Relationship between Pesticide Metabolites, Cytokine Patterns, and Asthma-Related Outcomes in Rural Women Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Population, and Sampling
2.2. Questionnaire (Demographic Characteristics and Respiratory Symptoms)
2.3. Urinary Pesticide Metabolites
2.4. Immunological Profile
2.4.1. Phadiatop
2.4.2. Serum Cytokines
2.5. Fractional Exhaled Nitric Oxide
2.6. Statistical Analysis
3. Results
3.1. Demographic Characteristics and Allergic and Asthma Outcomes
3.2. Urinary Pesticide Metabolite Concentrations
3.3. Serum Cytokine Concentrations
3.4. Host-Related Attributes Associated with Asthma-Related Outcomes
3.5. Association between Pesticide Metabolites and Asthma-Related Outcomes, Including Individual Cytokine Profiles in Multiple Regression Models
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ye, M.; Beach, J.; Martin, J.; Senthilselvan, A. Occupational pesticide exposures and respiratory health. Int. J. Environ. Res. Public Health 2013, 10, 6442–6471. [Google Scholar] [CrossRef] [PubMed]
- Callahan, C.; Al-Batanony, M.; Ismail, A.; Abdel-Rasoul, G.; Hendy, O.; Olson, J.; Rohlman, D.; Bonner, M. Chlorpyrifos exposure and respiratory health among adolescent agricultural workers. Int. J. Environ. Res. Public Health 2014, 11, 13117–13129. [Google Scholar] [CrossRef] [PubMed]
- De Jong, K.; Boezen, H.; Kromhout, H.; Vermeulen, R.; Postma, D.; Vonk, J. Pesticides and other occupational exposures are associated with airway obstruction: the LifeLines cohort study. Occup. Environ. Med. 2014, 71, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Hoppin, J. Pesticides and respiratory health: Where do we go from here? Occup. Environ. Med. 2014, 71, 80. [Google Scholar] [CrossRef] [PubMed]
- Ndlovu, V.; Dalvie, M.; Jeebhay, M. Asthma associated with pesticide exposure among women in rural Western Cape of South Africa. Am. J. Ind. Med. 2014, 57, 1331–1343. [Google Scholar] [CrossRef] [PubMed]
- Dalvie, M.; White, N.; Raine, R.; Myers, J.; London, L.; Thompson, M.; Christiani, D. Long-term respiratory health effects of the herbicide, paraquat, among workers in the Western Cape. Occup. Environ. Med. 1999, 56, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Hoppin, J.; Umbach, D.; London, S.; Henneberger, P.; Kullman, G.; Alavanja, M.; Sandler, D. Pesticides and atopic and nonatopic asthma among farm women in the Agricultural Health Study. Am. J. Respir. Crit. Care Med. 2008, 177, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Fieten, K.; Kromhout, H.; Heederik, D.; van Wendel de Joode, B. Pesticide exposure and respiratory health of indigenous women in Costa Rica. Am. J. Epidemiol. 2009, 169, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Hoppin, J.; Umbach, D.; London, S.; Henneberger, P.; Kullman, G.; Coble, J.; Alavanja, M.; Beane Freeman, L.; Sandler, D. Pesticide use and adult-onset asthma among male farmers in the Agricultural Health Study. Eur. Respir. J. 2009, 34, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Slager, R.; Simpson, S.; Levan, T.; Poole, J.; Sandler, D.; Hoppin, J. Rhinitis associated with pesticide use among private pesticide applicators in the agricultural health study. J. Toxicol. Environ. Health A 2010, 73, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Barr, D. Biomonitoring of exposure to pesticides. J. Chem. Health Saf. 2008, 15, 20–29. [Google Scholar] [CrossRef]
