Diabetes and Obesity as Independent Risk Factors for Osteoporosis: Updated Results from the ROIS/EMEROS Registry in a Population of Five Thousand Post-Menopausal Women Living in a Region Characterized by Heavy Environmental Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
- the General Director of the Local Health Authority (ASL) of Brindisi (Number 3393 of 25 November 2008);
- the General Director of the Local Health Authority (ASL) of Taranto (Number 3240 of 14 September 2009).
2.2. Ultrasound Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Cram, P.; Rosenthal, G.E.; Ohsfeldt, R.; Wallace, R.B.; Schlechte, J.; Schiff, G.D. Failure to recognize and act on abnormal test results: The case of screening bone densitometry. Jt. Comm. J. Qual. Patient Saf. 2005, 31, 90–97. [Google Scholar]
- Cody, D.D.; Divine, G.W.; Nahigian, K.; Kleerekoper, M. Bone density distribution and gender dominate femoral neck fracture risk predictors. Skelet. Radiol. 2000, 29, 151–161. [Google Scholar] [CrossRef]
- Maggi, S.; Noale, M.; Giannini, S.; Adami, S.; Defeo, D.; Isaia, G.; Sinigaglia, L.; Filipponi, P.; Crepaldi, G. Quantitative heel ultrasound in a population-based study in Italy and its relationship with fracture history: The ESOPO study. Osteoporos. Int. 2006, 17, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Piscitelli, P.; Gimigliano, F.; Gatto, S.; Marinelli, A.; Gimigliano, A.; Marinelli, P.; Chitano, G.; Greco, M.; Di Paola, L.; Sbenaglia, E.; et al. Hip fractures in Italy: 2000–2005 extension study. Osteoporos. Int. 2010, 21, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Watts, N.B.; Cooper, C.; Lindsay, R.; Eastell, R.; Manhart, M.D.; Barton, I.P.; van Staa, T.P.; Adachi, J.D. Relationship between changes in bone mineral density and vertebral fracture risk associated with risedronate: Greater increases in bone mineral density do not relate to greater decreases in fracture risk. J. Clin. Densitom. 2004, 7, 255–261. [Google Scholar] [CrossRef]
- McClung, M.R. The relationship between bone mineral density and fracture risk. Curr. Osteoporos. Rep. 2005, 3, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Guglielmi, G.; de Terlizzi, F. Quantitative ultrasond in the assessment of osteoporosis. Eur. J. Radiol. 2009, 71, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Fuerst, T.; Gluer, C.C.; Genant, H.K. Quantitative ultrasound. Eur. J. Radiol. 1995, 20, 188–192. [Google Scholar] [CrossRef]
- Aguado, F.; Revilla, M.; Hernandez, E.R.; Villa, L.F.; Rico, H. Ultrasound bone velocity on proximal phalanges in premenopausal, perimenopausal, and postmenopausal healthy women. Investig. Radiol. 1997, 32, 66–70. [Google Scholar] [CrossRef]
- Gambacciani, M.; de Aloysio, D.; Elia, D.; van der Mooren, M.J.; Hadji, P.; Wuster, C. Quantitative ultrasound (QUS) of bone in the management of postmenopausal women. Maturitas 2004, 47, 139–149. [Google Scholar] [CrossRef]
