Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR)
Abstract
:1. Introduction
2. Brain Tumour Incidence
3. Determinants of RF Health Concern (IEI-EMF)
4. Mechanisms of Interaction
4.1. Human Studies
4.2. In Vitro Receptor Sensitivity
4.3. Super High Frequency EMF Effects on Membrane Electroporation
4.4. Cellular and Modelling Work on Gene and Protein Expression
5. Neurodegenerative Diseases
5.1. Animal Studies
5.2. Theoretical Molecular Modelling
6. Dosimetry
6.1. Occupational Thermoregulation Modelling
6.2. Terahertz Frequencies and Modelling of Absorption
6.3. Improving Modelling of Temperature in Tissues
6.4. Characterisation of RF Exposure in Public
7. Risk Communication
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Van Rongen, E.; Croft, R.; Juutilainen, J.; Lagroye, I.; Miyakoshi, J.; Saunders, R.; de Seze, R.; Tenforde, T.; Verschaeve, L.; Veyret, B.; et al. Effects of radiofrequency electromagnetic fields on the human nervous system. J. Toxicol. Environ. Health B 2009, 12, 572–597. [Google Scholar] [CrossRef] [PubMed]
- Van Deventer, E.; van Rongen, E.; Saunders, R. WHO research agenda for radiofrequency fields. Bioelectromagnetics 2010, 32, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Frei, P.; Poulsen, A.H.; Johansen, C.; Olsen, J.H.; Steding-Jessen, M.; Schüz, J. Use of mobile phones and risk of brain tumours: Update of Danish cohort study. BMJ 2011, 343. [Google Scholar] [CrossRef] [PubMed]
- Benson, V.S.; Pirie, K.; Schuz, J.; Reeves, G.K.; Beral, V.; Green, J. Mobile phone use and risk of brain neoplasms and other cancers: Prospective study. Int. J. Epidemiol. 2013, 42, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Repacholi, M.H.; Lerchl, A.; Roosli, M.; Sienkiewicz, Z.; Auvinen, A.; Breckenkamp, J.; d’Inzeo, G.; Elliott, P.; Frei, P.; et al. Systematic review of wireless phone use and brain cancer and other head tumors. Bioelectromagnetics 2012, 33, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Cardis, E.; Deltour, I.; Vrijheid, M.; Combalot, E.; Moissonnier, M.; Tardy, H.; Armstrong, B.; Giles, G.; Brown, J.; Siemiatycki, J.; et al. Brain tumour risk in relation to mobile telephone use: Results of the interphone international case-control study. Int. J. Epidemiol. 2010, 39, 675–694. [Google Scholar]
- Hardell, L.; Carlberg, M.; Mild, K.H. Pooled analysis of case-control studies on malignant brain tumours and the use of mobile and cordless phones including living and deceased subjects. Int. J. Oncol. 2011, 38, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.-H.; Ioannides, S.J.; Elwood, J.M. Trends in incidence of primary brain cancer in New Zealand, 1995 to 2010. Aust. N. Z. J. Public Health 2015, 39, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Chapman, S.; Azizi, L.; Luo, Q.; Sitas, F. Has the incidence of brain cancer risen in Australia since the introduction of mobile phones 29 years ago? Cancer Epidemiol. 2016, 42, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Rubin, G.J.; Nieto-Hernandez, R.; Wessely, S. Idiopathic environmental intolerance attributed to electromagnetic fields (formerly “electromagnetic hypersensitivity”): An updated systematic review of provocation studies. Bioelectromagnetics 2010, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- The International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- Croft, R.J.; Hamblin, D.L.; Spong, J.; Wood, A.W.; McKenzie, R.J.; Stough, C. The effect of mobile phone electromagnetic fields on the alpha rhythm of human electroencephalogram. Bioelectromagnetics 2008, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Curcio, G.; Ferrara, M.; Moroni, F.; D’Inzeo, G.; Bertini, M.; De Gennaro, L. Is the brain influenced by a phone call? An EEG study of resting wakefulness. Neurosci. Res. 2005, 53, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Borbely, A.A.; Huber, R.; Graf, T.; Fuchs, B.; Gallmann, E.; Achermann, P. Pulsed high-frequency electromagnetic field affects human sleep and sleep electroencephalogram. Neurosci. Lett. 1999, 275, 207–210. [Google Scholar] [CrossRef]
