Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China)
Abstract
:1. Introduction
2. Methods
2.1. Study Sites
PM2.5 Concentration/μg·m−3 | Botanical Garden | Fifth Ring Road | ||||||
---|---|---|---|---|---|---|---|---|
June | July | August | Total | June | July | August | Total | |
<50 | 18d | 12d | 19d | 49d | 15d | 10d | 17d | 42d |
50–100 | 8d | 10d | 8d | 26d | 10d | 12d | 8d | 30d |
100–150 | 4d | 3d | 3d | 10d | 5d | 3d | 4d | 12d |
>150 | - | 6d | 1d | 7d | - | 6d | 2d | 8d |
2.2. Materials
Tree Species | Botanical Garden | Fifth Ring Road | ||||
---|---|---|---|---|---|---|
Height/m | Diameter/cm | Leaf Number/g | Height/m | Diameter/cm | Leaf Number/g | |
Pinus tabuliformis | 5.50 ± 1.00 | 10.15 ± 0.23 | 100 | 4.00 ± 0.50 | 9.52 ± 0.34 | 100 |
Pinus bungeana | 5.00 ± 1.50 | 10.22 ± 0.42 | 100 | 4.50 ± 1.50 | 8.23 ± 0.42 | 100 |
Populus tomentosa | 15.00 ± 2.00 | 15.5 ± 0.15 | 200 | 13.00 ± 1.50 | 14.35 ± 0.25 | 200 |
Ginkgo biloba | 12.50 ± 1.50 | 12.34 ± 0.22 | 150 | 10.50 ± 0.50 | 10.50 ± 0.22 | 150 |
Acer truncatum | 6.50 ± 0.50 | 10.67 ± 0.13 | 150 | 5.50 ± 0.50 | 9.35 ± 0.13 | 150 |
Salix matsudana | 12.50 ± 1.50 | 13.54 ± 0.08 | 150 | 11.00 ± 0.50 | 12.79 ± 0.08 | 150 |
2.3. Adsorptive Amount for Dust per Unit of Leaf Area
2.4. Microstructure of Leaves
2.5. Chemical Analysis of Particulates
3. Results and Discussion
3.1. Results
3.1.1. Differential Analysis of the Adsorptive Capacities of Different Tree Species
3.1.2. The Effect on the Adsorptive Capacities for Particulates of the Leaf Surface Morphological Structures
3.1.3. Effect on the Leaf Structural Morphology in Different Polluted Regions
3.1.4. Elemental Composition Analysis of Particulates
Particulates | Regions | F− | HCOO− | Cl− | NO3− | SO42− | Na+ | NH4+ | Mg2+ | Ca2+ | K+ | Total | P * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PM10 | the Botanical Garden | 0.04 ± 0.02 | 0.12 ± 0.02 | 1.19 ± 0.05 | 2.19 ± 0.05 | 9.37 ± 0.03 | 4.51 ± 0.02 | 0.28 ± 0.01 | 0.24 ± 0.06 | 1.45 ± 0.02 | 0.31 ± 0.01 | 19.70 ± 1.20 | >0.05 |
the Fifth Ring Road | 0.08 ± 0.02 | 0.77 ± 0.03 | 1.82 ± 0.02 | 9.17 ± 0.03 | 13.70 ± 0.10 | 14.14 ± 0.05 | 0.47 ± 0.01 | 0.09 ± 0.01 | 0.26 ± 0.01 | 0.38 ± 0.01 | 40.87 ± 2.30 | ||
PM2.5 | the Botanical Garden | 0.04 ± 0.01 | 0.18 ± 0.01 | 1.38 ± 0.05 | 9.60 ± 0.06 | 21.65 ± 0.50 | 8.42 ± 0.08 | 2.41 ± 0.02 | 0.32 ± 0.02 | 1.62 ± 0.03 | 0.92 ± 0.02 | 46.54 ± 2.10 | <0.05 |
the Fifth Ring Road | 0.04 ± 0.01 | 0.36 ± 0.02 | 1.16 ± 0.04 | 7.28 ± 0.11 | 16.10 ± 0.70 | 12.14 ± 0.07 | 0.28 ± 0.04 | 0.05 ± 0.01 | 0.07 ± 0.06 | 0.23 ± 0.03 | 37.70 ± 1.30 |
3.2. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Iqbal, M.; Abdin, M.Z.; Mahmooduzzafar; Yunus, M.; Agrawal, M. Resistance mechanisms in plants against air pollution. In Plant Response to Air Pollution; Yunus, M., Iqbal, M., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 1996; pp. 194–240. [Google Scholar]
- Frost, K.; Frank, E.; Maibach, E. Relative risk in the news media: A quantification of misrepresentation. Amer. Public Health 1997, 87, 842–845. [Google Scholar] [CrossRef]
- Moraes, R.M.; Delitti, W.B.C.; Moraes, J.A.P.V. Gas exchange, growth and chemical parameters in a native Atlantic forest tree species in polluted areas of Curacao, Brazil. Ecol. Environ. Safety 2003, 54, 339–345. [Google Scholar] [CrossRef]
- El-Khatib, A.A.; Hegazy, A.K.; Amany; Abo-El-kasem. Induction of biomarkers associated with cadmium detoxification in aquatic species. J. Environ. Stud. 2011, 7, 49–59. [Google Scholar]