- Wuster, C.; Albanese, C.; De Aloysio, D.; Duboeuf, F.; Gambacciani, M.; Gonnelli, S.; Gluer, C.C.; Hans, D.; Joly, J.; Reginster, J.Y.; et al. Phalangeal osteosonogrammetry study: Age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study Group. J. Bone Miner. Res. 2000, 15, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Benitez, C.L.; Schneider, D.L.; Barrett-Connor, E.; Sartoris, D.J. Hand ultrasound for osteoporosis screening in postmenopausal women. Osteoporos. Int. 2000, 11, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Pirastu, R.; Comba, P.; Iavarone, I.; Zona, A.; Conti, S.; Minelli, G.; Manno, V.; Mincuzzi, A.; Minerba, S.; Forastiere, F.; et al. Environment and health in contaminated sites: The case of Taranto, Italy. J. Environ. Public Health 2013, 2013, 753719. [Google Scholar] [CrossRef] [PubMed]
- Bianco, G.; Zianni, R.; Anzillotta, G.; Vitacco, V.; Scrano, L.; Cataldi, T.R. Dibenzo-p-dioxins and dibenzofurans in human breast milk collected in the area of Taranto (Southern Italy): First case study. Anal. Bioanal. Chem. 2013, 405, 2405–2410. [Google Scholar] [CrossRef] [PubMed]
- Martuzzi, M.; Mitis, F.; Biggeri, A.; Terracini, B.; Bertollini, R. Environment and health status of the population in areas with high risk of environmental crisis in Italy. Epidemiol. Prev. 2002, 26 (Suppl. 6), 1–53. [Google Scholar]
- Comba, P.; Pirastu, R.; Conti, S.; De Santis, M.; Iavarone, I.; Marsili, G.; Mincuzzi, A.; Minelli, G.; Manno, V.; Minerba, S.; et al. Environment and health in Taranto, southern Italy: Epidemiological studies and public health recommendations. Epidemiol. Prev. 2012, 36, 305–320. [Google Scholar] [PubMed]
- Bruni, A.; Gianicolo, E.A.; Vigotti, M.A.; Faustini, A. Chronic obstructive pulmonary disease (COPD) prevalence in Brindisi Province (Southern Italy) for the years 2005–2009. Epidemiol. Prev. 2014, 38, 108–115. [Google Scholar] [PubMed]
- Chang, K.H.; Chang, M.Y.; Muo, C.H.; Wu, T.N.; Hwang, B.F.; Chen, C.Y.; Lin, T.H.; Kao, C.H. Exposure to air pollution increases the risk of osteoporosis: A nationwide longitudinal study. Medicine 2015, 94, e733. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. WHO Study Group. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Hartl, F.; Tyndall, A.; Kraenzlin, M.; Bachmeier, C.; Gückel, C.; Senn, U.; Hans, D.; Theiler, R. Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: Results of the Basel Osteoporosis Study. J. Bone Miner. Res. 2002, 17, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Argentiero, A.; Neglia, C.; Peluso, A.; Di Rosa, S.; Ferrarese, A.; Di Tanna, G.; Caiaffa, V.; Benvenuto, M.; Cozma, A.; Chitano, G.; et al. The Ability of Lumbar Spine DXA and Phalanx QUS to Detect Previous Fractures in Young Thalassemic Patients with Hypogonadism, Hypothyroidism, Diabetes, and Hepatitis-B: A 2-Year Subgroup Analysis From the Taranto Area of Apulia Region. J. Pediatr. Hematol. Oncol. 2013, 35, e260–e264. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.H.; Venners, S.A.; Terwedow, H.A.; Feng, Y.; Niu, T.; Li, Z.; Laird, N.; Brain, J.D.; Cummings, S.R.; Bouxsein, M.L.; et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am. J. Clin. Nutr. 2006, 83, 146–154. [Google Scholar] [PubMed]
- Castro, J.P.; Joseph, L.A.; Shin, J.J.; Arora, S.K.; Nicasio, J.; Shatzkes, J.; Raklyar, I.; Erlikh, I.; Pantone, V.; Bahtiyar, G.; et al. Differential effect of obesity on bone mineral density in White, Hispanic and African American women: A cross sectional study. Nutr. Metab. 2005, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R. Relationships among body mass, its components, and bone. Bone 2002, 31, 547–555. [Google Scholar] [CrossRef]
