Environmental Exposures and Parkinson’s Disease
Abstract
:1. Introduction
2. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
3. Pesticides
3.1. Rotenone
3.2. Paraquat & Maneb
3.3. Organochlorines
3.4. Organophosphates
3.5. Pyrethroids
4. Metals
4.1. Iron
4.2. Manganese
5. Polychlorinated Biphenyls (PCBs)
6. Gaps in Knowledge
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ziemssen, T.; Reichmann, H. Non-motor dysfunction in Parkinson’s disease. Parkinsonism Relat. Disord. 2007, 13, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Schapira, A. Etiology of Parkinson’s disease. Neurology 2006, 66, S10–S23. [Google Scholar] [CrossRef] [PubMed]
- Lesage, S.; Brice, A. Parkinson’s disease: From monogenic forms to genetic suscpetibility factors. Hum. Mol. Genet. 2009, 18, R48–R59. [Google Scholar] [CrossRef] [PubMed]
- Goldman, S. Environmental toxins and Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 141–164. [Google Scholar] [CrossRef] [PubMed]
- Winklhofer, K.F.; Haass, C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta 2010, 1802, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Dodiya, H.; Aebischer, P.; Olanow, C.W.; Kordower, J. Alterations in lysosomal and proteasomal markers in Parkinson’s disease: Relationship to alpha-synuclein inclusions. Neurobiol. Dis. 2009, 35, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Dehay, B.; Martinez-Vicente, M.; Caldwell, G.A.; Caldwell, K.A.; Yue, Z.; Cookson, M.R.; Klein, C.; Vila, M.; Bezard, E. Lysosomal impairment in Parkinson’s disease. Mov. Disord. 2013, 28, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.S.; Gertler, T.; Surmeier, D.J. Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci. 2009, 32, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, E.C.; Vyas, S.; Hunot, S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat. Disord. 2012, 18, S210–S212. [Google Scholar] [CrossRef]
- Lucking, C.B.; Brice, A. Alpha-synuclein and Parkinson’s disease. Cell. Mol. Life Sci. CMLS 2000, 57, 1894–1908. [Google Scholar] [CrossRef] [PubMed]
- Jenner, P. Oxidative stress in Parkinson’s disease. Ann. Neurol. 2003, 53, S26–S38. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, C.H.; Tredeci, K.D.; Braak, H. Review: Parkinson’s disease: A dual-hit hypothesis. Neuropathol. Appl. Neurobiol. 2007, 33, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Langston, J.W. MPTP and Parkinson’s disease. Trends Neurosci. 1985, 8, 79–83. [Google Scholar] [CrossRef]
- Schober, A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 2004, 318, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, R.R.; Fumagalli, F.; Jones, S.R.; Caron, M.G. Dopamine transporter is required for in vivo MPTP neurotoxicity: Evidence from mice lacking the transporter. J. Neurochem. 1997, 69, 1322–1325. [Google Scholar] [CrossRef] [PubMed]
- Javitch, J.A.; D’Amato, R.J.; Strittmatter, S.M.; Snyder, S.H. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: Uptake of the metabolite N-methyl-$-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. USA 1985, 82, 2173–2177. [Google Scholar] [CrossRef] [PubMed]
- Nicklas, W.J.; Vyas, I.; Heikkila, R.E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 1985, 36, 2503–2508. [Google Scholar] [CrossRef]
- Langston, J.W.; Forno, L.S.; Tetrud, J.W.; Reeves, A.G.; Kaplan, J.A.; Karluk, D. Evidence of active nerve cell degeneration in the substantia nigra of Humans years after 1-Methyl-4-Phenyl-1,2,3,6 Tetrahydropyridine Exposure. Ann. Neurol. 1999, 46, 598–605. [Google Scholar] [CrossRef]
- Ghosh, A.; Langley, M.R.; Harischandra, D.S.; Neal, M.L.; Jin, H.; Anantharam, V.; Joseph, J.; Brenza, T.; Narasimhan, B.; Kanthasami, A.; et al. Mitoapocynin Treatment Protects Against Neuroinflammation and Dopaminergic Neurodegeneration in a Preclinical Animal Model of Parkinson’s Disease. J. Neuroimmune Pharmacol. 2016, 11, 259–278. [Google Scholar] [CrossRef] [PubMed]
- Grube, A.; Donaldson, D.; Kiely, T.; Wu, L. Pesticides Industry Sales and Usage; US Environmental Protection Agency: Washington, DC, USA, 2011.
