Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals and Sample Collection
2.2. RNA Extraction and Quantification of Ldh-c mRNA Level by qRT-PCR
2.3. Western Blot Analysis
2.4. LDH Activities and LD Contents Assessment
2.5. Data Analysis
3. Results
3.1. qRT-PCR Analysis of Ldh-a and Ldh-b mRNA Expression
3.2. qRT-PCR Analysis of Ldh-c mRNA Expression
3.3. Western Blotting Analysis of LDH-C Protein Expression
3.4. LDH Activities and LD Contents in Plateau Pika Tissues at Different Altitudes
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wu, T. Life on the high Tibetan Plateau. High. Alt. Med. Biol. 2004, 5, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.T.; Foggin, J.M. The plateau pika (Ochotona curzoniae) is a keystone species for biodiversity on the Tibetan Plateau. Anim. Conserv. 1999, 2, 235–240. [Google Scholar] [CrossRef]
- Lai, C.H.; Smith, A.T. Keystone status of plateau pikas (Ochotona curzoniae): Effect of control on biodiversity of native birds. Biodivers. Conserv. 2003, 12, 1901–1912. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Cao, Y.; Jin, G.E.; Bai, Z.Z.; Lan, M.L.; Yun, H.X.; Ge, R.L. Molecular cloning and characterization of hemoglobin α and β chains from plateau pika (Ochotona curzoniae) living at high altitude. Gene 2007, 403, 118–124. [Google Scholar]
- Wang, X.J.; Wei, D.B.; Wei, L.; Qi, X.Z.; Zhu, S.H. Characteristics of pulmonary acinus structure in the plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae). J. Zool. 2008, 54, 531–539. [Google Scholar]
- Ge, R.L.; Kubo, K.; Kobayashi, T.; Sekiguchi, M.; Honda, T. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am. J. Physiol. Heart Circ. Physiol. 1998, 274, 1792–1799. [Google Scholar]
- Wang, X.J.; Wei, D.B.; Wei, L.; Zhang, J.M.; Yu, H.Y. Physiological character of erythrocyte adapting to hypoxia in plateau zokor and plateau pika. Sichuan J. Zool. 2008, 27, 1100–1103. (In Chinese) [Google Scholar]
- Ye, R.R.; Cao, Y.F.; Bai, Q.H. Blood indices of plateau pika and relationship with hypoxia adaptation. J. Zool. 1994, 2, 114–119. [Google Scholar]
- He, J.; Xu, C.; Meng, X.; Li, H.; Wang, Y. Comparative analysis in transport and intake of oxygen between pikas (Ochotona curzoniae) and rats. J. Prev. Med. Chin. People’s Libr. 1994, 12, 431–435. (In Chinese) [Google Scholar]
- Qi, X.Z.; Wang, X.J.; Zhu, S.H.; Rao, X.F.; Wei, L.; Wei, D.B. Hypoxic adaptation of the hearts of plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae). J. Zool. 2008, 60, 348–354. [Google Scholar]
- Wei, D.B.; Wei, L.; Zhang, J.M.; Yu, H.Y. Blood-gas properties of plateau zokor (Myospalax baileyi). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2006, 145, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.H.; Qi, X.Z.; Wang, X.J.; Rao, X.F.; Wei, L.; Wei, D.B. Difference in oxygen uptake in skeletal muscles between plateau zokor (Myospalax rufescens baileyi) and plateau pika (Ochotona curzoniac). Acta Physiol. Sin. 2009, 61, 373–378. (In Chinese) [Google Scholar]
- Sun, S.Z.; Wei, L.; Wei, D.B.; Wang, D.W.; Ma, B.Y. Differences of glycolysis in skeletal muscle and lactate metabolism in liver between plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae). Acta Physiol. Sin. 2013, 65, 276–284. (In Chinese) [Google Scholar]
