Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Study Design
2.3. Dietary Survey
2.4. Measurement of Blood Biochemical Parameters
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of the Patients at Baseline
3.2. Dietary Intake of Energy and Nutrients
3.3. Effects of Brazilian Green Propolis on Glucose Metabolism
3.4. Effects of Brazilian Green Propolis on Antioxidant Function and Cytokines
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
DM | diabetes mellitus |
T2DM | type 2 diabetes mellitus |
BMI | body mass index |
WHR | waist to hip ratio |
ELISA | enzyme-linked immunosorbent assay |
FRAP | ferric-reducing antioxidant power |
SOD | superoxide dismutase |
GSH-Px | glutathione peroxidase |
GSH | glutathione |
MDA | malondialdehyde |
ox-LDL | oxidized low density lipoprotein |
LDH | lactate dehydrogenase |
IL-1β | interleukin-1β |
IL-6 | interleukin-6 |
TNF-α | tumor necrosis-factor α |
ROS | reactive oxygen species |
References
- World Health Organization. Prevention of diabetes mellitus. In Report of a WHO Study Group; World Health Organization Technical Report: World Health Organization, Geneva, Switzerland, 1994. [Google Scholar]
- International Diabetes Federation. IDF Diabetes Atlas, 6th ed.; International Diabetes Federation: Brussels, Belgium, 2014; Available online: http://www.idf.org/diabetesatlas (accessed on 3 March 2016).
- AL-Waili, N.; Al-Ghamdi, A.; Ansari, J.M.; Al-Attal, Y.; Salom, K. Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures. Int. J. Med. Sci. 2012, 9, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.C.; Cheung, K.W.; Sze, D.M. The immunomodulatory and anticancer properties of propolis. Clin. Rev. Allergy Immunol. 2013, 44, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, J.W.; Vohora, S.B.; Sharma, K.; Shah, S.A.; Naqvi, S.A.; Dandiya, P.C. Antibacterial, antifungal, antiamoebic, antiinflammatory, antipyretic studies on propolis bee products. J. Ethnopharmacol. 1991, 35, 77–82. [Google Scholar] [CrossRef]
- Gekker, G.; Hu, S.; Spivak, M.; Lokensgard, J.R.; Peterson, P.K. Anti-HIV-1 activity of propolis in CD4(+) lymphocyte and microglial cell cultures. J. Ethnopharmacol. 2005, 102, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Orsi, R.O.; Fernandes, A.; Bankova, V.; Sforcin, J.M. The effects of Brazilian and Bulgarian propolis in vitro against Salmonella typhi and their synergism with antibiotics acting on the ribosome. Nat. Prod. Res. 2012, 26, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M. Propolis and the immune system: A review. J. Ethnopharmacol. 2007, 113, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, C.P.; Wang, K.; Li, G.Q.; Hu, F.L. Recent advances in the chemical composition of propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [PubMed]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Swierczek-Zieba, G. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 2013, 19, 78–101. [Google Scholar] [PubMed]
- Volpi, N. Separation of flavonoids and phenolic acids from propolis by capillary zone electrophoresis. Electrophoresis 2004, 25, 1872–1878. [Google Scholar] [PubMed]