- Barbeau, A.; Roy, M.; Bernier, G.; Guiseppe, C.; Paris, S. Ecogenetics of Parkinson’s disease: Prevalence and environmental aspects in rural areas. Can. J. Neurol. Sci. 1987, 14, 35–41. [Google Scholar] [CrossRef]
- Jimenez-Jimenez, F.J.; Mateo, D.; Gimenez-Roldan, S. Exposure to well water and pesticides in Parkinson’s disease: A case-control study in the Madrid area. Mov. Disord. 1992, 7, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.; Dulaney, E.; Gruber, S.B.; Golbe, L.; Bergen, M.; Hurtig, H.; Gollomp, S.; Stolley, P. The epidemiology of Parkinson’s disease: A case-control study of young-onset and old-onset patients. Arch. Neurol. 1991, 48, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, P.G.; Valanis, B.G.; Spencer, P.S.; Lindeman, C.A.; Nutt, J.G. Environmental antecedents of young-onset Parkinson’s disease. Neurology 1993, 43, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Hertzman, C.; Wiens, M.; Snow, B.; Kelly, S.; Calne, D. A case-control study of Parkinson’s disease in a horticultural region of British Columbia. Mov. Disord. 1994, 9, 69–75. [Google Scholar] [CrossRef] [PubMed]
- McCann, S.J.; LeCouteur, D.G.; Green, A.C.; Brayne, C.; Johnson, A.G.; Chan, D.; McManus, M.E.; Pond, S.M. The epidemiology of Parkinson’s disease in an Australian population. Neuroepidemiology 1998, 17, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Kuopio, A.-M.; Marttila, R.J.; Helenius, H.; Rinne, U.K. Environmental risk factors in Parkinson’s disease. Mov. Disord. 1999, 14, 928–939. [Google Scholar] [CrossRef]
- Morano, A.; Jimenez-Jimenez, F.; Molina, J.; Antolin, M. Risk-factors for Parkinson’s disease: Case-control study in the province of Caceres, Spain. Acta Neurol. Scand. 1994, 89, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.K.Y.; Woo, J.; Ho, S.C.; Pang, C.P.; Law, L.K.; Ng, P.W.; Hung, W.T.; Kwok, T.; Hui, E.; Orr, K.; et al. Genetic and environmental risk factors for Parkinson’s disease in a Chinese population. J. Neurol. Neurosurg. Psychiatry 1998, 65, 781–784. [Google Scholar] [CrossRef] [PubMed]
- Engel, L.S.; Checkoway, H.; Keifer, M.C.; Seixas, N.S.; Longstreth, W.T.; Scott, K.C.; Hudnell, K.; Anger, W.K.; Camicioli, R. Parkinsonism and occupational exposure to pesticides. Occup. Environ. Med. 2001, 58, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Kamel, F.; Tanner, C.M.; Umbach, D.M.; Hoppin, J.A.; Alavanja, M.C.R.; Blair, A.; Comyns, K.; Goldman, S.M.; Korell, M.; Langston, J.W.; et al. Pesticide exposure and self-reported Parkinson’s disease in the agricultural heatlh study. Am. J. Epidemiol. 2007, 165, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Chen, H.; Weisskopf, M.G.; O’Reilly, E.; McCullough, M.L.; Calle, E.E.; Schwarzschild, M.A.; Thun, M.J. Pesticide exposure and risk for Parkinson’s disease. Ann. Neurol. 2006, 60, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Cockburn, M.; Ly, T.T.; Bronstein, J.M.; Ritz, B. The association between ambient exposure to organophosphates and Parkinson’s disease risk. Occup. Environ. Med. 2014, 71, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Costello, S.; Cockburn, M.; Bronstein, J.M.; Zhang, X.; Ritz, B. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am. J. Epidemiol. 2009, 169, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-C.; Bordelon, Y.; Bronstein, J.M.; Ritz, B. Traumatic brain injury, paraquat exposure, and their relationship to Parkinson disease. Neurology 2012, 79, 2061–2066. [Google Scholar] [CrossRef] [PubMed]
- Ritz, B.; Manthripragada, A.D.; Costello, S.; Lincoln, S.J.; Farrer, M.J.; Cockburn, M.; Bronstein, J. Dopamine transporter genetic variants and pesticides in Parkinson’s disease. Environ. Health Perspect. 2009, 117, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Wan, N.; Lin, G. Parkinson’s disease and pesticides exposure: New findings from a comprehensive study in Nebraska, USA. J. Rural Health 2016, 32, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, M.; Koeman, T.; van den Brandt, P.A.; Kromhout, H.; Schouten, L.J.; Peters, S.; Huss, A.; Vermeulen, R. Occupational exposures and Parkinson’s disease mortality in a prospective Dutch Cohort. Occup. Environ. Med. 2015, 72, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.; Sindhu, K.M.; Mohanakumar, K. Acute intranigral infusion of rotenone in rats causes progressive biochemical lesions in the striatum similar to Parkinson’s disease. Brain Res. 2005, 1049, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Betarbet, R.; Sherer, T.B.; Mackenzie, G.; Garcia-Osuna, M.; Panov, A.V.; Greenamyre, J.T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature 2000, 3, 1301–1305. [Google Scholar]
