Controlling Indoor Air Pollution from Moxibustion
Abstract
:1. Introduction
2. Methods
2.1. Pollutant Emission Monitoring
2.1.1. Indoor Air Quality Monitoring
2.1.2. Qualitative and Quantitative Analyses
2.2. Indoor Air Pollution Control Strategies
2.2.1. Alternative Old Moxa Wool
2.2.2. Local Exhaust Ventilation
2.2.3. Air Cleaner
3. Results and Discussion
3.1. Pollutant Emission Monitoring
3.1.1. CO and CO2 Concentrations
3.1.2. TVOCs Concentration
3.1.3. PM10 and PM2.5 Concentrations
3.1.4. HCHO Concentration
3.2. Indoor Air Pollution Control Strategies
3.2.1. Alternative Old Moxa Wool
3.2.2. Local Exhaust Ventilation
3.2.3. Air Cleaner
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leung, M.; Chan, A.H. Control and management of hospital indoor air quality. Med. Sci. Monit. 2006, 12, SR17–SR23. [Google Scholar] [PubMed]
- Lu, C.Y.; Ma, Y.C.; Lin, J.M.; Li, C.Y.; Lin, R.S.; Sung, F.C. Oxidative stress associated with indoor air pollution and sick building syndrome-related symptoms among office workers in Taiwan. Inhal. Toxicol. 2007, 19, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.Y.; Ma, Y.C.; Lin, J.M.; Chuang, C.Y.; Sung, F.C. Oxidative DNA damage estimated by urinary 8-hydroxydeoxyguanosine and indoor air pollution among non-smoking office employees. Environ. Res. 2007, 103, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.Y.; Lin, J.M.; Chen, Y.Y.; Chen, Y.C. Building-related symptoms among office employees associated with indoor carbon dioxide and total volatile organic compounds. Int. J. Environ. Res. Public Health 2015, 12, 5833–5845. [Google Scholar] [CrossRef] [PubMed]
- QED Environmental Services (2015/10/25) Taiwan–Indoor Air Quality Management Act. Available online: http://www.qed.net.au/news/Taiwan-%E2%80%93-Indoor-Air-Quality-Management-Act (accessed on 17 June 2016).
- National Health Insurance Administration, Ministry of Health and Welfare (2016/01/02) Universal Health Coverage in Taiwan. Available online: http://www.nhi.gov.tw/English/webdata/webdata.aspx?menu=11&menu_id=290&webdata_id=2974&WD_ID=290 (accessed on 17 June 2016).
- Deng, H.; Shen, X. The mechanism of moxibustion: Ancient theory and modern research. Evid.-Based Complement. Altern. 2013. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Zhang, G.S.; Shi, J.; Chang, X.R. Advances in the application and adverse reaction of moxa smoke. Chin. Arch. Tradit. Chin. Med. 2012, 30, 48–51. [Google Scholar]
- Mo, F.; Chi, C.; Guo, M.; Chu, X.; Li, Y.; Shen, X. Characteristics of selected indoor air pollutants from moxibustion. J. Hazard. Mater. 2014, 270, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.C.; Chao, H.R.; Shih, S.I. Human exposure to airborne aldehydes in Chinese medicine clinics during moxibustion therapy and its impact on risks to health. J. Environ. Sci. Health A 2015, 50, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Sterling, E.; Sterling, T.; McIntyre, D. New health hazards in sealed buildings. J. Am. Inst. Arch. 1983, 72, 64–67. [Google Scholar]
- Abdel-Salam, M.M. Investigation of PM2.5 and carbon dioxide levels in urban homes. J. Air Waste Manag. Assoc. 2015, 65, 930–936. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Health Effects of Particulate Matter, Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia. 2013. Available online: http://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effects-of-particulate-matter-final-Eng.pdf (accessed on 17 June 2016).