- Dalvie, M.; Naik, I.; Channa, K.; London, L. Urinary dialkyl phosphate levels before and after first season chlorpyrifos spraying amongst farm workers in the Western Cape, South Africa. J. Environ. Sci. Health B 2011, 46, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Raanan, R.; Harley, K.; Balmes, J.; Bradman, A.; Lipsett, M.; Eskenazi, B. Early-life exposure to organophosphate pesticides and pediatric respiratory symptoms in the CHAMACOS cohort. Environ. Health Perspect. 2015, 123, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Chalubinski, M.; Kowalski, M. Endocrine disrupters--potential modulators of the immune system and allergic response. Allergy 2006, 61, 1326–1335. [Google Scholar] [CrossRef] [PubMed]
- Vanden Driessche, K.; Sow, A.; van Gompel, A.; Vandeurzen, K. Anaphylaxis in an airplane after insecticide spraying. J. Travel Med. 2010, 17, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.; Parrón, T.; Alarcón, R. Pesticides and asthma. Curr. Opin. Allergy Clin. Immunol. 2011, 11, 90–96. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. WMA Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects; World Medical Association: Ferney-Voltaire, France, 2008. [Google Scholar]
- Burney, P.; Luczynska, C.; Chinn, S.; Jarvis, D. The European Community Respiratory Health Survey. Eur. Respir. J. 1994, 7, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Hardt, J.; Angerer, J. Determination of dialkyl phosphates in human urine using gas chromatography-mass spectrometry. J. Anal. Toxicol. 2000, 24, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Sams, C.; Jones, K. Human volunteer studies investigating the potential for toxicokinetic interactions between the pesticides deltamethrin; pirimicarb and chlorpyrifos-methyl following oral exposure at the acceptable daily intake. Toxicol. Lett. 2011, 200, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Arrebola, F.; Martínez-Vidal, J.; Fernández-Gutiérrez, A.; Akhtar, M. Monitoring of pyrethroid metabolites in human urine using solid-phase extraction followed by gas chromatography-tandem mass spectrometry. Anal. Chim. Acta 1999, 401, 45–54. [Google Scholar] [CrossRef]
- Quirce, S.; Lemière, C.; de Blay, F.; del Pozo, V.; Gerth van Wijk, R.; Maestrelli, P.; Pauli, G.; Pignatti, P.; Raulf-Heimsoth, M.; Sastre, J.; Storaas, T.; Moscato, G. Noninvasive methods for assessment of airway inflammation in occupational settings. Allergy 2010, 65, 445–458. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society; European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 2005, 171, 912–930. [Google Scholar]