- Sindhu, K.M.; Saravanan, K.; Mohanakumar, K. Behavioral differences in a rotenone-induced hemiparkinsonian rat model developed following intranigral or median forebrain bundle infusion. Brain Res. 2005, 1051, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Milusheva, E.; Baranyi, M.; Kittel, A.; Sperlagh, B.; Vizi, E.S. Increased sensitivity of striatal dopamine release to H2O2 upon chronic rotenone treatment. Free Radic. Biol. Med. 2005, 39, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.R.; Tapias, V.; Na, H.M.; Honick, A.S.; Drolet, R.E.; Greenamyre, J.T. A highly reproducible rotenone model of Parkinson’s disease. Neurobiol. Dis. 2009, 34, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Drolet, R.E.; Cannon, J.R.; Montero, L.; Greenamyre, J.T. Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol. Dis. 2009, 36, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Pan-Montojo, F.; Anichtchik, O.; Dening, Y.; Knels, L.; Pursche, S.; Jung, R.; Jackson, S.; Gille, G.; Spillantini, M.G.; Reichmann, H.; et al. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS ONE 2010, 5, e8762. [Google Scholar] [CrossRef] [PubMed]
- Hongo, H.; Kihara, T.; Kume, T.; Izumi, Y.; Niidome, T.; Sugimoto, H.; Akaike, A. Glycogen synthase kinase-3B activation mediates rotenone-induced cytotoxicity with the involvement of microtubule destabilization. Biochem. Biophys. Res. Commun. 2012, 426, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Chaves, R.S.; Melo, T.Q.; Martins, S.A.; Ferrari, M.F. Protein aggregation containing beta-amyloid, alpha-synuclein and hyperphosphorylated TAU in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure. BMC Neurosci. 2010, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- Hoglinger, G.; Lannuzel, A.; Khondiker, M.E.; Michel, P.P.; Duyckaerts, C.; Feger, J.; Champy, P.; Prigent, A.; Medja, F.; Lombes, A.; et al. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J. Neurochem. 2005, 95, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Fleming, S.M.; Zhu, C.; Fernagut, P.-O.; Mehta, A.; DiCarlo, C.D.; Seaman, R.L.; Chesselet, M.-F. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp. Neurol. 2004, 187, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Richter, F.; Hamann, M.; Richter, A. Chronic rotenone treatment induces behavioral effects but no pathological signs of Parkinsonism in mice. J. Neurosci. Res. 2007, 85, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S.; Javed, H.; Azimullah, S.; Haque, M.E. B-caryophyllene, a phytocannibinoid attenuates oxidative stress, neuroinflammation, glial activation and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol. Cell. Biochem. 2016, 418, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Fathalla, A.M.; Soliman, A.M.; Ali, M.H.; Moustafa, A.A. Adenosine A2A Receptor Blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism. Front. Behav. Neurosci. 2016, 10, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Tanner, C.; Kamel, F.; Ross, G.W.; Hoppin, J.A.; Goldman, S.; Korell, M.; Marras, C.; Bhudhikanok, G.S.; Kasten, M.; Chade, A.R.; et al. Rotenone, paraquat, and Parkinson’s Disease. Environ. Health Perspect. 2011, 119, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, A.S.; Tarbutton, G.L.; Levin, J.L.; Plotkin, G.M.; Lowry, L.K.; Nalbone, J.T.; Shepherd, S. Pesticide/environmental exposures and Parkinson’s disease in East Texas. J. Agromed. 2008, 13, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Furlong, M.; Tanner, C.; Goldman, S.; Bhudhikanok, G.S.; Blair, A.; Chade, A.R.; Comyns, K.; Hoppin, J.A.; Kasten, M.; Korell, M.; et al. Protective glove use and hygeine habits modify the associations of specific pesticides with Parkinson’s disease. Environ. Int. 2015, 75, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Liou, H.; Tsai, M.C.; Chen, C.J.; Jeng, J.S.; Chang, Y.C.; Chen, S.Y.; Chen, R.C. Environmental risk factors and Parkinson’s disease: A case-control study in Taiwan. Neurology 1997, 48, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Thiruchelvam, M.; Richfield, E.K.; Baggs, R.B.; Tank, A.W.; Cory-Slechta, D.A. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: Implications for Parkinson’s disease. J. Neurosci. 2000, 20, 9207–9214. [Google Scholar] [PubMed]
- Wang, A.; Costello, S.; Cockburn, M.; Zhang, X.; Bronstein, J.; Ritz, B. Parkinson’s disease risk from ambient exposure to pesticides. Eur. J. Epidemiol. 2011, 26, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, H.B.; Bertolucci, P.H.F.; Pereira, J.S.; Lima, J.G.C.; Andrade, L.A.F. Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication. Neurology 1988, 38, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Filograna, R.; Godena, V.K.; Sanchez-Martinez, A.; Ferrari, E.; Casella, L.; Beltramini, M.; Bubacco, L.; Whitworth, A.J.; Bisaglia, M. Superoxide dismutase (SOD)-mimetic M40403 is protective in cell and fly models of paraquat toxicity. J. Biol. Chem. 2016, 291, 9257–9267. [Google Scholar] [CrossRef] [PubMed]
- Shimuzu, K.; Matsubara, K.; Ohtaki, K.; Fujimaru, S.; Saito, O.; Shiono, H. Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res. 2003, 976, 243–252. [Google Scholar] [CrossRef]
- Manning-Bog, A.B.; McCormack, A.L.; Li, J.; Uversky, V.; Fink, A.L.; di Monte, D.A. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice. J. Biol. Chem. 2002, 277, 1641–1644. [Google Scholar] [CrossRef] [PubMed]
- Cicchetti, F.; Lapointe, N.; Roberge-Tremblay, A.; Saint-Pierre, M.; Jimenez, L.; Ficke, B.W.; Gross, R.E. Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol. Dis. 2005, 20, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Saint-Pierre, M.; Tremblay, M.E.; Sik, A.; Gross, R.E.; Cicchetti, F. Temporal effects of paraquat/maneb on microglial activation and dopamine neuronal loss in older rats. J. Neurochem. 2006, 98, 760–772. [Google Scholar] [CrossRef] [PubMed]