- Zhu, W.; Li, Y.H.; Chen, M.L.; Hu, F.L. Protective effects of Chinese and Brazilian propolis treatment against hepatorenal lesion in diabetic rats. Hum. Exp. Toxicol. 2011, 30, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Fukui, M.; Tanaka, M.; Senmaru, T.; Iwase, H.; Yamazaki, M.; Aoi, W.; Inui, T.; Nakamura, N.; Marunaka, Y. Effect of Brazilian green propolis in patients with type 2 diabetes: A double-blind randomized placebo-controlled study. Biomed. Rep. 2015, 3, 355–360. [Google Scholar] [PubMed]
- Zhang, N.N.; Wu, J.Q.; Gao, W.N.; Wei, J.Y.; Pu, L.L.; Jiao, C.Y.; Guo, C.J.; Chang, H. The comparative study of oxidative stress in rats with diabetes mellitus by propolis from different origins. Chin. J. Food. Hyg. 2014, 1, 23–26. [Google Scholar]
- Li, Y.; Chen, M.; Xuan, H.; Hu, F. Effects of encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus rats. Evid.-Based. Compl. Alt. Med. 2012, 2012, 981896. [Google Scholar] [CrossRef] [PubMed]
- Institute of Nutrition and Food Safety, China Center for Disease Control and Prevention. China Food Composition 2009; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma as a measure of antioxidant power: FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Kunio, Y. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Levine, R.L.; Wehr, N.; Williams, J.A.; Stadtman, E.R.; Shacter, E. Determination of carbonyl groups in oxidized proteins. Methods. Mol. Biol. 2000, 99, 15–24. [Google Scholar] [PubMed]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456–480. [Google Scholar] [CrossRef] [PubMed]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, E.J.; Diamond-Stanic, M.K.; Marchionne, E.M. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med. 2011, 51, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, U.; Park, K.G. A systematic review of oxidative stress and safety of antioxidants in diabetes: Focus on islets and their defense. Diabetes Metab. J. 2013, 37, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Aouacheri, O.; Saka, S.; Krim, M.; Messaadia, A.; Maidi, I. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can. J. Diabetes 2015, 39, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B., 3rd. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.X.; Requena, J.R.; Jenkins, A.J.; Lyons, T.J.; Baynes, J.W.; Thorpe, S.R. The advanced glycation end product, nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J. Biol. Chem. 1996, 271, 9982–9986. [Google Scholar] [PubMed]
- Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999, 344, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Wells-Knecht, K.J.; Zyzak, D.V.; Litchfield, J.E.; Thorpe, S.R.; Baynes, J.W. Mechanism of autoxidative glycosylation: Identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 1995, 34, 3702–3709. [Google Scholar] [CrossRef] [PubMed]