- Vizcaya, D.; Mirabelli, M.; Orriols, R.; Antó, J.; Barreiro, E.; Burgos, F.; Arjona, L.; Gomez, F.; Zock, J.P. Functional and biological characteristics of asthma in cleaning workers. Respir. Med. 2013, 107, 673–683. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. Stata: Release 12. Statistical Software; StataCorp LP: College Station, TX, USA, 2011. [Google Scholar]
- World Health Organization. Biological Monitoring of Chemical Exposure in the Workplace; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Ye, X.; Pierik, F.; Hauser, R.; Duty, S.; Angerer, J.; Park, M.; Burdorf, A.; Hofman, A.; Jaddoe, V.; Mackenbach, J.; et al. Urinary metabolite concentrations of organophosphorous pesticides, bisphenol A, and phthalates among pregnant women in Rotterdam, The Netherlands: The Generation R study. Environ. Res. 2008, 108, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Ueyama, J.; Kimata, A.; Kamijima, M.; Hamajima, N.; Ito, Y.; Suzuki, K.; Inoue, T.; Yamamoto, K.; Takagi, K.; Saito, I.; et al. Urinary excretion of 3-phenoxybenzoic acid in middle-aged and elderly general population of Japan. Environ. Res. 2009, 109, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Barr, D.; Olsson, A.; Wong, L.-Y.; Udunka, S.; Baker, S.; Whitehead, R.; Magsumbol, M.; Williams, B.; Needham, L. Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population: National Health and Nutrition Examination Survey 1999–2002. Environ. Health Perspect. 2010, 118, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Barr, D.; Wong, L.-Y.; Bravo, R.; Weerasekera, G.; Odetokun, M.; Restrepo, P.; Kim, D.-G.; Fernandez, C.; Whitehead, R.; Perez, J.; et al. Urinary concentrations of dialkylphosphate metabolites of organophosphorus pesticides: National Health and Nutrition Examination Survey 1999–2004. Int. J. Environ. Res. Public Health 2011, 8, 3063–3098. [Google Scholar] [CrossRef] [PubMed]
- Wielgomas, B.; Nahorski, W.; Czarnowski, W. Urinary concentrations of pyrethroid metabolites in the convenience sample of an urban population of Northern Poland. Int. J. Hyg. Environ. Health 2013, 216, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Motsoeneng, P.; Dalvie, M.A. Relationship between Urinary Pesticide Residue Levels and Neurotoxic Symptoms among Women on Farms in the Western Cape, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 6281–6299. [Google Scholar] [CrossRef] [PubMed]
- Takamiya, K. Monitoring of urinary alkyl phosphates in pest control operators exposed to various organophosphorus insecticides. Bull. Environ. Contam. Toxicol. 1994, 52, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Aprea, C.; Sciarra, G.; Sartorelli, P.; Sartorelli, E.; Strambi, F.; Farina, G.; Fattorini, A. Biological monitoring of exposure to chlorpyrifos-methyl by assay of urinary alkylphosphates and 3,5,6-trichloro-2-pyridinol. J. Toxicol. Environ. Health 1997, 50, 581–594. [Google Scholar] [PubMed]
