Identification of Potential Sources of Mercury (Hg) in Farmland Soil Using a Decision Tree Method in China
Abstract
:1. Introduction
2. Data Collection and Methods
2.1. Hg Concentrations in Farmland Soil in China
2.2. Backgrounds of Soil Hg Concentrations and Statistic Data on Provincial Scale
2.3. Decision Tree Method to Drive Potential Hg Sources in Soil on Provincial Scale
3. Results and Discussion
3.1. Statistic Information of Hg Concentration in Farmland Soil
3.2. The Influence of Initial Hg Concentration in Parent Materials on Hg Concentration in Farmland Soil
3.3. The Influence of Human Activities on Hg Accumulation in Farmland Soil
3.3.1. Description of the Decision Tree
3.3.2. Evaluation of the Relative Importance of Factors on Hg Accumulation
3.3.3. Decision Rules for Hg Accumulation in Farmland Soil
3.4. Limitations and Uncertainties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Valenti, T.W.; Cherry, D.S.; Neves, R.J.; Schmerfeld, J. Acute and chronic toxicity of mercury to early life stages of the rainbow mussel, Villosa iris (Bivalvia: Unionidae). Environ. Toxicol. Chem. 2005, 24, 1242–1246. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.E.; Theodorakos, P.M.; Fey, D.L.; Krabbenhoft, D.P. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ. Geochem. Health 2015, 37, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Huang, Z.; Pan, X.D. Exposure assessment of heavy metals (Cd, Hg, and Pb) by the intake of local foods from Zhejiang, China. Environ. Geochem. Health 2014, 36, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Pereira, M.E.; Duarte, A.C.; Ajmone-Marsan, F.; Davidson, C.M.; Grcman, H.; Hossack, I.; Hursthouse, A.S.; Ljung, K.; Martini, C.; et al. Mercury in urban soils: A comparison of local spatial variability in six European cities. Sci. Total Environ. 2006, 368, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Barkay, T.; Wagner-Dobler, I. Microbial transformations of mercury: Potentials, challenges, and achievements in controlling mercury toxicity in the environment. In Advances in Applied Microbiology; Laskin, A.I., Bennett, J.W., Gadd, G.M., Eds.; Academic Press: New York, NY, USA, 2005; Volume 57, pp. 1–52. [Google Scholar]
- Randall, P.; Chattopadhyay, S. Influence of ph and oxidation-reduction potential (Eh) on the dissolution of mercury-containing mine wastes from the sulphur bank mercury mine. Miner. Metallur. Process. 2004, 21, 93–98. [Google Scholar]
- Shai, N.N. The Heavy Metals Distribution Characteristics and Risky Evaluations of Farmland Soils-Crops around Different Types of Chemical Industrial Park. Master’s Thesis, Nanjing Agriculture University, Nanjing, China, 9 June 2010. [Google Scholar]
- Bavec, S.; Biester, H.; Gosar, M. Urban sediment contamination in a former Hg mining district, Idrija, Slovenia. Environ. Geochem. Health 2014, 36, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Mirlean, N.; Baisch, P.; Machado, I.; Shumilin, E. Mercury contamination of soil as the result of long-term phosphate fertilizer production. Bull. Environ. Contam. Toxicol. 2008, 81, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Hagan, N.; Robins, N.; Hsu-Kim, H.; Halabi, S.; Gonzales, R.D.E.; Ecos, E.; Richter, D.; Vandenberg, J. Mercury hair levels and factors that influence exposure for residents of Huancavelica, Peru. Environ. Geochem. Health 2015, 37, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Henriques, B.; Rodrigues, S.M.; Coelho, C.; Cruz, N.; Duarte, A.C.; Romkens, P.F.A.M.; Pereira, E. Risks associated with the transfer of toxic organo-metallic mercury from soils into the terrestrial feed chain. Environ. Int. 2013, 59, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Seigneur, C.; Vijayaraghavan, K.; Lohman, K.; Karamchandani, P.; Scott, C. Global source attribution for mercury deposition in the United States. Environ. Sci. Technol. 2004, 38, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Tysklind, M.; Hao, F.; Ouyang, W.; Chen, S.; Lin, C. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. J. Soils Sediments 2013, 13, 720–729. [Google Scholar] [CrossRef]