- McCormack, A.L.; Thiruchelvam, M.; Manning-Bog, A.B.; Thiffault, C.; Langston, J.W.; Cory-Slechta, D.A.; di Monte, D.A. Environmental risk factors and Parkinson’s disease: Selective Degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol. Dis. 2002, 10, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Ossowska, K.; Wardas, S.; Kuter, K.; Lenda, T.; Wieronska, J.M.; Zieba, B.; Nowak, P.; Dabrowska, J.; Bortel, A.; Kwiecinski, A.; et al. A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: An animal model of preclinical stages of Parkinson’s disease? Eur. J. Neurosci. 2005, 22, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Goldman, S.; Kamel, F.; Ross, G.W.; Bhudhikanok, G.S.; Hoppin, J.A.; Korell, M.; Marras, C.; Meng, C.; Umbach, D.M.; Kasten, M.; et al. Genetic modification of the association of paraquat and Parkinson’s disease. Mov. Disord. 2012, 27, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Barlow, B.K.; Richfield, E.K.; Cory-Slechta, D.A.; Thiruchelvam, M. A fetal risk factor for Parkinson’s disease. Dev. Neurosci. 2004, 26, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Thiruchelvam, M.; Richfield, E.K.; Goodman, B.M.; Baggs, R.B.; Cory-Slechta, D.A. Developmental exposure to the pesticides paraquat and maneb and the Parkinson’s disease phenotype. Neurotoxicology 2002, 23, 621–633. [Google Scholar] [CrossRef]
- Shepherd, K.R.; Lee, E.-S.Y.; Schmued, L.; Jiao, Y.; Ali, S.F.; Oriaku, E.; Lamango, N.S.; Soliman, K.F.A.; Charlton, C.G. The potentiating effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on paraquat-induced neurochemical and behavioral changes in mice. Pharmacol. Biochem. Behav. 2006, 83, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Niu, P. Low doses of single or combined agrichemicals induces a-synuclein aggregation in nigrostriatal system of mice through inhibition of proteasomal and autophagic pathways. Int. J. Clin. Exp. Med. 2015, 8, 20508–20515. [Google Scholar] [PubMed]
- Elbaz, A.; Clavel, J.; Rathouz, P.J.; Moisan, F.; Galanaud, J.-P.; Delemotte, B.; Alperovitch, A.; Tzouri, C.O. Professional exposure to pesticides and Parkinson disease. Ann. Neurol. 2009, 66, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, J.M.; Pennell, K.D.; Miller, G.W. Parkinson’s disease and pesticides: A toxicological perspective. Trends Pharmacol. Sci. 2008, 29, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Seidler, A.; Hellenbrand, W.; Robra, B.P.; Vieregge, P.; Nischan, P.; Joerg, J.; Oertel, W.H.; Ulm, G.; Schneider, E. Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: A case-control study in Germany. Neurology 1996, 46, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.R.; Shalat, S.L.; Buckley, B.; Winnik, B.; O’Suilleaabhain, P.; Diaz-Arrastia, R.; Reisch, J.; German, D.C. Elevated serum pesticide levels and risk of Parkinson disease. Arch. Neurol. 2009, 66, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.R.; Roy, A.; Shalat, S.L.; Buckley, B.; Winnik, B.; Gearing, M.; Levey, A.I.; Factor, S.A.; O’Suilleaabhain, P.; German, D.C. Beta Hexachlorocyclohexane levels in serum and risk of Parkinson’s disease. Neurotoxicology 2011, 32, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Chhillar, N.; Singh, N.K.; Banerjee, B.D.; Bala, K.; Mustafa, M.; Sharma, D.; Chhillar, M. Organochlorine pesticide levels and risk of Parkinson’s disease in North Indian population. ISRN Nerol. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K.; Mora, A.M.; Barr, D.B.; Juncos, J.; Roman, N.; Wesseling, C. Organochlorine chemicals and neurodegeneration among elderly subjects in Costa Rica. Environ. Res. 2014, 134, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, M.; Anantharam, V.; Kanthasamy, A. Dieldrin-Induced oxidative stress and neurochemical changes contribute to apoptotic cell death in dopaminergic cells. Free Radic. Biol. Med. 2001, 31, 1473–1485. [Google Scholar] [CrossRef]
- Chun, H.S.; Gibson, G.E.; DeGiorgio, L.A.; Zhang, H.; Kidd, V.; Son, J.H. Dopaminergic cell death induced by MPP+, oxidant and specific neurotoxicants shares the common molecular mechanism. J. Neurochem. 2001, 76, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- Heusinkveld, H.J.; Westerink, R.H.S. Organochlorine insecticides lindane and dieldrin and their binary mixture disturb calcium homeostasis in dopaminergic PC12 cells. Environ. Sci. Technol. 2012, 46, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- Weisskopf, M.G.; Knekt, P.; O’Reilly, E.J.; Lyytinen, J.; Reunanen, A.; Laden, F.; Altshul, L.; Ascherio, A. Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology 2010, 74, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Dutheil, F.; Beaune, P.; Tzourio, C.; Loriot, M.-A.; Elbaz, A. Interaction between ABCB1 and professional exposure to organochlorine exposure to organochlorine insecticides in Parkinson disease. Arch. Neurol. 2010, 67, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, F.M.; Murray, L.; Wyatt, C.L.; Shore, R.F. Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson’s disease. Exp. Neurol. 1998, 150, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, F.M.; Wienberg, C.L.; Shore, R.F.; Daniel, S.E.; Mann, D. Organochlorine insecticides in substantia nigra in Parkinson’s disease. J. Toxicol. Environ. Health A 2000, 59, 229–234. [Google Scholar] [PubMed]