- Ahn, K.; Gee, S.; Kim, H.-J.; Aronov, P.; Vega, H.; Krieger, R.; Hammock, B. Immunochemical analysis of 3-phenoxybenzoic acid, a biomarker of forestry worker exposure to pyrethroid insecticides. Anal. Bioanal. Chem. 2011, 401, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Dalvie, M.; Africa, A.; London, L. Change in the quantity and acute toxicity of pesticides sold in South African crop sectors, 1994–1999. Environ. Int. 2009, 35, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Mohan, K.; Weisel, C. Exposure of flight attendants to pyrethroid insecticides on commercial flights: urinary metabolite levels and implications. Int. J. Hyg. Environ. Health 2012, 215, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, S. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.; Breslin, A. Asthmatic reactions to a commonly used aerosol insect killer. Med. J. Aust. 1983, 1, 378–380. [Google Scholar] [PubMed]
- Wax, P.; Hoffman, R. Fatality associated with inhalation of a pyrethrin shampoo. J. Toxicol. Clin. Toxicol. 1994, 32, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.L. Fatal asthma in a child after use of an animal shampoo containing pyrethrin. West. J. Med. 2000, 173, 86–87. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, O.; Delwiche, J.; Auverdin, J.; Caroyer, U.; Cangh, F. Asthma to tetramethrin. Allergy 2000, 55, 417–418. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, S. Asthma: Defining of the persistent adult phenotypes. Lancet 2006, 368, 804–813. [Google Scholar] [CrossRef]
Characteristics | Farm Dwellers (n = 121) | Town Dwellers (n = 90) | Overall (n = 211) |
---|---|---|---|
Demographic Characteristics: (Median, Interquartile Range) | |||
Age (years) | 33 (27–40) *** | 40.5 (31–49) | 37 (28-45) |
BMI (kg/m2) | 25.18 (21.57–30.81) ** | 28.58 (23.78–35.71) | 26.44 (22.52–32.87) |
Education (years of schooling) | 9 (7–10) | 9 (7–11) | 9 (7–10) |
Length of stay in current residence (years) | 15 (8–24) ** | 22 (12–41) | 17 (9–29) |
Born on a farm: n (%) | 83 (69) *** | 13 (14) | 96 (46) |
Current smoker: n (%) | 69 (57) * | 36 (40) | 105 (50) |
Currently employed: n (%) | 101 (84) *** | 25 (28) | 126 (60) |
Asthma-Related Outcomes: n (%) | |||
Asthma attack in the last 12 months | 2 (2) | 1 (1) | 3 (1) |
Currently taking medicines for asthma | 4 (3) | 8 (9) | 12 (6) |
Current asthma | 4 (3) | 8 (9) | 12 (6) |
Doctor-diagnosed asthma | 11 (9) | 12 (13) | 23 (11) |
Adult-onset asthma | 9 (7) | 10 (11) | 19 (9) |
FeNO (ppb): median (interquartile range) | 9.17 (5.67–14) ** | 12.33 (8.33–22.33) | 10.33 (6–17.33) |
FeNO > 50 ppb | 7 (6) | 8 (9) | 15 (7) |
Allergic Sensitisation: n (%) | |||
Atopy (positive Phadiatop) | 46 (38) | 44 (51) | 90 (44) |
Pesticide Metabolites | Farm Dwellers (n = 121) | Town Dwellers (n = 90) | Overall |
---|---|---|---|
Median (Interquartile Range) | |||
Corrected for Creatinine (µg/g Creatinine) | |||
I. Organophosphate Metabolites (n = 178) | |||
Dialkyl Phosphates | |||
∑DAP | 141.42 (37.4–249.83) | 132 (45.64–204.45) | 133.59 (41.86–229.09) |
DMP | 32.91 (13.50–55.75) | 26.19 (14.33–52.36) | 29.63 (14.06–53.22) |
DMTP (n = 177) | 13.41 (3.05–62.45) | 37.86 (6.55–77.20) | 22.04 (4.53–65.85) |
DMDTP | 5.70 (0.83–51.51) | 9.57 (0.87–66.22) | 6.87 (0.85–61.77) |
DEP | 5.01 (1.37–12.90) | 4.13 (0.59–9.47) | 4.27 (1.08–10.04) |
DETP | 3.70 (1.15–26.98) | 3.94 (1.35–26.18) | 3.87 (1.20–26.98) |
DEDTP | 1.99 (0.55–5.10) | 1.70 (0.60–8.02) | 1.89 (0.58–6.44) |