- Dai, Z.H.; Feng, X.B.; Zhang, C.; Wang, J.F.; Jiang, T.M.; Xiao, H.J.; Li, Y.; Wang, X.; Qiu, G.L. Assessing anthropogenic sources of mercury in soil in Wanshan Hg mining area, Guizhou, China. Environ. Sci. Pollut. Res. 2013, 20, 7560–7569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Lin, F.F.; Wong, M.T.; Feng, X.L.; Wang, K. Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang county, China. Environ. Monit. Assess. 2009, 154, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Wu, L.; Bi, X.; Ren, L.; Wang, L.; Ma, Z.; Bao, Z.; Li, Z. Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban-rural topsoils in Wuhan, Central China. Environ. Geochem. Health 2010, 32, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.G.; Li, Q.S.; Fang, J.H.; He, B.Y.; Fu, H.B.; Tong, Z.J. Identification of heavy metal sources in the reclaimed farmland soils of the pearl river estuary in China using a multivariate geostatistical approach. Ecotoxicol. Environ. Saf. 2014, 105, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhao, Y.; Zhao, X.; Wang, Y.; Deng, W. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China. Ecotoxicol. Environ. Saf. 2014, 108, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cheng, H. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region. Environ. Sci. Technol. 2013, 47, 3752–3760. [Google Scholar] [CrossRef] [PubMed]
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Lin, F.F.; Jiang, Y.G.; Wang, K.; Wong, M.T.F. Assessing soil Cu content and anthropogenic influences using decision tree analysis. Environ. Pollut. 2008, 156, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.A.; Matias, J.M.; Andrade, M.L.; Reigosa, M.J.; Covelo, E.F. Classification and regression trees (CARTS) for modelling the sorption and retention of heavy metals by soil. J. Hazard. Mater. 2009, 167, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Hartman, J.S.; Weisberg, P.J.; Pillai, R.; Ericksen, J.A.; Kuiken, T.; Lindberg, S.E.; Zhang, H.; Rytuba, J.J.; Gustin, M.S. Application of a rule-based model to estimate mercury exchange for three background biomes in the continental United States. Environ. Sci. Technol. 2009, 43, 4989–4994. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Chen, D.M.; Zhong, T.Y.; Zhang, X.M.; Cheng, M.; Li, X.H. Assessment of cadmium (Cd) concentration in arable soil in China. Environ. Sci. Pollut. Res. 2015, 22, 4932–4941. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhong, T.; Chen, D.; Zhang, X. Spatial dsitrbution of mercury (Hg) concentration in agricultural soil and its risk assessment on food safety in China. Sustainbility 2016, 8, 12. [Google Scholar]
- Ehrlich, H.L.; Newman, D.K. Geomicrobiology, 5th ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 265. [Google Scholar]
- Rytuba, J.J. Mercury from mineral deposits and potential environmental impact. Environ. Geol. 2003, 43, 13. [Google Scholar]
- China Environmental Monitoring Center. Chinese Soil Element Background Concentent; Chinese Environment Science Press: Beijing, China, 1990. [Google Scholar]
- Li, M.; Xi, X.; Xiao, G.; Cheng, H.; Yang, Z.; Zhou, G.; Ye, J.; Li, Z. National multi-purpose regional geochemical survey in China. J. Geochem. Explor. 2014, 139, 21–30. [Google Scholar] [CrossRef]
- Li, P.; Wang, X.; Allinson, G.; Li, X.; Xiong, Z. Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. J. Hazard. Mater. 2009, 161, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.F.; Wang, Z.W.; Meng, Q.W.; Hu, P.P.; Hou, Y.Y.; Wang, Z.L.; Zhang, H. Contents and health risk assessment of heavy metals in wheat and rice grown in Tianjin sewage irrigation area, China. J. Agro-Environ. Sci. 2015, 34, 7. [Google Scholar]
- Zahra, A.; Alireza, M.; Jafar, N.; Mehdi, H.; Masoud, Y.; Mehdi, A.; AmirHossein, M. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2010, 160, 83–89. [Google Scholar]
- Zhao, X.L.; Wang, D.Y. Mercury in some chemical fertilizers and the effect of calcium superphosphate on mercury uptake by cron seedlings (Zea mays L.). J. Environ. Sci. (China) 2010, 22, 1184–1188. [Google Scholar] [CrossRef]
- Chen, J.; Liu, G.J.; Kang, Y.; Wu, B.; Sun, R.Y.; Zhou, C.C.; Wu, D. Coal utilization in China: Environmental impacts and human health. Environ. Geochem. Health 2014, 36, 735–753. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; López, H.; Sánchez, M.; López, M.C. The effect of industrial pollution on mercury levels in water, soil, and sludge in the coastal area of Motril, Southeast Spain. Bull. Environ. Contam. Toxicol. 1993, 24, 5. [Google Scholar] [CrossRef]
- Wang, X.; He, M.; Xie, J.; Xi, J.; Lu, X. Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China). J. Soils Sediments 2010, 10, 827–837. [Google Scholar] [CrossRef]
- Xu, Y.N.; Ke, H.L.; Zhao, A.N.; Liu, R.P.; Zhang, J.H. Assessment of heavy metals contamination of farmland soils in some gold mining area of Xiao Qinling. Chin. J. Soil Sci. 2007, 4, 024. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2013.