- Ståhlman, M.; Fagerberg, B.; Adiels, M.; Ekroos, K.; Chapman, J.M.; Kontush, A.; Boren, J. Dyslipidemia, but not hyperglycemia and insulin resistance, is associated with marked alterations in the HDL lipidome in type 2 diabetic subjects in the DIWA cohort: Impact on small HDL particles. Biochim. Biophys. Acta 2013, 1831, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Dragan, S.; Andrica, F.; Serban, M.C.; Timar, R. Polyphenols-rich natural products for treatment of diabetes. Curr. Med. Chem. 2015, 22, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Palma-Duran, S.A.; Vlassopoulos, A.; Lean, M.; Govan, L.; Combet, E. Nutritional intervention and impact of polyphenol on glycohaemoglobin (HbA1c) in non-diabetic and type 2 diabetic subjects: Systematic review and meta-analysis. Crit. Rev. Food. Sci. Nutr. 2015. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Wu, J.; Wei, J.; Pu, L.; Guo, C.; Yang, J.; Yang, M.; Luo, H. Brazilian green propolis improves immune function in aged mice. J. Clin. Biochem. Nutr. 2014, 55, 7–10. [Google Scholar] [CrossRef] [PubMed]
- El-Awady, M.S.; El-Agamy, D.S.; Suddek, G.M.; Nader, M.A. Propolis protects against high glucose-induced vascular endothelial dysfunction in isolated rat aorta. J. Physiol. Biochem. 2014, 70, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Al-Hariri, M.; Eldin, T.G.; Abu-Hozaifa, B.; Elnour, A. Glycemic control and anti-osteopathic effect of propolis in diabetic rats. Diabetes Metab. Syndr. Obes. 2011, 4, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Chen, M.; Shou, Q.; Li, Y.; Hu, F. Biological activities of Chinese propolis and Brazilian propolis on streptozotocin-induced type 1 diabetes mellitus in rats. Evid.-Based. Compl. Alt. Med. 2011, 2011, 468529. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Hepburn, H.R.; Xuan, H.; Chen, M.; Daya, S.; Radloff, S.E. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus. Pharmacol. Res. 2005, 51, 147–152. [Google Scholar]
- Margetic, S. Inflammation and haemostasis. Biochem. Med. 2012, 22, 49–62. [Google Scholar] [CrossRef]
- Domingueti, C.P.; Dusse, L.M.; Carvalho, M.D.; de Sousa, L.P.; Gomes, K.B.; Fernandes, A.P. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J. Diabetes Complications. 2015, 30, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 2011, 1813, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Trehu, E.; Atkins, M.B.; Dinarello, C.A.; Mier, J.W. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: Induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood 1994, 83, 113–118. [Google Scholar] [PubMed]
- Bachiega, T.F.; Orsatti, C.L.; Pagliarone, A.C.; Sforcin, J.M. The effects of propolis and its isolated compounds on cytokine production by murine macrophages. Phytother. Res. 2012, 26, 1308–1313. [Google Scholar] [CrossRef] [PubMed]
- Adeva, M.; González-Lucán, M.; Seco, M.; Donapetry, C. Enzymes involved in l-lactate metabolism in humans. Mitochondrion 2013, 13, 615–629. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz, J.P.; González-Correa, J.A.; Guerrero, A.; de la Cuesta, F.S. Pharmacological approach to diabetic retinopathy. Diabetes Metab. Res. Rev. 2004, 20, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Fiume, L.; Manerba, M.; Vettraino, M.; Di Stefano, G. Inhibition of lactate dehydrogenase activity as an approach to cancer therapy. Future Med. Chem. 2014, 6, 429–445. [Google Scholar] [CrossRef] [PubMed]
Parameter | Control | Brazilian Green Propolis |
---|---|---|
Male | 14 | 18 |
Female | 18 | 15 |
Total | 32 | 33 |
Age (year) | 60.8 ± 8.6 | 59.5 ± 8.0 |
Body height (cm) | 164.8 ± 8.2 | 166.1 ± 7.9 |
Body weight (kg) | 73.9 ± 9.4 | 71.5 ± 10.3 |