- Ross, G.W.; Duda, J.E.; Abbott, R.D.; Pellizzari, E.; Petrovich, H.; Miller, D.B.; O’Callaghan, J.P.; Tanner, C.M.; Noorigian, J.V.; Masaki, K.; et al. Brain organochlorines and Lewy pathology: The Honolulu-Asia aging study. Mov. Disord. 2012, 27, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Firestone, J.A.; Smith-Weller, T.; Franklin, G.; Swanson, P.; Longstreth, W.T.; Checkoway, H. Pesticides and risk of Parkinson disease: A population-based case-control study. Arch. Neurol. 2005, 62, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S.; Liew, Z.; Paul, K.; Lee, P.-C.; Sinsheimer, J.S.; Bronstein, J.M.; Ritz, B. Household organophosphorus pesticide use and Parkinson’s disease. Int. J. Epidemiol. 2013, 42, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dai, H.; Deng, Y.; Tian, J.; Zhang, C.; Hu, Z.; Bing, G.; Zhao, L. Neonatal chlorpyrifos exposure induces loss of dopaminergic neurons in young adult rats. Toxicology 2015, 336, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Manthripragada, A.D.; Costello, S.; Cockburn, M.G.; Bronstein, J.M.; Ritz, B. Paraoxonase 1 (PON1), agricultural organophosphate exposure and Parkinson disease. Epidemiology 2010, 21, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Carmine, A.; Buervenich, S.; Sydow, O.; Anvret, M.; Olson, L. Further evidence for an association of the Paraoxonase 1 (PON1) Met-54 allele with Parkinson’s disease. Mov. Disord. 2002, 17, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Akhmedova, S.N.; Yakimovsky, A.K.; Schwartz, E.I. Paraoxonase 1 Met-Leu 54 polymorphism is associated with Parkinson’s disease. J. Neurol. Sci. 2001, 184, 179–182. [Google Scholar] [CrossRef]
- Gillette, J.S.; Bloomquist, J.R. Differential up-regulation of striatal dopamine transporter and alpha synuclein by the pyrethroid insecticide permethrin. Toxicol. Appl. Pharmacol. 2003, 192, 287–293. [Google Scholar] [CrossRef]
- Elwan, M.A.; Richardson, J.R.; Guillot, T.S.; Caudle, W.M.; Miller, G.W. Pyrethroid pesticide-induced alterations in dopamine transporter function. Toxicol. Appl. Pharmacol. 2005, 211, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhang, X.; Huang, J.; Chen, C.; Chen, Z.; Liu, L.; Zhang, G.; Yang, J.; Zhang, Z.; Zhang, Z.; et al. Fenpropathrin, a widely used pestcide, causes dopaminergic degeneration. Mol. Neurobiol. 2016, 53, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Berg, D.; Gerlach, M.; Youdim, M.B.H.; Double, K.L.; Zecca, L.; Riederer, P.; Becker, G. Brain iron pathways and their relevance to Parkinson’s disease. J. Neurochem. 2001, 79, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Tanaka, K.; Fukushima, W.; Sasaki, S.; Kiyohara, C.; Tsuboi, Y.; Yamada, T.; Oeda, T.; Miki, T.; Kawamura, N.; et al. Dietary intake of metals and risk of Parkinson’s disease: A case-control study in Japan. J. Neurol. Sci. 2011, 306, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Logroscino, G.; Gao, X.; Chen, H.; Wing, A.; Ascherio, A. Dietary iron intake and risk of Parkinson’s disease. Am. J. Epidemiol. 2008, 168, 1318–1818. [Google Scholar] [CrossRef] [PubMed]
- Kumudini, N.; Uma, A.; Devi, Y.P.; Naushad, S.M.; Mridula, R.; Borgohain, R.; Kutala, V.K. Association of Parkinson’s disease with altered serum levels of lead and transition metals among South Indian subjects. Indian J. Biochem. Biophys. 2014, 51, 121–126. [Google Scholar] [PubMed]
- Zhao, H.-W.; Lin, J.; Wang, X.-B.; Cheng, X.; Wang, J.-Y.; Hu, B.-L.; Zhang, Y.; Zhang, X.; Zhu, J.-H. Assessing plasma levels of selenium, copper, iron and zinc in patients of Parkinson’s disease. PLoS ONE 2013, 8, e83060. [Google Scholar] [CrossRef] [PubMed]
- Farhoudi, M.; Taheradghdam, A.; Farid, G.A.; Talebi, M.; Pashapou, A. Serum iron and ferritin level in idiopathic Parkinson. Pak. J. Biol. Sci. 2012, 15, 1094–1097. [Google Scholar] [PubMed]
- Costa-Mallen, P.; Zabetian, C.P.; Agarwal, P.; Shu-Ching, H.; Yearout, D.; Samii, A.; Leverenz, J.B.; Roberts, J.W.; Checkoway, H. Haptoglobin phenotype modifies serum iron levels and the effect of smoking on Parkinson disease risk. Parkinsonism Relat. Disord. 2015, 21, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Bharath, S.; Hsu, M.; Kaur, D.; Rajagopalan, S.; Anderson, J.K. Glutathione, iron and Parkinson’s disease. Biochem. Pharmacol. 2002, 64, 1037–1048. [Google Scholar] [CrossRef]
- Ben-Sachar, D.; Zuk, R.; Glinka, Y. Dopamine neurotoxicity: Inhibition of mitochondrial respiration. J. Neurochem. 1995, 64, 718–723. [Google Scholar] [CrossRef]
- Dexter, D.T.; Carayon, A.; Javoy-Agid, F.; Agid, Y.; Wells, F.R.; Daniel, S.E.; Lees, A.J.; Jenner, P.; Marsden, C.D. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991, 114, 1953–1975. [Google Scholar] [CrossRef] [PubMed]