- Zhang, X.Y.; Jiang, H.; Jin, J.X.; Xu, X.H.; Zhang, Q.X. Analysis of acid rain patterns in Northeastern China using a decision tree method. Atmos. Environ. 2012, 46, 590–596. [Google Scholar] [CrossRef]
- DeFries, R.S.; Chan, J.C.W. Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sens. Environ. 2000, 74, 503–515. [Google Scholar] [CrossRef]
- Geng, J.; Wang, W.; Wen, C.; Yi, Z.; Tang, S. Concentrations and distributions of selenium and heavy metals in Hainan paddy soil and assessment of ecological security. Acta Ecol. Sin. 2012, 32, 3477–3486. [Google Scholar] [CrossRef]
- Chen, N.; Lai, W.P.; Xu, M.; Zheng, C. The data process and results of 11 kinds of element in soil of Chongqing. Environ. Protect. Chongqing 1982, 18–37. [Google Scholar]
- Zhou, X.Y.; Li, P.J.; Sun, H.Y. Status and cause of heavy metal pollution of the soils in typical industrial and mining areas and wastewater irrigation zones in Liaoning. Soil 2006, 38, 192–195. [Google Scholar]
- Zheng, N.; Wang, Q.; Liu, J.; Wang, Y.; Zhang, Z. Spatial variation of heavy metals contamination in the soil and vegetables of Huludao city. Environ. Sci. 2009, 30, 2071–2076. [Google Scholar]
- Liu, Y.Y.; Liu, H.F. Heavy metal pollution and prohibition in the irrigated area by wastewater in Miquan, Xinjiang. J. Changji Univ. 2007, 7, 45–48. [Google Scholar]
- Wang, X.J. Distribution of Several Soil Heavy Metal Elements Content and Pollution Evaluation in Changji Typical Model Region, Xinjiang. Master’s Thesis, Xinjiang Agricultural University, Ürümqi, China, 10 June 2011. [Google Scholar]
- Wang, T.; Wang, J.; Sun, H.W.; Zhang, Y.F. Contamniation of cadmium and mercury in farmland of Tianjin and extration methods for predicting their bioavailability. J. Agro-Environ. Sci. 2012, 31, 119–124. [Google Scholar]
- Hu, M. Distribution characteristics and pollution assessment of heavy metals in agricultural soil of eastern guanzhong—A case study of Fuping county. J. Gansu Agric. Univ. 2013, 48, 99–104. [Google Scholar]
- Shao, X.; Cheng, H.; Duan, X.; Lin, C. Concentrations and chemical forms of heavy metals in agricultural soil near the world’s largest and oldest tungsten mine located in China. Chem. Spec. Bioavailab. 2013, 25, 125–132. [Google Scholar] [CrossRef]
- Salomons, W. Environmental impact of metals derived from mining activities: Processes, predictions, prevention. J. Geochem. Explor. 1995, 52, 5–23. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.X.; Streets, D.G.; Hao, J.M.; Chan, M.; Jiang, J.K. Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environ. Sci. Technol. 2006, 40, 5312–5318. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Liao, B.; Shu, W.; Yang, B.; Lan, C. Pollution assessment and potential sources of heavy metals in agricultural soils around four Pb/Zn mines of Shaoguan city, China. Soil Sediment Contam. 2015, 24, 76–89. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. Statistical Bulletin of the National Economic and Social Development in 2013. Available online: http://www.stats.gov.cn/tjsj/zxfb/201402/t20140224_514970.html (accessed on 4 September 2016).