- Kameda, T.; Mano, H.; Yuasa, T.; Mori, Y.; Miyazawa, K.; Shiokawa, M.; Nakamaru, Y.; Hiroi, E.; Hiura, K.; Kameda, A.; et al. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J. Exp. Med. 1997, 186, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Goulding, A.; Taylor, R.W.; Jones, I.E.; McAuley, K.A.; Manning, P.J.; Williams, S.M. Overweight and obese children have low bone mass and area for their weight. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.J.; Liu, Y.J.; Liu, P.Y.; Hamilton, J.; Recker, R.R.; Deng, H.W. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Magni, P.; Dozio, E.; Galliera, E.; Ruscica, M.; Corsi, M.M. Molecular aspects of adipokine-bone interactions. Curr. Mol. Med. 2010, 10, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Scherer, P.E. Adipose tissue: From lipid storage compartment to endocrine organ. Diabetes 2006, 55, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Greco, E.A.; Fornari, R.; Rossi, F.; Santiemma, V.; Prossomariti, G.; Annoscia, C.; Aversa, A.; Brama, M.; Marini, M.; Donini, L.M.; et al. Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int. J. Clin. Pract. 2010, 64, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Kotzki, P.O.; Buyck, D.; Hans, D.; Thomas, E.; Bonnel, F.; Favier, F.; Meunier, P.J.; Rossi, M. Influence of fat on ultrasound measurements of the Os calcis. Calcif. Tissue Int. 1994, 54, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Cadossi, R.; de Terlizzi, F.; Cane, V.; Fini, M.; Wuster, C. Assessment of bone architecture with ultrasonometry: Experimental and clinical experience. Horm. Res. 2000, 54 (Suppl. 1), 9–18. [Google Scholar] [CrossRef] [PubMed]
- Sukumar, D.; Schlussel, Y.; Riedt, C.S.; Gordon, C.; Stahl, T.; Shapses, S.A. Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos. Int. 2011, 22, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Biino, G.; Casula, L.; De Terlizzi, F.; Adamo, M.; Vaccargiu, S.; Francavilla, M.; Loi, D.; Casti, A.; Atzori, M.; Cosso, M.; et al. Genetic architecture of hand quantitative ultrasound measures: A population-based study in a Sardinian genetic isolate. Bone 2010, 46, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.V.; Sellmeyer, D.E.; Strotmeyer, E.S.; Tylavsky, F.A.; Feingold, K.R.; Resnick, H.E.; Shorr, R.I.; Nevitt, M.C.; Black, D.M.; Cauley, J.A.; et al. Diabetes and bone loss at the hip in older black and white adults. J. Bone Miner. Res. 2005, 20, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Leslie, W.D.; Rubin, M.R.; Schwartz, A.V.; Kanis, J.A. Type 2 diabetes and bone. J. Bone Miner. Res. 2012, 27, 2231–2237. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, C.J.; Jamal, S.A.; Beck, T.J.; Khaled, A.S.; Adachi, J.D.; Brown, J.P.; Davison, K.S. Evidence for impaired skeletal load adaptation among Canadian women with type 2 diabetes mellitus: Insight into the BMD and bone fragility paradox. Metabolism 2013, 62, 1401–1405. [Google Scholar] [CrossRef] [PubMed]
- Knott, L.; Bailey, A.J. Collagen cross-links in mineralizing tissues: A review of their chemistry, function, and clinical relevance. Bone 1998, 22, 181–187. [Google Scholar] [CrossRef]
- Tao, B.; Liu, J.M.; Zhao, H.Y.; Sun, L.H.; Wang, W.Q.; Li, X.Y.; Ning, G. Differences between measurements of bone mineral densities by quantitative ultrasound and dual-energy X-ray absorptiometry in type 2 diabetic postmenopausal women. J. Clin. Endocrinol. Metab. 2008, 93, 1670–1675. [Google Scholar] [CrossRef] [PubMed]