TCPY | |||
TCPY | 6.35 (3.67–10.95) * | 4.26 (2.72–8.27) | 5.38 (3.25–9.45) |
II. Pyrethroid Metabolites (n = 182) | |||
Pyrethroids | 6.60 (3.61–9.96) | 5.26 (2.74–8.42) | 6.01 (3.24–9.67) |
Cis-DCCA | 0.72 (0.27–1.28) | 0.56 (0.23–1.13) | 0.63 (0.26–1.24) |
Trans-DCCA | 0.85 (0.48–1.29) ** | 0.59 (0.28–1.02) | 0.70 (0.37–1.22) |
DBCA | 0.33 (0.05–0.63) | 0.30 (0.04–0.60) | 0.31 (0.05–0.62) |
4F3PBA | 0.76 (0.35–1.32) | 0.70 (0.33–1.30) | 0.73 (0.33–1.32) |
3PBA | 3.85 (2.13–6.25) | 3.34 (2.27–5.92) | 3.41 (2.21–6.00) |
Cytokines | Distribution of Detected Values Median (Interquartile Range) in pg/mL | Limit of Detection (pg/mL) | Proportion Detected n (%) | ||||
---|---|---|---|---|---|---|---|
Farm Dwellers | Town Dwellers | Overall | Farm Dwellers | Town Dwellers | Overall | ||
Th2 cytokines | |||||||
IL-4 | 4.68 (3.20–6.92) | 5.09 (3.52–8.12) | 4.84 (3.52–7.25) | 0.10 | 51 (43) | 30 (37) | 81 (40) |
IL-5 | 2.06 (1.66–2.31) | 2.23 (1.82–3.16) | 2.07 (1.68–2.60) | 0.10 | 23 (19) | 13 (16) | 36 (18) |
IL-13 | 4.80 (2.98–6.37) * | 6.06 (4.90–7.58) | 5.55 (3.39–7.23) | 0.10 | 39 (33) | 28 (34) | 67 (33) |
Any Th2 cytokine | N/A | N/A | 61 (51) | 44 (54) | 105 (52) | ||
Non-Th2 cytokines | |||||||
IL-6 | 5.16 (3.61–7.50) | 5.27 (3.75–10.26) | 5.16 (3.62–8.69) | 0.14 | 63 (53) | 38 (46) | 101 (50) |
IL-8 | 16.49 (10.56–36.22) | 19.47 (13.08–37.30) | 18.93 (11.45–36.90) | 0.10 | 85 (71) | 57 (70) | 142 (71) |
IL-10 | 4.47 (2.80–5.60) | 4.22 (2.74–6.36) | 4.39 (2.77–5.87) | 0.20 | 45 (38) | 26 (32) | 71 (35) |
IL-17 | 10.34 (6.20–15.61) | 9.13 (7.09–19.02) | 9.76 (6.40–16.10) | 0.22 | 52 (44) | 28 (34) | 80 (40) |
IFN-γ | 10.53 (7.41–17.80) | 9.14 (6.56–17.30) | 10.30 (7.41–17.30) | 0.10 | 60 (50) | 31 (38) | 91 (45) |
Any non-Th2 cytokine | N/A | N/A | 85 (71) | 57 (70) | 142 (71) |
Host-Related Factors | Asthma-Related Outcomes: Odds Ratio (95% Confidence Interval) | |||||
---|---|---|---|---|---|---|
Doctor Diagnosed Asthma | Adult Onset Asthma | Current Asthma | FeNO > 50 ppb | Any Th2 Cytokine Detected | Any Non-Th2 Cytokine Detected | |
Prevalence (%) (n = 211) | 11% | 9% | 6% | 7% | 52% | 71% |
Age (years) | 1.01 (0.98–1.05) | 1.02 (0.99–1.06) | 1.04 (0.99–1.09) | 0.99 (0.95–1.04) | 1.00 (0.97–1.02) | 1.00 (0.97–1.02) |
BMI (kg/m2) | 1.02 (0.96–1.08) | 1.03 (0.97–1.10) | 1.01 (0.93–1.10) | 1.02 (0.95–1.10) | 1.01 (1.00–1.05) | 1.02 (0.98–1.07) |
Education (years of schooling) | 0.85 (0.74–0.96) | 0.85 (0.74–0.97) | 0.78 (0.66–0.92) | 1.18 (0.96–1.46) | 0.98 (0.89–1.07) | 1.02 (0.93–1.13) |
Born on a farm | 0.61 (0.25–1.50) | 0.67 (0.25–1.79) | 0.10 (0.01–0.79) | 0.27 (0.07–0.99) | 1.07 (0.62–1.87) | 1.17 (0.63–2.15) |
Current smoker | 1.66 (0.68–4.02) | 1.43 (0.55–3.72) | 1.44 (0.44–4.70) | 0.23 (0.06–0.84) | 0.68 (0.39–1.19) | 0.77 (0.42–1.41) |
Currently employed | 0.86 (0.36–2.07) | 0.73 (0.28–1.87) | 0.46 (0.14–1.50) | 0.55 (0.19–1.58) | 0.90 (0.51–1.59) | 1.36 (0.74–2.53) |
Atopy (positive Phadiatop) | 3.37 (1.32–8.58) | 3.10 (1.13–8.5) | 7.12 (1.52–33.40) | 21.28 (2.74–165.23) | 1.09 (0.62–1.90) | 1.32 (0.71–2.45) |