- Kaur, D.; Yantiri, F.; Rajagopalan, S.; Kumar, J.; Mo, J.Q.; Boonplueang, R.; Viswanath, V.; Jacobs, R.; Yang, L.; Beal, M.F.; et al. Genetic or pharmacological iron chelation prevents MPTP-Induced Neurotoxicity in vivo: A novel therapy for Parkinson’s disease. Neuron 2003, 37, 899–909. [Google Scholar] [CrossRef]
- Olanow, C.W. Manganese-induced Parkinsonism and Parkinson’s disease. Ann. N. Y. Acad. Sci. 2004, 1012, 209–223. [Google Scholar] [CrossRef] [PubMed]
- Guilarte, T.R. Manganese and Parkinson’s disease: A critical review and new findings. Environ. Health Perspect. 2010, 118, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Cersosimo, M.G.; Koller, W.C. The diagnosis of manganese-induced Parkinsonism. Neurotoxicology 2006, 27, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Sikk, K.; Haldre, S.; Aquilonius, S.-M.; Taba, P. Manganese-induced Parkinsonism due to ephedrone abuse. Parkinsons Dis. 2011, 2011, 865319. [Google Scholar] [CrossRef] [PubMed]
- Stepens, A.; Logina, I.; Liguts, V.; Aldins, P.; Eksteina, I.; Platkajis, A.; Martinsone, I.; Terauds, E.; Rozentale, B.; Donaghy, M. A Parkinsonian syndrome in methcathinone users and the role of manganese. N. Engl. J. Med. 2008, 358, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Kwakye, G.F.; Paoliello, M.M.B.; Mukhopadhyay, S.; Bowman, A.B.; Aschner, M. Manganese-induced Parkinsonism and Parkinson’s disease: Shared and distinguishable features. Environ. Res. Public Health 2015, 12, 7519–7540. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.A.; Garrick, M.D. Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem. Pharmacol. 2003, 66, 1–13. [Google Scholar] [CrossRef]
- Roth, J.A.; Feng, L.; Walowitz, J.; Browne, R.W. Manganese-induced rat Pheochromocytomaa (PC12) cell death is independent of caspase activation. J. Neurosci. Res. 2000, 61, 162–171. [Google Scholar] [CrossRef]
- Chen, C.-J.; Liao, S.-L. Oxidative stress involves in astrocytic alterations induced by manganese. Exp. Neurol. 2002, 175, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Reaney, S.H.; Smith, D.R. Manganese oxidation state mediates toxicity in PC12 cells. Toxicol. Appl. Pharmacol. 2005, 205, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.A. Are there common biochemical and molecular mechanisms controlling Manganism and Parkinsonism. Neuromol. Med. 2009, 11, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Peres, T.V.; Eyng, H.; Lopes, S.C.; Colle, D.; Goncalves, F.M.; Venske, D.K.R.; Lopes, M.W.; Ben, J.; Bornhorst, J.; Schwerdtle, T.; et al. Developmental exposure to manganese induces lasting motor and cognitive impairment in rats. Neurotoxicology 2015, 50, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Gorell, J.M.; Johnson, C.C.; Rybicki, B.A.; Peterson, E.L.; Kortsha, G.X.; Brown, G.G.; Richardson, R.J. Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 1997, 48, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Willis, A.W.; Evanoff, B.A.; Lian, M.; Galarza, A.; Wegrzyn, A.; Schootman, M.; Racette, B.A. Metal emissions and urban incident Parkinsons disease: A community health study of Medicare beneficiaries by using geographic information systems. Am. J. Epidemiol. 2010, 172, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Powers, K.M.; Smith-Weller, T.; Franklin, G.M.; Longstreth, W.T.; Swanson, P.D.; Checkoway, H. Parkinson’s disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology 2003, 60, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Bowler, R.M.; Koller, W.C.; Schulz, P.E. Parkinsonism due to manganism in a welder: Neurological and neuropsychological sequelae. Neurotoxicology 2006, 27, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Koller, W.C.; Lyons, K.E.; Truly, W. Effect of levodopa treatment for Parkinsonism in welders: A double-blind study. Neurology 2004, 62, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Racette, B.A.; Mcgee-Minnich, L.; Moerlein, S.M.; Mink, J.W.; Videen, T.O.; Perlmutter, J.S. Welding-related parkinsonism. Neurology 2001, 56, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Racette, B.A.; Criswell, S.R.; Lundin, J.I.; Hobson, A.; Seixas, N.; Kotzbauer, P.T.; Evanoff, B.A.; Perlmutter, J.S.; Zhang, J.; Sheppard, L.; et al. Increased risk of parkinsonism associated with welding exposure. Neurotoxicology 2012, 33, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Yoo, C.; Sim, C.S.; Kim, J.-W.; Yi, Y.; Jung, K.Y.; Chung, S.-E.; Kim, Y. Occupations and Parkinson’s disease: A case-control study in South Korea. Ind. Health 2004, 42, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, D.O. Polychlorinated biphenyls (PCBs): Routes of exposure and effects on human health. Rev. Environ. Health 2006, 21, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Seegal, R.F.; Bush, B.; Brosch, K.O. Decreases in dopamine concentrations in adult, non-human primate brain persist following removal from polychlorinated biphenyls. Toxicology 1994, 86, 71–87. [Google Scholar] [CrossRef]
