, 138, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Piegat, A.; Tomaszewska, K. Decision-making under uncertainty using info-gap theory and a new multi-dimensional rdm interval arithmetic. Electrotech. Rev. 2013, 89, 71–76. [Google Scholar]
- Regan, H.M.; Ben-Haim, Y.; Langford, B.; Wilson, W.G.; Lundberg, P.; Andelman, S.J.; Burgman, M.A. Robust decision-making under severe uncertainty for conservation management. Ecol. Appl. 2005, 15, 1471–1477. [Google Scholar] [CrossRef]
- Stewart, R.N.; Purucker, S.T. An environmental decision support system for spatial assessment and selective remediation. Environ. Model. Softw. 2011, 26, 751–760. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-C.; Lin, Y.-P.; Anthony, J.; Ding, T.-S. Avian Conservation Areas as a Proxy for Contaminated Soil Remediation. Int. J. Environ. Res. Public Health 2015, 12, 8312-8331. https://doi.org/10.3390/ijerph120708312
Lin W-C, Lin Y-P, Anthony J, Ding T-S. Avian Conservation Areas as a Proxy for Contaminated Soil Remediation. International Journal of Environmental Research and Public Health. 2015; 12(7):8312-8331. https://doi.org/10.3390/ijerph120708312
Chicago/Turabian StyleLin, Wei-Chih, Yu-Pin Lin, Johnathen Anthony, and Tsun-Su Ding. 2015. "Avian Conservation Areas as a Proxy for Contaminated Soil Remediation" International Journal of Environmental Research and Public Health 12, no. 7: 8312-8331. https://doi.org/10.3390/ijerph120708312
APA StyleLin, W. -C., Lin, Y. -P., Anthony, J., & Ding, T. -S. (2015). Avian Conservation Areas as a Proxy for Contaminated Soil Remediation. International Journal of Environmental Research and Public Health, 12(7), 8312-8331. https://doi.org/10.3390/ijerph120708312