- Ji, J.; Wang, G.; Du, X.L.; Jin, C.; Yang, H.L.; Liu, J.; Yang, Q.L.; Si, N.; Li, J.; Chang, C.T. Evaluation of Adsorbing Haze PM2.5 Fine Particulate Matters with Plants in Beijing-Tianjin-Hebei Region in China. Sci. China 2013, 43, 694–699. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A., 3rd; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G., Jr.; Speizer, F.E. An association between air pollution and mortality in six U.S. cities. New Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Nina, A.C.; Paul, A.D.; Catherine, J.K. Effect of Early Life Exposure to Air Pollution on Development of Childhood Asthma. Environ. Health Perspect. 2010, 118, 284–289. [Google Scholar]
- Zhang, W.L.; Xu, D.Q.; Cui, J.S. The characteristics and toxic mechanism of fine particle pollution (PM2.5) in air. Environ. Monit. China 2002, 18, 59–63. [Google Scholar]
- Wang, L.; Gao, S.Y.; Liu, L.Y.; Ha, S. Atmospheric particle-retaining capability of eleven garden plant species in Beijing. Chin. J. Appl. Ecol. 2006, 17, 597–601. [Google Scholar]
- Weather net. Beijing is good days less than half throughout the year in 2013. Available online: http://beijing.tianqi.com/news/21811.html (accessed on 21 June 2014).
- EL-Khatib, A.A.; El-Rahman, A.M.; Elsheikh, O.M. Leaf geometric design of urban trees: Potentiality to capture airborne particle pollutants. J. Environ. Stud. 2011, 7, 49–59. [Google Scholar]
- Beckett, K.P.; Freer-Smith, P.; Taylor, G. Effective tree species for local air quality management. J. Arboric. 2000, 26, 12–19. [Google Scholar]
- Zhang, Z.D.; Xi, B.Y.; Cao, Z.G.; Jia, L.M. Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: Taking populous tomentosa leaves as an example. J. Appl. Ecol. 2014, 25, 1–5. [Google Scholar]
- Zhao, X.C.; Wang, Y.J.; Wang, Y.Q.; Zhang, H.L. Interactions between fine particulate matter (PM2.5) and vegetation: A review. Chin. J. Ecol. 2013, 32, 2203–2210. [Google Scholar]
- Wu, H.L.; Yu, X.X.; Shi, Z.; Zhang, Y.; Zhang, Z.M. Advances in the study of PM2.5 characteristic and the regulation of forests to PM2.5. Sci. Soil Water Conserv. 2012, 10, 116–122. [Google Scholar]
- Becketl, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Prusty, B.A.; Mishra, P.C.; Azeez, P.A. Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol. Environ. Safety 2005, 60, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Vinit-Dunand, F.; Epron, D.; Alaoui-Sosse, B.; Badot, P.-M. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Sci. 2002, 163, 53–58. [Google Scholar] [CrossRef]
- Richs, G.R.; Williams, R.J.H. Effects of atmospheric pollution on deciduous woodland. Part 2: Effects of particulate matter upon stomatal diffusion resistance in leaves of Quercus petraes (Mattuschka) Leibl. Environ. Pollut. 1974, 6, 87–109. [Google Scholar] [CrossRef]
- Hirano, T.; Kiyota, M.; Aiga, I. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ. Pollut. 1995, 89, 255–261. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Freer-Smith, P.H.; El-Khatib, A.A.; Taylor, G. Capture of particulate pollution by trees: A comparison of species typical of semi-arid areas (fichus nitride and Eucalyptus globules) with European and North American species. Water Air Soil Pollut. 2004, 155, 173–187. [Google Scholar] [CrossRef]
- Amit, P.; Kamla, K.K.; Ahmad, J. Do leaf surface characters play a role in plant resistance to auto-exhaust pollution? Flora 2002, 197, 47–55. [Google Scholar]
