Lessons and Perspectives from a 25-Year Bioelectromagnetics Research Program
Abstract
:1. Introduction
2. Radiofrequency Research
2.1. Cellular Studies
2.2. Human Volunteer Studies
2.3. RF Modelling Studies
2.3.1. Mouse Models
2.3.2. Comprehensive Tissue Thermal Parameters Database
2.3.3. Thermal Regulation in Workers Exposed to RF in Harsh Climates
2.3.4. Terahertz Radiation Absorption by Biological Material
2.4. RF Dosimetry Studies
3. Extremely Low Frequency Studies
3.1. Human Volunteer Studies
3.2. ELF Modelling Studies
4. Standards Development
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wood, A.W.; Joines, W.T.; Blackman, C.F. Characteristics of transverse electric and magnetic field transmission cells at extremely low frequencies. Bioelectromagnetics 1987, 8, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, R.J.; Joines, W.T.; Blackman, C.F.; Wood, A.W. A method for calculating electric and magnetic-fields in TEM cells at ELF. IEEE Trans. Electromagn. Compat. 1987, 29, 265–272. [Google Scholar] [CrossRef]
- Adey, W.R. Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev. 1981, 61, 435–514. [Google Scholar] [PubMed]
- Blackman, C.F.; Kinney, L.S.; House, D.E.; Joines, W.T. Multiple power-density windows and their possible origin. Bioelectromagnetics 1989, 10, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.L.; House, D.E.; Mealing, G.A. Exposure of frog hearts to CW or amplitude-modulated VHF fields: Selective efflux of calcium ions at 16 Hz. Bioelectromagnetics 1990, 11, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.W.; Lubinas, V.; Joyner, K.H.; Hocking, B.A. Calcium efflux from toad heart: A replication study. In Electricity and Magnetism in Biology and Medicine; Blank, M., Ed.; San Francisco Press, Inc.: San Francisco, CA, USA, 1993; pp. 482–484. [Google Scholar]
- Cranfield, C.G.; Wood, A.W.; Anderson, V.; Menezes, K.G. Effects of mobile phone type signals on calcium levels within human leukaemic T-cells (Jurkat cells). Int. J. Radiat. Biol. 2001, 77, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Wood, A.W. Application of a temperature-dependent fluorescent dye (Rhodamine B) to the measurement of radiofrequency radiation-induced temperature changes in biological samples. Bioelectromagnetics 2009, 30, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, J.F.; Chen, Y.Y.; McIntosh, R.L.; Wood, A.W. A measurement and modeling study of temperature in living and fixed tissue during and after radiofrequency exposure. Bioelectromagnetics 2014, 35, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Singh, N.R. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int. J. Radiat. Biol. 1996, 69, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Singh, N.P. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics 1997, 18, 446–454. [Google Scholar] [CrossRef]
- Reddy, A.B.; McKenzie, R.J.; McIntosh, R.L.; Prihoda, T.J.; Wood, A.W. Incidence of micronuclei in human peripheral blood lymphocytes exposed to modulated and unmodulated 2450 MHz radiofrequency fields. Bioelectromagnetics 2013, 34, 542–548. [Google Scholar]
- Kumar, G.; McIntosh, R.L.; Anderson, V.; McKenzie, R.J.; Wood, A.W. A genotoxic analysis of the hematopoietic system after mobile phone type radiation exposure in rats. Int. J. Radiat. Biol. 2015, 91, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Wood, A.W.; Anderson, V.; McIntosh, R.L.; Chen, Y.Y.; McKenzie, R.J. Evaluation of hematopoietic system effects after in vitro radiofrequency radiation exposure in rats. Int. J. Radiat. Biol. 2011, 87, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Preece, A.W.; Iwi, G.; Davies-Smith, A.; Wesnes, K.; Butler, S.; Lim, E.; Varey, A. Effect of a 915-MHz simulated mobile phone signal on cognitive function in man. Int. J. Radiat. Biol. 1999, 75, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Keetley, V.; Wood, A.W.; Spong, J.; Stough, C. Neuropsychological sequelae of digital mobile phone exposure in humans. Neuropsychologia 2006, 44, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, D.L.; Wood, A.W. Effects of mobile phone emissions on human brain activity and sleep variables. Int. J. Radiat. Biol. 2002, 78, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, D.L.; Wood, A.W.; Croft, R.J.; Stough, C. Examining the effects of electromagnetic fields emitted by GSM mobile phones on human event-related potentials and performance during an auditory task. Clin. Neurophysiol. 2004, 115, 171–178. [Google Scholar] [CrossRef]