- Caudle, W.M.; Richardson, J.R.; Delea, K.C.; Guillot, T.S.; Wang, M.; Pennell, K.D.; Miller, G.W. Polychlorinated biphenyl-induced reduction of dopamine transporter expression as a precursor to Parkinson’s disease-associated dopamine toxicity. Toxicol. Sci. 2006, 92, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Hatcher-Martin, J.M.; Gearing, M.; Steenland, K.; Levey, A.I.; Miller, G.W.; Pennell, K.D. Association between polychlorinated biphenyls and Parkinson’s disease neuropathology. Neurotoxicology 2012, 33, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.S.; Halling, J.; Bech, S.; Wermuth, L.; Weihe, P.; Neilsen, F.; Jorgensen, P.J.; Budtz-Jorgensen, E.; Grandjean, P. Impact of dietary exposure to food contaminants on the risk of Parkinson’s disease. Neurotoxicology 2008, 29, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Weisskopf, M.G.; Knekt, P.; O’Reilly, E.J.; Lyytinen, J.; Reunanen, A.; Laden, F.; Altshul, L.; Ascherio, A. Polychlorinated biphenyls in prospectively collected serum and Parkinson’s disease risk. Mov. Disord. 2012, 27, 1659–1665. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K.; Hein, M.J.; Cassinelli, R.T.; Prince, M.M.; Nilsen, N.B.; Whelan, E.A.; Waters, M.A.; Ruder, A.M.; Schnorr, T.M. Polychlorinated biphenyls and neurodegenerative disease mortality in an occupational cohort. Epidemiology 2006, 17, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Berg, D.; Postuma, R.B.; Adler, C.H.; Bloem, B.; Chan, P.; Dubois, B.; Gasser, T.; Goetz, C.G.; Halliday, G.; Joseph, L.; et al. MDS research criteria for prodromal Parkinson’s disease. Mov. Disord. 2015, 30, 1600–1609. [Google Scholar] [CrossRef] [PubMed]
Environmental Agent | Authors | Number of Cases/Controls | Method | Conclusions |
---|---|---|---|---|
Pesticides | Barbeau et al. 1987 [21] | 5270 cases | Data analysis of geographic incidence of PD, pesticide sales and mapping of hydrographic regions | Pesticide use significantly correlated with PD prevalence (r = 0.967) |
Stern et al. 1991 [23] | 161/149 | Chart review and Interview | Exposure to pesticides were not associated with PD | |
Jimenez-Jimenez et al. 1992 [22] | 128/256 | Questionnaire and neurologic assessment | PD not associated with history of pesticide exposure | |
Butterfield et al. 1993 [24] | 63/68 | Questionnaire and Interview | Herbicide (OR 3.22) ** and insecticide (OR 5.75) *** exposure each associated with risk of PD | |
Hertzman et al. 1994 [25] | 127/245 | Interview and neurologic assessment | Occupational exposure to pesticides significantly associated with risk of PD in male subjects OR 2.03 (95% CI 1.0, 4.12), with no significant association found with specific pesticides | |
Morano et al. 1994 [28] | 74/148 | Questionnaire | PD not associated with history of pesticide exposure, though well water drinking and rural living was. | |
Chan et al. 1998 [29] | 215/313 | Questionnaire, neurologic assessment and genetic testing | Duration of pesticide exposure associated with marginally increased risk of PD OR 1.05 (95% CI 1.01, 1.09) * | |
McCann et al. 1998 [26] | 224/310 | Interview and neurologic assessment | PD not associated with history of pesticide exposure | |
Kuopio et al. 1999 [27] | 123/145 | Interview and neurologic assessment | No significant association between pesticides and PD. | |
Engel et al. 2001 [30] | Questionnaire and neurologic assessment | PR of 2.0 (95% CI 1.0, 4.2) ** for subjects in the highest tertile of years of exposure to pesticides and a similarly increased, non-significant PR was found for the middle tertile. No increased risks were found associated with specific pesticides. | ||
Ascherio et al. 2006 [32] | 7864 | Questionnaire and medical record review | Exposure to pesticides had a 70% higher incidence of PD than in those without exposure ** | |
Kamel et al. 2007 [31] | 161/55,931 | Questionnaire and Interview | PD associated with cumulative days of pesticide use at enrollment, OR 2.3 (95% CI 1.2, 4.5) ** | |
Brouwer et al. 2015 [38] | 609/4391 | Questionnaire and cohort follow up of PD incidence | Few significant associations between PD and occupational exposure to pesticides | |
Wan et al. 2015 [37] | 6557 cases | Use of state-wide PD registry and geographic estimates of pesticide exposure | No significant association with paraquat exposure, but with other less studied pesticide ingredients | |
Rotenone | Tanner et al. 2011 [51] | 110/358 | Interview and neurologic assessment | Rotenone exposure associated with PD, OR 2.5 (95% CI 1.3, 4.7) ** |
Dhillon et al. 2008 [52] | 102/84 | Questionnaire | Report of past rotenone use was associated with PD, OR 10.0 (95% CI 2.9, 34.3) | |
Furlong et al. 2015 [53] | 69/237 | Nested Case Control Study | Protective glove use modified association of paraquat and permethrin with PD, paraquat OR 3.9 (95% CI 1.3, 11.7) * & permethrin OR 4.3 (95% CI 1.2, 15.6) * but did not modify the association with rotenone | |
Paraquat | Liou et al. 1997 [54] | 120/240 | Interview and neurologic assessment | Paraquat exposure associated with PD, OR 3.2 (95% CI 2.41, 4.31) ** |
Kamel et al. 2007 [31] | 14/11,266 | Questionnaire and Interview | Paraquat associated with higher rate of prevalent PD, O.R. 1.8 (95% CI 1.0, 3.4) | |
Costello et al. 2009 [34] | 268/341 | Interview and geographic estimates of ambient paraquat exposure | Paraquat exposure associated with increased PD risk, OR 2.27 (95% CI 0.91, 5.70) | |