- Loughran, S.P.; Wood, A.W.; Barton, J.M.; Croft, R.J.; Thompson, B.; Stough, C. The effect of electromagnetic fields emitted by mobile phones on human sleep. Neuroreport 2005, 16, 1973–1976. [Google Scholar] [CrossRef] [PubMed]
- Loughran, S.P.; McKenzie, R.J.; Jackson, M.L.; Howard, M.E.; Croft, R.J. Individual differences in the effects of mobile phone exposure on human sleep: Rethinking the problem. Bioelectromagnetics 2012, 33, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.R.; Loughran, S.P.; Regel, S.J.; Murbach, M.; Bratic Grunauer, A.; Rusterholz, T.; Bersagliere, A.; Kuster, N.; Achermann, P. Sleep EEG alterations: Effects of different pulse-modulated radio frequency electromagnetic fields. J. Sleep Res. 2012, 21, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Croft, R.J.; Leung, S.; McKenzie, R.J.; Loughran, S.P.; Iskra, S.; Hamblin, D.L.; Cooper, N.R. Effects of 2G and 3G mobile phones on human alpha rhythms: Resting EEG in adolescents, young adults, and the elderly. Bioelectromagnetics 2010, 31, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Regel, S.J.; Tinguely, G.; Schuderer, J.; Adam, M.; Kuster, N.; Landolt, H.P.; Achermann, P. Pulsed radio-frequency electromagnetic fields: Dose-dependent effects on sleep, the sleep EEG and cognitive performance. J. Sleep Res. 2007, 16, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Cotter, J.D.; Taylor, N.A. The distribution of cutaneous sudomotor and alliesthesial thermosensitivity in mildly heat-stressed humans: An open-loop approach. J. Physiol. 2005, 565, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Hamill, O.P.; Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 2001, 81, 685–740. [Google Scholar] [PubMed]
- Kirschvink, J.L. Comment on “constraints on biological effects of weak extremely-low-frequency electromagnetic fields”. Phys. Rev. A 1992, 46, 2178–2184. [Google Scholar] [CrossRef] [PubMed]
- Petrov, E.; Martinac, B. Modulation of channel activity and gadolinium block of MSCL by static magnetic fields. Eur. Biophys. J. 2007, 36, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Ebrahimian, H.; Martinac, B.; Mustapić, M.; Wagner, P.; Kim, J.H.; Hossain, M.S.A.; Horvat, J. Magnetic nanoparticles for “smart liposomes”. Eur. Biophys. J. 2015, 44, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Kirschvink, J.L.; Kobayashi-Kirschvink, A.; Woodford, B.J. Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA 1992, 89, 7683–7687. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.; El Haj, A.J.; Dobson, J.; Martinac, B. The influence of static magnetic fields on mechanosensitive ion channel activity in artificial liposomes. Eur. Biophys. J. 2005, 34, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Todorov, I.T.; Smith, W.; Trachenko, K.; Dove, M.T. DL_Poly_3: New dimensions in molecular dynamics simulations via massive parallelism. J. Mat. Chem. 2006, 16, 1911–1918. [Google Scholar] [CrossRef]
- Shamis, Y.; Patel, S.; Taube, A.; Morsi, Y.; Sbarski, I.; Shramkov, Y.; Croft, R.J.; Crawford, R.J.; Ivanova, E.P. A new sterilization technique of bovine pericardial biomaterial using microwave radiation. Tissue Eng. Part C Methods 2009, 15, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.P.; Shamis, Y.; Crawford, R.J.; Ivanova, E.P.; Croft, R.J.; Wood, A.; McIntosh, R.L. 18 GHz electromagnetic field induces permeability of gram-positive cocci. Sci. Rep. 2015, 5, 1–11. [Google Scholar]
- Nguyen, T.H.P.; Pham, V.T.H.; Nguyen, S.H.; Baulin, V.A.; Croft, R.J.; Phillips, B.; Crawford, R.J.; Ivanova, E.P. The bioeffects resulting from prokaryotic cells and yeast being exposed to an 18 GHz electromagnetic field. PLoS ONE 2016, 11, e0158135. [Google Scholar] [CrossRef] [PubMed]