- Li, H.G.; Ren, Y.M.; Guo, S.C.; Cheng, L.; Wang, D.P.; Yang, J.; Chang, Z.J.; Zhao, X.Q. The protein level of hypoxia-inducible factor-1α is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes. J. Exp. Zool. Part. A Ecol. Genet. Physiol. 2009, 311, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.B.; Ning, H.X.; Zhu, S.S.; Sun, P.; Xu, S.X.; Chang, Z.J.; Zhao, X.Q. Cloning of hypoxia-inducible factor-1α cDNA from a high hypoxia tolerant mammal-plateau pika (Ochotona curzoniae). Biochem. Biophys. Res. Commun. 2004, 316, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Li, H.G.; Guo, S.C.; Ren, Y.M.; Wang, D.P.; Yu, H.H.; Li, W.J.; Zhao, X.Q.; Chang, Z.J. VEGF189 expression is highly related to adaptation of the plateau pika (Ochotona curzoniae) Inhabiting High Altitudes. High Alt. Med. Biol. 2013, 14, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.N.; Zhu, R.J.; Wang, D.W.; Wei, L.; Wei, D.B. Gene coding and mRNA expression of vascular endothelial growth factor as well as microvessel density in brain of plateau zokor: Comparison with other rodents. Acta Physiol. Sin. 2011, 63, 155–163. (In Chinese) [Google Scholar]
- Luo, Y.J.; Gao, W.X.; Gao, Y.Q.; Tang, S.; Huang, Q.Y.; Tan, X.L.; Chen, J.; Huang, T.S. Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion 2008, 8, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Pichon, A.; Zhenzhong, B.; Favret, F.; Jin, G.; Shufeng, H.; Marchant, D.; Richalet, J.P.; Ge, R.L. Long-term ventilatory adaptation and ventilatory response to hypoxia in plateau pika (Ochotona curzoniae): Role of nNOS and dopamine. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Z.L.; Zhao, X.Q.; Xu, B.H.; Ren, Y.H.; Tian, H.F. Natural selection and adaptive evolution of leptin in the ochotona family driven by the cold environmental stress. PLoS ONE 2008. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, X.Q.; Guo, S.C.; Li, H.G.; Qi, D.L.; Wang, D.P.; Cao, J.H. Leptin cDNA cloning and its mRNA expression in plateau pikas (Ochotona curzoniae) from different altitudes on Qinghai-Tibet Plateau. Biochem. Biophys. Res. Commun. 2006, 345, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.W.; Wei, L.; Wei, D.B.; Rao, X.F.; Qi, X.Z.; Wang, X.J.; Ma, B.Y. Testis-specific lactate dehydrogenase is expressed in somatic tissues of plateau pikas. FEBS Open Biol. 2013, 3, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Everse, J.; Kaplan, N.O. Lactate dehydrogenases: Structure and function. Adv. Enzymol. Relat. Areas Mol. Biol. 1973, 37, 61–133. [Google Scholar] [PubMed]
- Li, S. Lactate dehydrogenase isoenzymes A (muscle), B (heart) and C (testis) of mammals and the genes coding for these enzymes. Biochem. Soc. Trans. 1989, 17, 304. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; O’brien, D.; Hou, E.; Versola, J.; Rockett, D.; Eddy, E. Differential activity and synthesis of lactate dehydrogenase isozymes A (muscle), B (heart), and C (testis) in mouse spermatogenic cells. Biol. Reprod. 1989, 40, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Cahn, R.D.; Zwilling, E.; Kaplan, N.O.; Levine, L. Nature and development of lactic dehydrogenases. Science 1962, 136, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Fine, I.; Kaplan, N.; Kuftinec, D. Developmental changes of mammalian lactic dehydrogenases. Biochemistry 1963, 2, 116–121. [Google Scholar] [CrossRef]