- Di Somma, C.; Rubino, M.; Faggiano, A.; Vuolo, L.; Contaldi, P.; Tafuto, N.; Andretti, M.; Savastano, S.; Colao, A. Spinal deformity index in patients with type 2 diabetes. Endocrine 2013, 43, 651–658. [Google Scholar] [CrossRef] [PubMed]
Variables | Osteoporotic | Osteopenic | Normal | p-Value |
---|---|---|---|---|
N | 1306 | 3064 | 539 | |
Age, years | 70.3 ± 8.6 | 62.8 ± 8.3 | 54.9 ± 7.1 | <0.001 |
Weight, kg | 71.2 ± 12.9 | 69.9 ± 12.4 | 66.9 ± 12.3 | <0.001 |
Height, cm | 1.55 ± 0.07 | 1.57 ± 0.07 | 1.59 ± 0.06 | <0.001 |
BMI (kg/cm2) | 29.84 ± 5.56 | 28.64 ± 5.19 | 26.71 ± 4.87 | <0.001 |
AD-SoS, (m/s) | 1842.2 ± 60.7 | 1967.5 ± 46.5 | 2087.3 ± 44.1 | <0.001 |
Phalangeal T-Score | −4.22 ± 0.92 | −2.17 ± 0.59 | −0.43 ± 0.50 | <0.001 |
Smoking, yes (%) | 79 (6.09) | 282 (9.23) | 24 (13.81) | <0.001 |
Alcool, yes (%) | 389 (29.78) | 774 (25.26) | 108 (20.12) | <0.01 |
Hip fractures, n (%) | 45 (3.46) | 34 (1.12) | 2 (0.30) | <0.001 |
Vertebral fractures, n (%) | 29 (4.02) | 17 (0.55) | 3 (0.90) | <0.01 |
Wrist fractures, n (%) | 48 (6.65) | 43 (2.53) | 2 ( 0.60) | <0.001 |
Other fractures, n (%) | 109 (15.10) | 142 (8.35) | 5 (1.5) | <0.001 |
Parental fractures, n (%) | 159 (12.19) | 499 (16.28) | 97 (18.02) | <0.005 |
Obesity, n (%) | 565 (43.35) | 1082 (35.33) | 110 (20.42) | <0.001 |
Hypertension, n (%) | 722 (55.26) | 1449 (47.38) | 178 (33.03) | <0.001 |
Type 1 Diabetes | 54 (14.96) | 46 (1.5) | 6 (1.11) | <0.001 |
Type 2 Diabetes | 138 (10.57) | 239 (7.8) | 21 (3.9) | <0.001 |
Dislipidemia, n (%) | 264 (20.22) | 621 (20.28) | 50 (9.31) | 0.001 |
Cardiovascular diseases, n (%) | 146 (11.22) | 236 (7.70) | 24 (4.50) | <0.001 |
Rheumatic diseases, n (%) | 84 (6.37) | 144 (4.70) | 27 (5.11) | 0.238 |
Previous or current use of inducing-osteoporosis drugs, n (%) | 233 (17.87) | 319 (18.75) | 118 (21.92) | 0.285 |
Previous or current use of antifracturative drugs, n (%) | 541 (41.41) | 827 (27.04) | 87 (16.22) | <0.001 |
Moderate physical activity, yes (%) | 398 (30.47) | 1275 (41.68) | 230 (42.64) | <0.001 |
Regular physical activity, yes (%) | 13 (0.97) | 104 (3.43) | 29 (5.41) | <0.001 |
Total physical activity, yes (%) | 398 (30.5) | 1275 (41.6) | 232 (43.11) | <0.001 |
Variables | OR (95% CI) | p-Value | Adjusted OR 1 (95% CI) | p-Value |
---|---|---|---|---|
Type 1 Diabetes | 2.94 (2.00–4.33) | <0.001 | 2.49 (1.63–3.82) | <0.01 |
Type 2 Diabetes | 1.52 (1.22–1.89) | <0.001 | 1.15 (0.90–1.46) | 0.229 |
Cardiovascular diseases | 1.63 (1.23–2.17) | <0.01 | 0.93 (0.67–1.28) | 0.645 |
Hypertension | 1.51 (1.27–1.79) | <0.001 | 0.95 (0.78–1.15) | 0.596 |
Obesity | 1.56 (1.31–1.86) | <0.001 | 1.46 (1.20–1.78) | <0.001 |
Variable | Healthy Weight | Overweight | Grade 1 Obesity | Grade 2 Obesity | Grade 3 Obesity |
---|---|---|---|---|---|
(BMI < 25) | 25 ≤ BMI < 30 | 30 ≤ BMI < 35 | 35 ≤ BMI < 40 | BMI ≥ 40 | |
N | 1367 | 1931 | 1088 | 396 | 127 |
Age (years) 1 | 61.6 ± 9.8 | 64.3 ± 9.8 | 65.0 ± 8.8 | 64.7 ± 9.0 | 64.9 ± 8.2 |
Weight (kg) 1 | 57.05 ± 6.21 | 67.75 ± 6.50 | 77.56 ± 7.29 | 86.71 ± 8.03 | 102.50 ± 12.50 |
Height (m) 1 | 1.58 ± 0.06 | 1.57 ± 0.06 | 1.55 ± 0.07 | 1.53 ± 0.06 | 1.53 ± 0.06 |
BMI ( kg/m2) 1 | 22.75 ± 1.75 | 27.46 ± 1.44 | 32.03 ± 1.39 | 36.89 ± 1.42 | 43.62 ± 3.54 |