- Hamblin, D.L.; Croft, R.J.; Wood, A.W.; Stough, C.; Spong, J. The sensitivity of human event-related potentials and reaction time to mobile phone emitted electromagnetic fields. Bioelectromagnetics 2006, 27, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Croft, R.J.; Hamblin, D.L.; Spong, J.; Wood, A.W.; McKenzie, R.J.; Stough, C. The effect of mobile phone electromagnetic fields on the alpha rhythm of human electroencephalogram. Bioelectromagnetics 2008, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Croft, R.J.; Leung, S.; McKenzie, R.J.; Loughran, S.P.; Iskra, S.; Hamblin, D.L.; Cooper, N.R. Effects of 2G and 3G mobile phones on human alpha rhythms: Resting EEG in adolescents, young adults, and the elderly. Bioelectromagnetics 2010, 31, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Loughran, S.P.; Wood, A.W.; Barton, J.M.; Croft, R.J.; Thompson, B.; Stough, C. The effect of electromagnetic fields emitted by mobile phones on human sleep. Neuroreport 2005, 16, 1973–1976. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.W.; Loughran, S.P.; Stough, C. Does evening exposure to mobile phone radiation affect subsequent melatonin production? Int. J. Radiat. Biol. 2006, 82, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.W.; Hamblin, D.L.; Croft, R.J. The use of a “phantom scalp” to assess the possible direct pickup of mobile phone handset emissions by electroencephalogram electrode leads. Med. Biol. Eng. Comput. 2003, 41, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, D.L.; Anderson, V.; McIntosh, R.L.; McKenzie, R.J.; Wood, A.W.; Iskra, S.; Croft, R.J. EEG electrode caps can reduce SAR induced in the head by GSM900 mobile phones. IEEE Trans. Biomed. Eng. 2007, 54, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.J.; Briggs, K.M.; Farrell, P.; Fleming, A.; Hocking, B.; Joyner, K.H.; Anderson, V.; Wood, A.W. Nonlinear dynamics of charged particles interacting with combined ac-dc electromagnetic fields. Phys. A 1995, 220, 471–484. [Google Scholar] [CrossRef]
- Thompson, C.J.; Yang, Y.S.; Anderson, V.; Wood, A.W. A cooperative model for Ca++ efflux windowing from cell membranes exposed to electromagnetic radiation. Bioelectromagnetics 2000, 21, 455–464. [Google Scholar] [CrossRef]
- Kurniawan, T.; Wood, A.W.; McIntosh, R.L. Simplified analysis of near electromagnetic fields from a dipole in lossy dielectric. IEEE Trans. Dielect. Eletr. Insul. 2010, 17, 1943–1949. [Google Scholar] [CrossRef]
- Kurniawan, T.; Wood, A.W.; McIntosh, R.L. Simple closed-form formulae to estimate near fields in living tissue layers due to dipole antenna exposure. IEEE Trans. Dielect. Eletr. Insul. 2015, 22, 619–625. [Google Scholar] [CrossRef]
- Anderson, V. Determination of Electromagnetic Field Patterns Applied to Tissues and Cells during in Vitro Microwave Studies; Swinburne University of Technology: Melbourne, Australia, 2001. [Google Scholar]
- McIntosh, R.L.; Deppeler, L.; Oliva, M.; Parente, J.; Tambuwala, F.; Turner, S.; Winship, D.; Wood, A.W. Comparison of radiofrequency exposure of a mouse dam and foetuses at 900 MHz. Phys. Med. Biol. 2010, 55, N111–N122. [Google Scholar] [CrossRef] [PubMed]
- Finnie, J.W.; Blumbergs, P.C.; Cai, Z.; Manavis, J.; Kuchel, T.R. Effect of mobile telephony on blood-brain barrier permeability in the fetal mouse brain. Pathology 2006, 38, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Finnie, J.W.; Cai, Z.; Blumbergs, P.C.; Manavis, J.; Kuchel, T.R. Expression of the immediate early gene, c-fos, in fetal brain after whole of gestation exposure of pregnant mice to global system for mobile communication microwaves. Pathology 2006, 38, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Finnie, J.W.; Chidlow, G.; Blumbergs, P.C.; Manavis, J.; Cai, Z. Heat shock protein induction in fetal mouse brain as a measure of stress after whole of gestation exposure to mobile telephony radiofrequency fields. Pathology 2009, 41, 276–279. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, R.L.; Anderson, V. A comprehensive tissue properties database provided for the thermal assessment of a human at rest. Biophys. Rev. Lett. 2010, 5, 129–151. [Google Scholar] [CrossRef]