Farm vs. town dwellers | 0.65 (0.27–1.55) | 0.64 (0.25–1.65) | 0.35 (0.10–1.20) | 0.61 (0.21–1.76) | 0.91 (0.52–1.60) | 1.10 (0.59–2.03) |
Pesticide Metabolites | Asthma-Related Outcomes: Odds Ratio (95% Confidence Interval) | |||||
---|---|---|---|---|---|---|
Doctor-Diagnosed Asthma | Adult-Onset Asthma | Current Asthma | FeNO > 50 ppb | Any Th2 Cytokine Detected | Any Non-Th2 Cytokine Detected | |
Prevalence (%) (n = 211) | 11% | 9% | 6% | 7% | 52% | 71% |
I. Organophosphate Metabolites | ||||||
Dialkyl Phosphates | ||||||
∑DAP | 0.68 (0.23–2.05) | 0.66 (0.20–2.20) | 1.38 (0.33–5.76) | 2.53 (0.74–8.64) | 1.77 (0.90–3.46) | 1.77 (0.81–3.87) |
DMP | 0.16 (0.02–1.29) | 0.22 (0.03–1.72) | 0.54 (0.06–4.83) | 1.77 (0.40–7.88) | 1.69 (0.83–3.46) | 4.23 (1.54–11.65) |
DMTP | 0.12 (0.02–0.94) | 0.16 (0.02–1.29) | ND | 0.47 (0.10–2.15) | 0.85 (0.42–1.72) | 1.34 (0.60–3.00) |
DMDTP | 1.52 (0.53–4.33) | 1.91 (0.62–5.82) | 2.47 (0.60–10.13) | 1.80 (0.45–7.23) | 0.79 (0.39–1.62) | 0.46 (0.22–0.98) |
DEP | 0.78 (0.23–2.62) | 1.08 (0.31–3.71) | 0.74 (0.13–4.31) | 2.54 (0.62–10.37) | 1.99 (0.95–4.19) | 2.71 (1.05–7.00) |
DETP | 1.45 (0.46–4.60) | 2.03 (0.61–6.73) | 1.53 (0.26–8.97) | 1.06 (0.23–4.87) | 2.75 (1.27–5.92) | 23.25 (3.08–175.49) |
DEDTP | 1.19 (0.38–3.78) | 1.67 (0.51–5.45) | 0.77 (0.13–4.51) | 0.97 (0.22–4.33) | 7.70 (3.00–19.74) | 23.84 (3.15–180.74) |
TCPY | ||||||
TCPY | 1.35 (0.47–3.92) | 1.41 (0.45–4.44) | 1.26 (0.27–5.76) | 1.50 (0.35–6.38) | 1.56 (0.57–2.34) | 1.93 (0.83–4.45) |
II. Pyrethroid Metabolites | ||||||
Pyrethroids | 0.62 (0.19–2.02) | 0.84 (0.26–2.77) | 2.04 (0.48–8.59) | 0.35 (0.07–1.90) | 1.32 (0.69–2.55) | 2.18 (0.98–4.88) |
cis-DCCA | 0.11 (0.01–0.93) | 0.16 (0.02–1.29) | 0.23 (0.02–2.62) | 0.59 (0.10–3.53) | 1.47 (0.73–2.93) | 2.10 (0.92–4.80) |
trans-DCCA | 0.14 (0.02–1.19) | ND | 0.28 (0.02–3.47) | 0.81 (0.12–5.31) | 1.04 (0.52–2.10) | 1.21 (0.56–2.63) |
DBCA | 0.17 (0.02–1.30) | 0.22 (0.03–1.74) | ND | 0.94 (0.20–4.36) | 1.33 (0.66–2.67) | 1.74 (0.78–3.88) |
4F3PBA | 1.01 (0.30–3.40) | 1.40 (0.40–4.90) | 1.74 (0.29–10.56) | 1.07 (0.23–5.04) | 2.51 (1.20–5.22) | 4.32 (1.58–11.82) |
3PBA | 1.06 (0.35–3.19) | 1.15 (0.35–3.76) | 2.64 (0.61–11.47) | 0.40 (0.07–2.31) | 1.30 (0.64–2.64) | 1.63 (0.72–3.69) |
Pesticide Metabolites | Cytokines: Odds Ratio: (95% Confidence Interval) | |||||||
---|---|---|---|---|---|---|---|---|
Th2 Cytokines | Non-Th2 Cytokines | |||||||
IL-4 | IL-5 | IL-13 | IL-6 | IL-8 | IL-10 | IL-17 | IFN-γ | |
I. Organophosphate Metabolites | ||||||||
Dialkyl Phosphates | ||||||||
∑DAP | 1.60 (0.83–3.11) | 2.92 (1.33–6.43) | 1.49 (0.76–2.93) | 1.77 (0.91–3.44) | 1.77 (0.81–3.87) | 1.83 (0.93–3.60) | 2.25 (1.16–4.37) | 1.70 (0.88–3.27) |
DMP | 2.34 (1.14– 4.82) | 2.00 (0.82–4.87) | 1.38 (0.65–2.92) | 3.69 (1.72–7.92) | 4.23 (1.54–11.65) | 2.65 (1.28–5.52) | 3.58 (1.71–7.48) | 3.25 (1.57–6.72) |
DMTP | 1.59 (0.77– 3.29) | 0.84 (0.31–2.31) | 0.49 (0.21–1.13) | 1.76 (0.86–3.61) | 1.34 (0.60–3.00) | 1.06 (0.50–2.26) | 1.53 (0.74–3.14) | 0.85 (0.42–1.73) |