AD-SoS (m/s) 1 | 1980.9 ± 93.2 | 1947.3 ± 92.8 | 1939.3 ± 88.0 | 1916.6 ± 97.0 | 1921.3 ± 86.1 |
Hypertension (n (%)) 1 | 401 (29.4) | 907 (47.0) | 627 (57.7) | 260 (65.9) | 97 (76.5) |
Diabetes type 1 and 2 (n (%)) 1 | 76 (5.6) | 164 (8.5) | 147 (13.6) | 85 (21.5) | 31 (24.5) |
Type 1 Diabetes (n (%)) 1 | 11 (0.80) | 29 (1.50) | 39 (3.58) | 19 (4.80) | 8 (6.30) |
Type 2 Diabetes (n (%)) 1 | 51 (3.73) | 149 (7.72) | 121 (11.12) | 5 (14.90) | 18 (14.17) |
Dislipidemia, (n (%)) 1 | 192 (14.1) | 378 (19.6) | 230 (21.2) | 87 (22.0) | 31 (24.5) |
Cardiovascular diseases (n (%)) 1 | 76 (5.6) | 144 (7.5) | 109 (10.1) | 44 (11.2) | 19 (15.3) |
Rheumatic diseases (n (%)) 2 | 84 (6.2) | 93 (4.83) | 52 (4.8) | 18 (4.7) | 7( 6.1) |
BMI Category | OR 1 | p-Value | Adjusted OR 1,2 | p-Value |
---|---|---|---|---|
Optimal weight | 1 | 1 | ||
Overweight | 1.52 (1.2–1.93) | <0.001 | 1.22 (0.93–1.6) | 0.151 |
Grade 1 obesity | 1.85 (1.43–2.39) | <0.0001 | 1.4 (1.05–1.87) | <0.05 |
Grade 2 obesity | 2.34 (1.67–3.27) | <0.0001 | 1.94 (1.27–2.97) | <0.01 |
Grade 3 obesity | 2.76 (1.75–4.35) | <0.0001 | 2.51 (1.38–4.56) | <0.01 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neglia, C.; Argentiero, A.; Chitano, G.; Agnello, N.; Ciccarese, R.; Vigilanza, A.; Pantile, V.; Argentiero, D.; Quarta, R.; Rivezzi, M.; et al. Diabetes and Obesity as Independent Risk Factors for Osteoporosis: Updated Results from the ROIS/EMEROS Registry in a Population of Five Thousand Post-Menopausal Women Living in a Region Characterized by Heavy Environmental Pressure. Int. J. Environ. Res. Public Health 2016, 13, 1067. https://doi.org/10.3390/ijerph13111067
Neglia C, Argentiero A, Chitano G, Agnello N, Ciccarese R, Vigilanza A, Pantile V, Argentiero D, Quarta R, Rivezzi M, et al. Diabetes and Obesity as Independent Risk Factors for Osteoporosis: Updated Results from the ROIS/EMEROS Registry in a Population of Five Thousand Post-Menopausal Women Living in a Region Characterized by Heavy Environmental Pressure. International Journal of Environmental Research and Public Health. 2016; 13(11):1067. https://doi.org/10.3390/ijerph13111067
Chicago/Turabian StyleNeglia, Cosimo, Alberto Argentiero, Giovanna Chitano, Nadia Agnello, Roberta Ciccarese, Antonella Vigilanza, Valerio Pantile, Domenico Argentiero, Raffaele Quarta, Matteo Rivezzi, and et al. 2016. "Diabetes and Obesity as Independent Risk Factors for Osteoporosis: Updated Results from the ROIS/EMEROS Registry in a Population of Five Thousand Post-Menopausal Women Living in a Region Characterized by Heavy Environmental Pressure" International Journal of Environmental Research and Public Health 13, no. 11: 1067. https://doi.org/10.3390/ijerph13111067
APA StyleNeglia, C., Argentiero, A., Chitano, G., Agnello, N., Ciccarese, R., Vigilanza, A., Pantile, V., Argentiero, D., Quarta, R., Rivezzi, M., Di Tanna, G. L., Di Somma, C., Migliore, A., Iolascon, G., Gimigliano, F., Distante, A., & Piscitelli, P. (2016). Diabetes and Obesity as Independent Risk Factors for Osteoporosis: Updated Results from the ROIS/EMEROS Registry in a Population of Five Thousand Post-Menopausal Women Living in a Region Characterized by Heavy Environmental Pressure. International Journal of Environmental Research and Public Health, 13(11), 1067. https://doi.org/10.3390/ijerph13111067