- Shamis, Y.; Croft, R.; Taube, A.; Crawford, R.J.; Ivanova, E.P. Review of the specific effects of microwave radiation on bacterial cells. Appl. Microbiol. Biotechnol. 2012, 96, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.P.; Schoenbach, K.H. Bioelectric effects of intense ultrashort pulses. Crit. Rev. Biomed. Eng. 2010, 38, 255–304. [Google Scholar] [PubMed]
- French, P.W.; Penny, R.; Laurence, J.A.; McKenzie, D.R. Mobile phones, heat shock proteins and cancer. Differentiation 2001, 67, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Leszczynski, D.; Joenväärä, S.; Reivinen, J.; Kuokka, R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer and blood-brain barrier-related effects. Differentiation 2002, 70, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Pavicic, I.; Trosic, I. Impact of 864 MHz or 935 MHz radiofrequency microwave radiation on the basic growth parameters of V79 cell line. Acta Biol. Hung. 2008, 59, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Arendash, G.W.; Sanchez-Ramos, J.; Mori, T.; Mamcarz, M.; Lin, X.; Runfeldt, M.; Wang, L.; Zhang, G.; Sava, V.; Tan, J.; et al. Electromagnetic field treatment protects against and reverses cognitive impairment in alzheimer’s disease mice. J. Alzheimer Dis. 2010, 19, 191–210. [Google Scholar]
- Jeong, Y.J.; Kang, G.-Y.; Kwon, J.H.; Choi, H.-D.; Pack, J.-K.; Kim, N.; Lee, Y.-S.; Lee, H.-J. 1950 MHz electromagnetic fields ameliorate Aβ pathology in Alzheimer’s disease mice. Curr. Alzheimer Res. 2015, 12, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Leinenga, G.; Götz, J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci. Transl. Med. 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Mancinelli, F.; Caraglia, M.; Abbruzzese, A.; d’Ambrosio, G.; Massa, R.; Bismuto, E. Non-thermal effects of electromagnetic fields at mobile phone frequency on the refolding of an intracellular protein: Myoglobin. J. Cell. Biochem. 2004, 93, 188–196. [Google Scholar] [CrossRef] [PubMed]
- English, N.J.; Solomentsev, G.Y.; O’Brien, P. Nonequilibrium molecular dynamics study of electric and low-frequency microwave fields on hen egg white lysozyme. J. Chem. Phys. 2009, 131. [Google Scholar] [CrossRef] [PubMed]
- Bekard, I.; Dunstan, D.E. Electric field induced changes in protein conformation. Soft Matter 2014, 10, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Budi, A.; Legge, F.S.; Treutlein, H.; Yarovsky, I. Electric field effects on insulin chain-B conformation. J. Phys. Chem. B 2005, 109, 22641–22648. [Google Scholar] [CrossRef] [PubMed]
- Budi, A.; Legge, F.S.; Treutlein, H.; Yarovsky, I. Effect of frequency on insulin response to electric field stress. J. Phys. Chem. B 2007, 111, 5748–5756. [Google Scholar] [CrossRef] [PubMed]
- Budi, A.; Legge, F.S.; Treutlein, H.; Yarovsky, I. Comparative study of insulin chain-b in isolated and monomeric environments under external stress. J. Phys. Chem. B 2008, 112, 7916–7924. [Google Scholar] [CrossRef] [PubMed]
- Legge, F.S.; Budi, A.; Treutlein, H.; Yarovsky, I. Protein flexibility: Multiple molecular dynamics simulations of insulin chain B. Biophys. Chem. 2006, 119, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Arendash, G.W.; Mori, T.; Dorsey, M.; Gonzalez, R.; Tajiri, N.; Borlongan, C. Electromagnetic treatment to old Alzheimer’s mice reverses β-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit. PLoS ONE 2012, 7, e35751. [Google Scholar] [CrossRef] [PubMed]