DMDTP | 0.39 (0.17–0.88) | 0.28 (0.08–1.01) | 1.39 (0.66–2.94) | 0.21 (0.09–0.47) | 0.46 (0.22–0.98) | 0.27 (0.11–0.71) | 0.25 (0.10–0.59) | 0.39 (0.18–0.83) |
DEP | 3.50 (1.65–7.44) | 7.76 (3.15–19.11) | 1.87 (0.89–3.95) | 3.43 (1.57–7.49) | 2.71 (1.05–7.00) | 7.79 (3.40–17.83) | 4.59 (2.13–9.89) | 3.63 (1.70–7.73) |
DETP | 4.09 (1.90–8.77) | 8.15 (3.27–20.30) | 2.35 (1.11–4.99) | 5.85 (2.49–13.79) | 23.25 (3.08–175.49) | 4.18 (1.95–8.96) | 8.07 (3.51–18.53) | 4.92 (2.24–10.80) |
DEDTP | 10.28 (4.29–24.64) | 13.26 (5.16–34.08) | 4.69 (2.16–10.16) | 14.87 (4.94–44.72) | 23.84 (3.15–180.74) | 19.13 (7.30–50.14) | 17.05 (6.46–45.02) | 25.12 (8.07–78.17) |
TCPY | ||||||||
TCPY | 1.20 (0.58–2.48) | 0.48 (0.15–1.47) | 1.03 (0.48–2.22) | 2.56 (1.23–5.34) | 1.93 (0.83–4.45) | 0.77 (0.35–1.68) | 1.83 (0.89–3.74) | 1.40 (0.69–2.83) |
II. Pyrethroid Metabolites | ||||||||
Pyrethroids | 2.32 (1.19–4.52) | 1.07 (0.46–2.50) | 0.74 (0.36–1.50) | 2.95 (1.48–5.90) | 2.18 (0.98–4.88) | 2.23 (1.14–4.37) | 3.78 (1.91–7.50) | 2.66 (1.36–5.19) |
cis-DCCA | 2.26 (1.12–4.58) | 1.44 (0.59–3.49) | 0.72 (0.33–1.57) | 2.72 (1.32–5.58) | 2.10 (0.92–4.80) | 1.62 (0.78–3.34) | 2.96 (1.45–6.03) | 2.12 (1.06–4.24) |
trans-DCCA | 1.52 (0.75–3.11) | 0.93 (0.36–2.43) | 0.65 (0.29–1.47) | 2.51 (1.21–5.20) | 1.21 (0.56–2.63) | 2.28 (1.10–4.73) | 2.12 (1.04–4.33) | 1.57 (0.78–3.17) |
DBCA | 1.60 (0.79–3.24) | 1.03 (0.40–2.65) | 0.76 (0.35–1.67) | 2.40 (1.18–4.91) | 1.74 (0.78–3.88) | 1.80 (0.87–3.70) | 2.09 (1.03–4.24) | 1.63 (0.82–3.25) |
4F3PBA | 2.53 (1.23–5.19) | 2.50 (1.04–6.00) | 1.48 (0.70–3.13) | 4.97 (2.24–11.04) | 4.32 (1.58–11.82) | 2.94 (1.41–6.13) | 3.38 (1.63–7.02) | 2.74 (1.34–5.61) |
3PBA | 2.68 (1.29–5.57) | 0.95 (0.37–2.48) | 0.83 (0.38–1.81) | 2.18 (1.05–4.51) | 1.63 (0.72–3.69) | 2.50 (1.17–5.33) | 3.79 (1.80–7.97) | 2.17 (1.06–4.42) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwanga, H.H.; Dalvie, M.A.; Singh, T.S.; Channa, K.; Jeebhay, M.F. Relationship between Pesticide Metabolites, Cytokine Patterns, and Asthma-Related Outcomes in Rural Women Workers. Int. J. Environ. Res. Public Health 2016, 13, 957. https://doi.org/10.3390/ijerph13100957
Mwanga HH, Dalvie MA, Singh TS, Channa K, Jeebhay MF. Relationship between Pesticide Metabolites, Cytokine Patterns, and Asthma-Related Outcomes in Rural Women Workers. International Journal of Environmental Research and Public Health. 2016; 13(10):957. https://doi.org/10.3390/ijerph13100957
Chicago/Turabian StyleMwanga, Hussein H., Mohamed Aqiel Dalvie, Tanusha S. Singh, Kalavati Channa, and Mohamed F. Jeebhay. 2016. "Relationship between Pesticide Metabolites, Cytokine Patterns, and Asthma-Related Outcomes in Rural Women Workers" International Journal of Environmental Research and Public Health 13, no. 10: 957. https://doi.org/10.3390/ijerph13100957
APA StyleMwanga, H. H., Dalvie, M. A., Singh, T. S., Channa, K., & Jeebhay, M. F. (2016). Relationship between Pesticide Metabolites, Cytokine Patterns, and Asthma-Related Outcomes in Rural Women Workers. International Journal of Environmental Research and Public Health, 13(10), 957. https://doi.org/10.3390/ijerph13100957