Pollutant | Stage | Moxa Wools | Percentage Change a | |
---|---|---|---|---|
Fresh | Alternative Old One | |||
CO2 | Background level | 542 ppm | 560 ppm | ↑41% |
Moxibustion level | 569 ppm | 598 ppm | ||
Increase level | 27 ppm | 38 ppm | ||
CO | Background level | <0.1 ppm | <0.1 ppm | ↓57% |
Moxibustion level | 2.8 ppm | 1.4 ppm | ||
Increase level | 2.8 ppm | 1.2 ppm | ||
HCHO | Background level | 0.025 ppm | 0.022 ppm | ↓75% |
Moxibustion level | 0.049 ppm | 0.028 ppm | ||
Increase level | 0.024 ppm | 0.006 ppm | ||
TVOC | Background level | 0.03 ppm | 0.03 ppm | ↓83% |
Moxibustion level | 0.27 ppm | 0.07 ppm | ||
Increase level | 0.24 ppm | 0.04 ppm | ||
PM2.5 | Background level | 26 μg/m3 | 24 μg/m3 | ↑75% |
Moxibustion level | 296 μg/m3 | 497 μg/m3 | ||
Increase level | 270 μg/m3 | 473 μg/m3 | ||
PM10 | Background level | 147 μg/m3 | 198 μg/m3 | ↑94% |
Moxibustion level | 409 μg/m3 | 707 μg/m3 | ||
Increase level | 262 μg/m3 | 509 μg/m3 |
Pollutant | Stage | Local Exhaust Ventilation | Percentage Change a | |
---|---|---|---|---|
Without Using | Using | |||
CO2 | Background level | 542 ppm | 555 ppm | ↓70% |
Moxibustion level | 569 ppm | 563 ppm | ||
Increase level | 27 ppm | 8 ppm | ||
CO | Background level | <0.1 ppm | 0.1 ppm | ↓91% |
Moxibustion level | 2.8 ppm | 0.4 ppm | ||
Increase level | 2.8 ppm | 0.3 ppm | ||
HCHO | Background level | 0.025 ppm | 0.026 ppm | ↓79% |
Moxibustion level | 0.049 ppm | 0.031 ppm | ||
Increase level | 0.024 ppm | 0.005 ppm | ||
TVOC | Background level | 0.03 ppm | <0.1 ppm | ↓41% |
Moxibustion level | 0.27 ppm | 0.14 ppm | ||
Increase level | 0.24 ppm | 0.14 ppm | ||
PM2.5 | Background level | 26 μg/m3 | 15 μg/m3 | ↓96% |
Moxibustion level | 296 μg/m3 | 24 μg/m3 | ||
Increase level | 270 μg/m3 | 9 μg/m3 | ||
PM10 | Background level | 147 μg/m3 | 49 μg/m3 | ↓100% |
Moxibustion level | 409 μg/m3 | 43 μg/m3 | ||
Increase level | 262 μg/m3 | −6 μg/m3 |
Pollutant | Stage | Air Cleaner | Percentage Change a | |
---|---|---|---|---|
Without Using | Using | |||
CO2 | Background level | 542 ppm | 542 ppm | ↓22% |
Moxibustion level | 569 ppm | 563 ppm | ||
Increase level | 27 ppm | 21 ppm | ||
CO | Background level | <0.1 ppm | <0.1 ppm | ↓4% |
Moxibustion level | 2.8 ppm | 2.8 ppm | ||
Increase level | 2.8 ppm | 2.7 ppm | ||
HCHO | Background level | 0.025 ppm | 0.025 ppm | ↓13% |
Moxibustion level | 0.049 ppm | 0.046 ppm | ||
Increase level | 0.024 ppm | 0.021 ppm | ||
TVOC | Background level | 0.03 ppm | 0.02 ppm | ↓35% |
Moxibustion level | 0.27 ppm | 0.18 ppm | ||
Increase level | 0.24 ppm | 0.16 ppm | ||
PM2.5 | Background level | 26 μg/m3 | 6 μg/m3 | ↓71% |
Moxibustion level | 296 μg/m3 | 85 μg/m3 | ||
Increase level | 270 μg/m3 | 79 μg/m3 | ||
PM10 | Background level | 147 μg/m3 | 39 μg/m3 | ↓60% |
Moxibustion level | 409 μg/m3 | 143 μg/m3 | ||
Increase level | 262 μg/m3 | 104 μg/m3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.-Y.; Kang, S.-Y.; Liu, S.-H.; Mai, C.-W.; Tseng, C.-H. Controlling Indoor Air Pollution from Moxibustion. Int. J. Environ. Res. Public Health 2016, 13, 612. https://doi.org/10.3390/ijerph13060612
Lu C-Y, Kang S-Y, Liu S-H, Mai C-W, Tseng C-H. Controlling Indoor Air Pollution from Moxibustion. International Journal of Environmental Research and Public Health. 2016; 13(6):612. https://doi.org/10.3390/ijerph13060612
Chicago/Turabian StyleLu, Chung-Yen, Sy-Yuan Kang, Shu-Hui Liu, Cheng-Wei Mai, and Chao-Heng Tseng. 2016. "Controlling Indoor Air Pollution from Moxibustion" International Journal of Environmental Research and Public Health 13, no. 6: 612. https://doi.org/10.3390/ijerph13060612