- McIntosh, R.L.; Anderson, V. Erratum—A comprehensive tissue properties database provided for the thermal assessment of a human at rest. Biophys. Rev. Lett. 2013, 8, 99–100. [Google Scholar] [CrossRef]
- Moore, S.M.; McIntosh, R.L.; Iskra, S.; Wood, A.W. Modeling the effect of adverse environmental conditions and clothing on temperature rise in a human body exposed to radio frequency electromagnetic fields. IEEE Trans. Biomed. Eng. 2015, 62, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Lajevardipour, A.; Wood, A.W.; Iskra, S.; McIntosh, R.L. Determining appropriate dielectric values for skin in the THz radiation range. In Proceedings of the BIOEM2016, Ghent, Belgium, 5–10 June 2016; pp. 626–630.
- Anderson, V.; Croft, R.; McIntosh, R.L. SAR versus Sinc: What is the appropriate rf exposure metric in the range 1–10 GHz? Part I: Using planar body models. Bioelectromagnetics 2010, 31, 454–466. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, R.L.; Anderson, V. SAR versus VAR, and the size and shape that provide the most appropriate RF exposure metric in the range of 0.5–6 GHz. Bioelectromagnetics 2011, 32, 312–321. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, R.L.; Anderson, V. SAR versus Sinc: What is the appropriate RF exposure metric in the range 1–10 GHz? Part II: Using complex human body models. Bioelectromagnetics 2010, 31, 467–478. [Google Scholar] [PubMed]
- McIntosh, R.L.; Iskra, S.; Anderson, V. Significant RF-EMF and thermal levels observed in a computational model of a person with a tibial plate for grounded 40 MHz exposure. Bioelectromagnetics 2014, 35, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Perentos, N.; Iskra, S.; Faraone, A.; McKenzie, R.J.; Bit-Babik, G.; Anderson, V. Exposure compliance methodologies for multiple input multiple output (MIMO) enabled networks and terminals. IEEE Trans. Antennas Propag. 2012, 60, 644–653. [Google Scholar] [CrossRef]
- Iskra, S.; McKenzie, R.; Rowley, J.; McIntosh, R.L. Distributed antenna system for mobile phone coverage in a hospital—EMI considerations. In Proceedings of the Asia-Pacific International Symposium and Exhibition on Electromagnetic Compatibility, Melbourne, Australia, 20–23 May 2013.
- Wertheimer, N.; Leeper, E. Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 1979, 109, 273–284. [Google Scholar] [PubMed]
- Stevens, R.G.; Wilson, B.W.; Anderson, L.E. The Melatonin Hypothesis: Breast Cancer and the Use of Electric Power; Battelle Press: Columbus, OH, 1997; p. 760. [Google Scholar]
- Wood, A.W.; Armstrong, S.M.; Sait, M.L.; Devine, L.; Martin, M.J. Changes in human plasma melatonin profiles in response to 50 Hz magnetic field exposure. J. Pineal Res. 1998, 25, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Sait, M.L.; Wood, A.W.; Sadafi, H.A. A study of heart rate and heart rate variability in human subjects exposed to occupational levels of 50 Hz circularly polarised magnetic fields. Med. Eng. Phys. 1999, 21, 361–369. [Google Scholar] [CrossRef]
- Vybiral, T.; Bryg, R.J.; Maddens, M.E.; Boden, W.E. Effect of passive tilt on sympathetic and parasympathetic components of heart rate variability in normal subjects. Am. J. Cardiol. 1989, 63, 1117–1120. [Google Scholar] [CrossRef]
- Sait, M.L.; Wood, A.W.; Kirsner, R.L. Effects of 50 Hz magnetic field exposure on human heart rate variability with passive tilting. Physiol. Meas. 2006, 27, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Sait, M.L.; Wood, A.W.; Kirsner, R.L.G. The effect of regional exposure to 50 Hz magnetic fields on human heart rate variability. In Proceedings of the 2nd Conference of Victorian Chapter of IEEE Engineering in Medicine and Biology Society, Melbourne, Australia, 19–20 February 2001; Lithgow, B., Cosic, I., Eds.; pp. 187–190.