- Todorova, N.; Bentvelzen, A.; English, N.J.; Yarovsky, I. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides. J. Chem. Phys. 2016, 144. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.; Griffin, M.D.W.; Howlett, G.J.; Yarovsky, I. Effects of oxidation, pH and lipids on amyloidogenic peptide structure: Implications for fibril formation? Eur. Biophys. J. 2008, 38, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.; Griffin, M.D.W.; Howlett, G.J.; Yarovsky, I. Lipids enhance apolipoprotein C-II-derived amyloidogenic peptide oligomerization but inhibit fibril formation. J. Phys. Chem. B 2009, 113, 9447–9453. [Google Scholar] [CrossRef] [PubMed]
- Todorova, N.; Hung, A.; Yarovsky, I.; Maaser, S.M.; Griffin, M.D.W.; Howlett, G.J.; Karas, J. Effects of mutation on the amyloidogenic propensity of apolipoprotein C–II(60–70) peptide. Phys. Chem. Chem. Phys. 2010, 12, 14762–14774. [Google Scholar] [CrossRef] [PubMed]
- Jana, M.K.; Cappai, R.; Pham, C.L.L.; Ciccotosto, G.D. Membrane-bound tetramer and trimer Aβ oligomeric species correlate with toxicity towards cultured neurons. J. Neurochem. 2016, 136, 594–608. [Google Scholar] [CrossRef] [PubMed]
- Munter, L.-M. How many amyloid-beta peptides can a neuron bind before it dies? J. Neurochem. 2016, 136, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Colvin, M.T.; Silvers, R.; Ni, Q.Z.; Can, T.V.; Sergeyev, I.; Rosay, M.; Donovan, K.J.; Michael, B.; Wall, J.; Linse, S.; et al. Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. J. Am. Chem. Soc. 2016, 138, 9663–9674. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.M.; McIntosh, R.L.; Iskra, S.; Wood, A.W. Modeling the effect of adverse environmental conditions and clothing on temperature rise in a human body exposed to radio frequency electromagnetic fields. IEEE. Trans. Biomed. Eng. 2015, 62, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, P.M.; Schutz, H. The precautionary principle and risk perception: Experimental studies in the EMF area. Environ. Health Perspect. 2005, 113, 402–405. [Google Scholar] [CrossRef] [PubMed]
- Boehmert, C.; Wiedemann, P.M.; Pye, J.; Croft, R.J. The effects of precautionary messages about electromagnetic fields from mobile phones and base stations revisited: The role of recipient characteristics. Risk Anal. 2016, in press. [Google Scholar] [CrossRef] [PubMed]
- Boehmert, C.; Wiedemann, P.; Croft, R.J. Improving precautionary communication in the EMF field? Effects of making messages consistent and explaining the effectiveness of precautions. Int. J. Environ. Res. Public Health 2016, in press. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loughran, S.P.; Al Hossain, M.S.; Bentvelzen, A.; Elwood, M.; Finnie, J.; Horvat, J.; Iskra, S.; Ivanova, E.P.; Manavis, J.; Mudiyanselage, C.K.; et al. Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR). Int. J. Environ. Res. Public Health 2016, 13, 967. https://doi.org/10.3390/ijerph13100967
Loughran SP, Al Hossain MS, Bentvelzen A, Elwood M, Finnie J, Horvat J, Iskra S, Ivanova EP, Manavis J, Mudiyanselage CK, et al. Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR). International Journal of Environmental Research and Public Health. 2016; 13(10):967. https://doi.org/10.3390/ijerph13100967
Chicago/Turabian StyleLoughran, Sarah P., Md Shahriar Al Hossain, Alan Bentvelzen, Mark Elwood, John Finnie, Joseph Horvat, Steve Iskra, Elena P. Ivanova, Jim Manavis, Chathuranga Keerawella Mudiyanselage, and et al. 2016. "Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR)" International Journal of Environmental Research and Public Health 13, no. 10: 967. https://doi.org/10.3390/ijerph13100967
APA StyleLoughran, S. P., Al Hossain, M. S., Bentvelzen, A., Elwood, M., Finnie, J., Horvat, J., Iskra, S., Ivanova, E. P., Manavis, J., Mudiyanselage, C. K., Lajevardipour, A., Martinac, B., McIntosh, R., McKenzie, R., Mustapic, M., Nakayama, Y., Pirogova, E., Rashid, M. H., Taylor, N. A., ... Croft, R. J. (2016). Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR). International Journal of Environmental Research and Public Health, 13(10), 967. https://doi.org/10.3390/ijerph13100967