- Zhang, L.; Wong, M.H. Environmental mercury contamination in China: Sources and impacts. Environ. Int. 2007, 33, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Tang, W.; Deng, H.; Li, M.; Yu, M.; Li, Y. Fuzzy synthetic assessment of heavy metal contamination in crop-reclaimed Mn minelands. J. Guangxi Norm. Univ. 2009, 27, 5. [Google Scholar]
- Liu, X.Y.; Xie, S.Y.; Wei, X.G.; Hao, X.D. Evaluation on the mercury pollution of main vegetable producing areas in Guangzhou city. Hubei Agric. Sci. 2011, 50, 3069–3070. [Google Scholar]
- Patel, B.R.; Rana, K.K. A survey on decision tree algorithm for classification. Int. J. Eng. Dev. Res. 2014, 2, 5. [Google Scholar]
Provinces, Municipalities, and Districts | Number of Studies | Investigated Area (km2) | Number of Soil Samples | Area-Weighted Hg Concentration in Farmland Topsoil (15 or 20 cm) |
---|---|---|---|---|
Anhui | 16 | 10,329 | 9780 | 0.081 |
Beijing | 10 | 8374 | 1378 | 0.118 |
Fujian | 10 | 17,643 | 1508 | 0.214 |
Gansu | 20 | 6771 | 691 | 0.053 |
Guangdong | 27 | 23,885 | 2076 | 0.180 |
Guangxi | 9 | 14,752 | 662 | 0.277 |
Guizhou | 24 | 4004 | 3449 | 0.252 |
Henan | 7 | 14,882 | 747 | 0.058 |
Hebei | 12 | 3068 | 1552 | 0.073 |
Heilongjiang | 11 | 141,087 | 25,519 | 0.035 |
Hubei | 13 | 2839 | 1340 | 0.125 |
Hunan | 19 | 3218 | 1211 | 0.271 |
Jilin | 7 | 14,500 | 2188 | 0.099 |
Jiangsu | 27 | 84,871 | 31,211 | 0.099 |
Jiangxi | 7 | 14,281 | 10,611 | 0.120 |
Liaoning | 21 | 8242 | 7989 | 0.117 |
Neimeng | 6 | 10,687 | 2012 | 0.034 |
Ningxia | 2 | 328 | 31 | 0.017 |
Qinghai | 2 | 282 | 207 | 0.043 |
Shandong | 23 | 46,479 | 16,075 | 0.071 |
Shanxi | 16 | 2624 | 2643 | 0.100 |
Shaanxi | 17 | 3470 | 1385 | 0.209 |
Shanghai | 6 | 451 | 933 | 0.157 |
Sichuan | 19 | 6631 | 2063 | 0.152 |
Tianjin | 7 | 449 | 295 | 0.554 |
Xinjiang | 11 | 1242 | 666 | 0.375 |
Yunnan | 12 | 1311 | 608 | 0.124 |
Zhejiang | 21 | 26,544 | 5326 | 0.133 |
Chongqing | 6 | 2640 | 1138 | 0.060 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, T.; Chen, D.; Zhang, X. Identification of Potential Sources of Mercury (Hg) in Farmland Soil Using a Decision Tree Method in China. Int. J. Environ. Res. Public Health 2016, 13, 1111. https://doi.org/10.3390/ijerph13111111
Zhong T, Chen D, Zhang X. Identification of Potential Sources of Mercury (Hg) in Farmland Soil Using a Decision Tree Method in China. International Journal of Environmental Research and Public Health. 2016; 13(11):1111. https://doi.org/10.3390/ijerph13111111
Chicago/Turabian StyleZhong, Taiyang, Dongmei Chen, and Xiuying Zhang. 2016. "Identification of Potential Sources of Mercury (Hg) in Farmland Soil Using a Decision Tree Method in China" International Journal of Environmental Research and Public Health 13, no. 11: 1111. https://doi.org/10.3390/ijerph13111111
APA StyleZhong, T., Chen, D., & Zhang, X. (2016). Identification of Potential Sources of Mercury (Hg) in Farmland Soil Using a Decision Tree Method in China. International Journal of Environmental Research and Public Health, 13(11), 1111. https://doi.org/10.3390/ijerph13111111