- Keetley, V.; Wood, A.; Sadafi, H.; Stough, C. Neuropsychological sequelae of 50 Hz magnetic fields. Int. J. Radiat. Biol. 2001, 77, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Sadafi, H.A.; Cadusch, P.; Wood, A.W. Real-time recording of neuropsychophysiological parameters during 50 Hz magnetic field exposure. Australas. Phys. Eng. Sci. Med. 2005, 28, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Sadafi, H.A.; Wood, A.W.; Bailey, M.; Wesnes, K. The brain effects of occupational strength 50 Hz magnetic field. In Proceedings of the 2003 IEEE International Symposium on Electromagnetic Compatibility, Istanbul, Turkey, 11–16 May 2003; pp. 832–835.
- Xue, C.; Wood, A.W.; Dovan, T. Induced current density in the foetus of pregnant workers in high magnetic field environments. Australas. Phys. Eng. Sci. Med. 2004, 27, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Review of Radiofrequency Health Effects Research—Scientific Literature 2000–2012; ISSN 0157–1400Australian Radiation Protection and Nuclear Safety Agency: Melbourne, Australia, 2014; p. 76.
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines on limits of exposure to time-varying electric, magnetic and electromagnetic fields (1 Hz–300 GHz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- Wood, A.W. Extremely low frequency (ELF) electric and magnetic field exposure limits: Rationale for basic restrictions used in the development of an australian standard. Bioelectromagnetics 2008, 29, 414–428. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.W. Ensuring effective protection against ELF adverse effects: The Australian experience. In Proceedings of the International EMF Conference 2007, Malaysia, 4–8 June 2007; pp. 53–56.
- ICNIRP. Guidelines for limiting of exposure to time-varying electric, magnetic and electromagnetic fields (1 Hz–100 kHz). Health Phys. 2010, 99, 818–836. [Google Scholar]
- Nuzzo, R. Statistical errors. Nature 2014, 506, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Baker, M. Is there a reproducibility crisis? Nature 2016, 533, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.W. Possible health effects of 50/60Hz electric and magnetic fields: Review of proposed mechanisms. Australas. Phys. Eng. Sci. Med. 1993, 16, 1–21. [Google Scholar] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, A.W.; Lajevardipour, A.; McIntosh, R.L. Lessons and Perspectives from a 25-Year Bioelectromagnetics Research Program. Int. J. Environ. Res. Public Health 2016, 13, 950. https://doi.org/10.3390/ijerph13100950
Wood AW, Lajevardipour A, McIntosh RL. Lessons and Perspectives from a 25-Year Bioelectromagnetics Research Program. International Journal of Environmental Research and Public Health. 2016; 13(10):950. https://doi.org/10.3390/ijerph13100950
Chicago/Turabian StyleWood, Andrew W., Alireza Lajevardipour, and Robert L. McIntosh. 2016. "Lessons and Perspectives from a 25-Year Bioelectromagnetics Research Program" International Journal of Environmental Research and Public Health 13, no. 10: 950. https://doi.org/10.3390/ijerph13100950
APA StyleWood, A. W., Lajevardipour, A., & McIntosh, R. L. (2016). Lessons and Perspectives from a 25-Year Bioelectromagnetics Research Program. International Journal of Environmental Research and Public Health, 13(10), 950. https://doi.org/10.3390/ijerph13100950