- Yang, H.B.; Zou, X.D.; Wang, H.Y.; Liu, Y.C. Study progress on PM2.5 in atmospheric environment. J. Meteorol. Environ. 2012, 28, 77–82. [Google Scholar]
- Neinhuis, C.; Barthlott, W. Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micro morphology and wet ability. New Phytol. 1998, 138, 91–98. [Google Scholar] [CrossRef]
- Chai, Y.X.; Zhu, N.; Han, H.J. Dust removal effect of urban tree species in Harbin. Chin. J. Appl. Ecol. 2002, 13, 1121–1126. [Google Scholar]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant species differences in particulate matter accumulation on leaf surfaces. Sci. Total Environ. 2012, 4, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Shi, H.; Li, Y.Y.; Yu, Y.; Zhang, J. Seasonal variations in leaf capturing of particulate matter, surface wet ability and micro morphology in urban tree species. Front. Environ. Sci. Eng. 2013, 7, 579–588. [Google Scholar] [CrossRef]
- Hwang, H.J.; Yook, S.J.; Ahn, K.H. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves. Atmos. Environ. 2011, 45, 6987–6994. [Google Scholar] [CrossRef]
- McDonald, A.G.; Bealey, W.J.; Fowler, D.; Dragosits, U.; Skiba, U.; Smith, R.I.; Donovan, R.G.; Brett, H.E.; Hewitt, C.N.; Nemitz, E. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmos. Environ. 2007, 41, 8455–8467. [Google Scholar] [CrossRef]
- Qi, F.Y.; Zhu, Y.F.; Zhao, Y.; Fan, W.; Gao, X.R.; Bai, Y.B. Study on atmospheric particle-retaining capability of garden plant in Zhengzhou. J. Henan Agr. Univ. 2009, 43, 256–259. [Google Scholar]
- Chen, B.; Lu, S.W.; Wang, B. Impact of fine particulate fluctuation and other variables on Beijing’s air quality index. Environ. Sci. Pollut. Res. 2015, 22, 5139–5151. [Google Scholar]
- Zhu, X.L.; Zhang, Y.H.; Zeng, L.M. Source Identification of Ambient PM2.5 in Beijing. Res. Environ. Sci. 2005, 18, 1–5. [Google Scholar]
- Freer-Smith, P.H.; Beckett, K.P.; Taylor, G. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides trichocarpa‘Beaupre’, Pinus nigra and Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ. Pollut. 2005, 133, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, E.; Bardelli, T.; Giovannini, G.; Pecchioli, L. Air quality impact of an urban park over time. Urban Environ. Pollut. 2011, 4, 10–16. [Google Scholar] [CrossRef]
- Dzierzanowski, K.; Popek, R.; Gawrońska, H.; Saebø, A.; Gawroński, S.W. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. Int. J. Phytoremediat. 2011, 13, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.-K.; Wang, B.; Niu, X. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China). Int. J. Environ. Res. Public Health 2015, 12, 9623-9638. https://doi.org/10.3390/ijerph120809623
Zhang W-K, Wang B, Niu X. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China). International Journal of Environmental Research and Public Health. 2015; 12(8):9623-9638. https://doi.org/10.3390/ijerph120809623
Chicago/Turabian StyleZhang, Wei-Kang, Bing Wang, and Xiang Niu. 2015. "Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China)" International Journal of Environmental Research and Public Health 12, no. 8: 9623-9638. https://doi.org/10.3390/ijerph120809623
APA StyleZhang, W.-K., Wang, B., & Niu, X. (2015). Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China). International Journal of Environmental Research and Public Health, 12(8), 9623-9638. https://doi.org/10.3390/ijerph120809623