WHR | 0.94 ± 0.06 | 0.92 ± 0.05 |
BMI (kg/m2) | 27.2 ± 3.4 | 25.8 ± 2.4 |
Glucose (mmol/L) | 8.5 ± 2.6 | 9.0 ± 3.0 |
Glycosylated hemoglobin (%) | 7.9 ± 1.5 | 8.2 ± 1.5 |
Insulin (uIU/mL) | 12.2 ± 3.8 | 13.8 ± 3.3 |
FRAP (mmol/L) | 0.68 ± 0.14 | 0.71 ± 0.11 |
SOD (U/mL) | 108.3 ± 26.1 | 110.1 ± 18.9 |
GSH-Px (U/L) | 193.7 ± 71.2 | 194.0 ± 54.4 |
GSH (g/L) | 19.7 ± 7.1 | 19.3 ± 7.2 |
MDA equivalents (nmol/mL) | 18.8 ± 6.5 | 16.4 ± 5.9 |
Parameter | Control | Brazilian Green Propolis |
---|---|---|
Energy (kcal) | 1549.5 ± 423.4 | 1666.8 ± 589.0 |
Protein (g) | 61.8 ± 18.7 | 62.8 ± 22.8 |
Lipids (g) | 46.5 ± 25.0 | 57.2 ± 26.2 |
Carbohydrates (g) | 226.6 ± 52.7 | 227.0 ± 81.3 |
Fiber (g) | 13.0 ± 5.3 | 10.9 ± 3.8 |
Cholesterol (mg) | 483.8 ± 227.8 | 470.5 ± 201.9 |
Retinol (μgRE) | 516.7 ± 307.4 | 453.0 ± 189.5 |
Thiamin (mg) | 0.8 ± 0.3 | 0.7 ± 0.3 |
Riboflavin (mg) | 0.9 ± 0.4 | 0.8 ± 0.3 |
Niacin (mg) | 11.5 ± 4.5 | 12.2 ± 5.6 |
Ascorbic acid (mg) | 104.2 ± 60.7 | 76.8 ± 36.8 * |
Tocopherol (mg) | 15.3 ± 12.6 | 14.9 ± 7.4 |
Potassium (mg) | 1933.6 ± 786.0 | 1769.1 ± 608.8 |
Sodium (mg) | 943.8 ± 658.9 | 1309.5 ± 897.5 |
Calcium (mg) | 569.2 ± 326.3 | 412.5 ± 184.8 * |
Iron (mg) | 20.7 ± 11.0 | 17.8 ± 6.4 |
Zinc (mg) | 8.9 ± 2.6 | 9.2 ± 3.3 |
Selenium (μg) | 50.7 ± 19.5 | 49.8 ± 18.4 |
Parameter | Control | Brazilian Green Propolis |
---|---|---|
Glucose (mmol/L) | 8.4 ± 2.4 | 9.3 ± 2.6 |
Glycosylated hemoglobin (%) | 7.6 ± 1.2 | 7.8 ± 1.3 |
Insulin (uIU/mL) | 13.7 ± 4.1 | 11.9 ± 4.4 |
Aldose reductase (ng/mL) | 0.62 ± 0.26 | 0.70 ± 0.23 |
Adiponectin (mg/L) | 0.73 ± 0.14 | 0.69 ± 0.16 |
Parameter | Control | Brazilian Green Propolis |
---|---|---|
FRAP (mmol/L) | 0.71 ± 0.14 | 0.73 ± 0.08 |
SOD (U/mL) | 102.8 ± 3.1 | 105.4 ± 2.9 |
GSH-Px (U/L) | 259.9 ± 68.3 | 289.7 ± 87.7 |
GSH (g/L) | 2.3 ± 0.9 | 6.3 ± 2.2 * |
Total polyphenols (mmol/L) | 199.9 ± 12.6 | 209.9 ± 16.9 * |
MDA (mmol/L) | 4.1 ± 1.1 | 4.0 ± 1.1 |
Ox-LDL (nmol/L) | 2.8 ± 0.7 | 3.0 ± 0.8 |
Carbonyls (nmol/mg·prot) | 0.59 ± 0.13 | 0.49 ± 0.13 * |
LDH (U/L) | 1446.7 ± 202.1 | 1329.1 ± 175.8 * |
IL-1β (pg/mL) | 18.7 ± 3.5 | 22.0 ± 4.5 * |
IL-6 (pg/mL) | 10.0 ± 5.0 | 18.1 ± 5.0 * |
TNF-α (pg/mL) | 20.7 ± 3.7 | 16.4 ± 9.1 * |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Pu, L.; Wei, J.; Li, J.; Wu, J.; Xin, Z.; Gao, W.; Guo, C. Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2016, 13, 498. https://doi.org/10.3390/ijerph13050498
Zhao L, Pu L, Wei J, Li J, Wu J, Xin Z, Gao W, Guo C. Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health. 2016; 13(5):498. https://doi.org/10.3390/ijerph13050498
Chicago/Turabian StyleZhao, Liting, Lingling Pu, Jingyu Wei, Jinghua Li, Jianquan Wu, Zhonghao Xin, Weina Gao, and Changjiang Guo. 2016. "Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus" International Journal of Environmental Research and Public Health 13, no. 5: 498. https://doi.org/10.3390/ijerph13050498
APA StyleZhao, L., Pu, L., Wei, J., Li, J., Wu, J., Xin, Z., Gao, W., & Guo, C. (2016). Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus. International Journal of Environmental Research and Public Health, 13(5), 498. https://doi.org/10.3390/ijerph13050498