- Goldberg, E. Reproductive implications of LDH-C4 and other testis-specific isozymes. Exp. Clin. Immunogenet. 1984, 2, 120–124. [Google Scholar]
- Coonrod, S.; Vitale, A.; Duan, C.; Bristol-Gould, S.; Herr, J.; Goldberg, E. Testis-specific lactate dehydrogenase (LDH-C4; Ldh3) in murine oocytes and preimplantation embryos. J. Androl. 2006, 27, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, E. Lactate dehydrogenase-X from mouse testes and spermatozoa. Methods Enzymol. 1975, 41, 318. [Google Scholar] [PubMed]
- Goldberg, E. Lactate dehydrogenases and malate dehydrogenases in sperm: Studied by polyacrylamide gel electrophoresis. Ann. N. Y. Acad. Sci. 1964, 121, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, L.; Wei, D.B.; Xiao, L.; Xu, L.N.; Wei, L.N. Testis-specific lactate dehydrogenase (LDH-C4) in skeletal muscle enhances a pika’s sprint-running capacity in hypoxic environment. Int. J. Environ. Res. Public Health 2015, 12, 9218–9236. [Google Scholar] [CrossRef] [PubMed]
- Marti, H.H.; Jung, H.H.; Pfeilschifter, J.; Bauer, C. Hypoxia and cobalt stimulate lactate dehydrogenase (LDH) activity in vascular smooth muscle cells. Pflugers. Arch. 1995, 429, 216–222. [Google Scholar] [CrossRef]
- Cooper, R.U.; Clough, L.M.; Farwell, M.A.; West, T.L. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. J. Exp. Mar. Biol. Ecol. 2002, 279, 1–20. [Google Scholar] [CrossRef]
- Webster, K.A. Regulation of glycolytic enzyme RNA transcriptional rates by oxygen availability in skeletal musclecells. Mol. Cell. Biochem. 1987, 77, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Wenger, R.H. Mammalian oxygen sensing, signalling and gene regulation. J. Exp. Biol. 2000, 203, 1253–1263. [Google Scholar] [PubMed]
- Kay, H.H.; Zhu, S.; Tsoi, S. Hypoxia and lactate production in trophoblast cells. Placenta 2007, 28, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.F.; Wen, D.Q.; Han, S.G.; Hu, X.M. Lactate dehydrogenase isoenzyme responds to hypoxia in pika. Acta Theriol. Sin. 1988, 8, 60–64. (In Chinese) [Google Scholar]
- Markert, C.L. Lactate dehydrogenase. Biochemistry and function of lactate dehydrogenase. Cell. Biochem. Funct. 1984, 2, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.E.; Eddy, E.M.; Duan, C.; Odet, F. LDHC: The ultimate testis-specific gene. Int. J. Androl. 2010, 31, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Zinkham, W.H.; Holtzman, N.A.; Isensee, H. The molecular size of lactate dehydrogenase isozymes in mature testes. Biochim. Biophys. Acta 1968, 160, 172–177. [Google Scholar] [CrossRef]
- Odet, F.; Gabel, S.A.; Williams, J.; London, R.E.; Goldberg, E.; Eddy, E.M. Lactate dehydrogenase C and energy metabolism in mouse sperm. Biol. Reprod. 2011, 85, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Odet, F.; Duan, C.; Willis, W.D.; Goulding, E.H.; Kung, A.; Eddy, E.M.; Goldberg, E. Expression of the gene for mouse lactate dehydrogenase C (Ldhc) is required for male fertility. Biol. Reprod. 2008, 79, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Hereng, T.H.; Elgstøen, K.B.; Cederkvist, F.H.; Eide, L.; Jahnsen, T.; Skålhegg, B.S.; Rosendal, K.R. Exogenous pyruvate accelerates glycolysis and promotes capacitation in human spermatozoa. Hum. Reprod. 2011, 26, 3249–3263. [Google Scholar] [CrossRef] [PubMed]
- Mukai, C.; Okuno, M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol. Reprod. 2004, 71, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.C.; Ford, W.C.L. The role of glucose in supporting motility and capacitation in human spermatozoa. J. Androl. 2001, 22, 680–695. [Google Scholar] [PubMed]
- Wang, Y.; Wei, L.; Wei, D.B.; Li, X.; Xu, L.N.; Wei, L.N. Enzymatic kinetic properties of the lactate dehydrogenase isoenzyme C4 of the plateau pika (Ochotona curzoniae). Int. J. Mol. Sci. 2016, 17, 39. [Google Scholar] [CrossRef] [PubMed]
- Haworth, J.C.; Robinson, B.H.; Perry, T.L. Lactic acidosis due to pyruvate carboxylase deficiency. J. Inherit. Metab. Dis. 1981, 4, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.C.; Gao, S.S.; Zhang, Z.F. Analysis of the mechanism of muscle lactate production in sport. J. Shengyang Inst. Phys. Edu. 2004, 23, 312–314. (In Chinese) [Google Scholar]
- Utter, M.F.; Keech, D.B. Formation of oxaloacetate from pyruvate and carbon dioxide. J. Biol. Chem. 1960, 235, 17–18. (In Chinese) [Google Scholar]
- Liu, G.F.; Wen, D.Q.; Hu, X.M. Lactate dehydrogenase isoenzymes of the pika and the plateau zokor. Acta Theriol. Sin. 1985, 5, 223–228. (In Chinese) [Google Scholar]
- Li, X.; Wei, L.; Wang, Y.; Xu, L.N.; Wei, L.N.; Wei, D.B. The expression of the sperm-specific lactate dehydrogenase gene Ldh-c in plateau pika (Ochotona curzoniae) cardiac muscle and its effect on the anaerobic glycolysis. Acta Physiol. Sin. 2015, 67, 312–318. (In Chinese) [Google Scholar]
- Wei, L.N.; Wei, L.; Wang, Y.; Li, X.; Xu, L.N.; Wei, D.B. Expression of the sperm-specific lactate dehydrogenase gene (Ldh-c) in plateau pika (Ochotona curzoniae) liver and its influence on the anaerobic glycolysis. Chin. J. Zool. 2015, 6, 846–854. (In Chinese) [Google Scholar]
- Xu, L.N.; Wei, L.; Wang, Y.; Li, X.; Wei, L.N.; Wei, D.B. The role of the sperm-specific lactate dehydrogenase (LDH-C4) in plateau pika brain. Acta Theriol. Sin. 2015, 35, 431–437. (In Chinese) [Google Scholar]
Tissues | Ldh-a | Ldh-b | ||
---|---|---|---|---|
3200 m | 4200 m | 3200 m | 4200 m | |
heart | 0.955 ± 0.029 ** | 0.811 ± 0.045 | 0.973 ± 0.022 ** | 0.880 ± 0.024 |
liver | 0.959 ± 0.087 | 0.895 ± 0.095 | 0.909 ± 0.037 | 0.894 ± 0.035 |
brain | 0.919 ± 0.032 ** | 0.785 ± 0.033 | 0.870 ± 0.048 ** | 0.785 ± 0.033 |
skeletal muscle | 0.935 ± 0.037 | 0.847 ± 0.170 | 0.735 ± 0.046 * | 0.641 ± 0.118 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, D.; Wei, L.; Li, X.; Wang, Y.; Wei, L. Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika. Int. J. Environ. Res. Public Health 2016, 13, 773. https://doi.org/10.3390/ijerph13080773
Wei D, Wei L, Li X, Wang Y, Wei L. Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika. International Journal of Environmental Research and Public Health. 2016; 13(8):773. https://doi.org/10.3390/ijerph13080773
Chicago/Turabian StyleWei, Dengbang, Linna Wei, Xiao Li, Yang Wang, and Lian Wei. 2016. "Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika" International Journal of Environmental Research and Public Health 13, no. 8: 773. https://doi.org/10.3390/ijerph13080773
APA StyleWei, D., Wei, L., Li, X., Wang, Y., & Wei, L. (2016). Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika. International Journal of Environmental Research and Public Health, 13(8), 773. https://doi.org/10.3390/ijerph13080773