Ritz et al. 2009 [36] | 324/334 | Genetic testing, neurologic assessment and geographic exposure estimates | PD risk was increased in subjects who had one ore more dopamine transporter susceptibility alleles with high exposure to paraquat and maneb 1 allele OR 2.99; (95%CI 0.88, 10.2) & >2 alleles OR 4.53 (95% CI 1.7, 12.1) | |
Elbaz et al. 2009 [68] | 224/557 | Clinical evaluation and interview | Paraquat exposure not associated with PD | |
Tanner et al. 2011 [51] | 110/358 | Interview and neurologic assessment | Paraquat exposure associated with PD, OR 2.0 (95% CI 1.4, 4.7) ** | |
Lee et al. 2012 [35] | 357/754 | Clinical evaluation, interview and pesticide exposure estimate | Paraquat exposure and history of traumatic brain injury associated with PD risk OR 2.77 (95% CI 1.45, 5.29) | |
Goldman et al. 2012 [64] | 87/343 | Interview, neurologic assessment and DNA analysis | Men exposed to paraquat with functional glutathione S-transferase M1 (GSTT1) genotype had lower risk of PD compared to men exposed to paraquat lacking GSTT1 | |
Maneb | Ferraz et al. 1988 [57] | 50/19 | Questionnaire and neurologic assessment | Increased cogwheel rigidity associated with maneb exposure ** |
Wang et al. 2011 [56] | 362/341 | Interview and geographic estimates of ambient paraquat, maneb and ziram exposure | Combined exposure to all 3 pesticides associated with PD risk at workplaces OR 3.09 (95% CI 1.69, 5.64) and residences OR 1.86 (95% CI 1.09, 3.18) and combined exposure to ziram and paraquat at workplaces associated with PD risk OR1.82 (95% CI 1.03,3.21) | |
Organochlorines | Seidler et al. 1996 [70] | 380/755 | Clinical evaluation and interview | Association between PD and organochlorine exposure OR 5.8 (95% CI 1.1, 30.4) |
Richardson et al. 2009 [71] | 50/43 | clinical evaluation and serum testing for levels of organlchlorine pesticides | β-HCH was associated with higher likelihood of PD, OR 4.39 (95% CI 1.67, 11.6) *** | |
Elbaz et al. 2009 [68] | 224/557 | Clinical evaluation and interview | Organochlorine exposure associated with PD in men OR 2.2 (95% CI 1.1, 4.3) | |
Dutheil et al. 2010 [78] | 207/482 | Clinical evaluation, questionnaire and DNA analysis | Homozygous variants in the ABCB1 gene, responsible for clearing xenobiotics, and reported organochlorine exposure was associated with PD O.R 3.5 (95% CI 0.9, 14.5) | |
Weisskopf et al. 2010 [77] | 349/101 | Nested case-control study within Finnish Mobile Clinic Health Examination survey with analysis of serum samples for dieldren | Dieldren was associated with OR 1.28 (95% CI 1.26, 3.02) ** | |
Richardson et al. 2011 [71] | 149/134 | Clinical evaluation and serum testing for levels of organochlorine pesticides | PD patients had higher serum levels of β-HCH than controls in higher exposure cohort **, but in cohort with lower levels there was no significant difference | |
Webster Ross et al. 2012 [81] | 225 | Postmortem study of organochlorine levels in frozen occipital lobe samples and identification of Lewy Bodies and Lewy neurits | Insignificant associations between Lewy Body pathology and presence of organochlorine compounds | |
Chhillar et al. 2013 [73] | 70/75 | Clinical evaluation and serum testing for levels of organochlorine pesticides | β Hexachlorocyclohexane (HCH) and Dieldren levels were significantly higher in PD *** with OR 2.56 (95% CI 1.68, 3.91) & 2.09 (95% CI 1.41, 3.11) | |
Steenland et al. 2014 [74] | 89 | Clinical evaluation and serum testing for levels of organochlorine pesticides | Dieldrin was associated with a nonsignificant higher risk of tremor at rest | |
Organophosphates | Akhmedova et al. 2001 [86] | 117/207 | DNA sample analysis | Association between PD and PON1 gene polymorphism ** |
Carmine et al. 2002 [85] | 114/127 | DNA sample analysis | Association between PD and PON1 gene polymorphism * | |
Firestone et al. 2005 [82] | 250/388 | Interview and chart review | Organophosphate parathion associated with PD OR 8.08 (95% CI 0.92, 70.85) | |
Manthripragada et al. 2010 [84] | 351/363 | Interview, estimate of ambient pesticide exposure and DNA sample analysis | Increased risk of PD with exposure to ambient organophosphates and having common genetic variant in PON1 | |
Wang et al. 2014 [33] | 357/752 | Interview and geographic estimates of ambient pesticide exposure | Exposure to ambient organophosphates associated with increased odds of PD | |
Narayan et al. 2013 [83] | 357/807 | Interview and home pesticide ingredient database review | Frequent use of household pesticides containing organophosphates increased the odds of PD more strongly by 71% OR 1.71 (95% CI 1.21, 2.41) | |
Iron | Logroscino et al. 2008 [91] | 422/124,353 | Questionnaire | Dietary nonheme iron intake associated with PD, relative risk 1.27 (95% Cl 0.92, 1.76) * |
Miyake et al. 2011 [90] | 249/368 | Clinical evaluation and questionnaire | Higher dietary intake of iron and other metals associated with lower risk of PD OR 0.33 (95% CI 0.13, 0.81) ** | |
Farhoudi et al. 2012 [94] | 50/50 | Serum sample analysis | Serum iron levels were not significantly different between PD and control subjects | |
Zhao et al. 2013 [93] | 238/302 | Clinical evaluation and blood sample analysis | Iron and selenium concentrations were significantly increased in PD patients ** | |
Kumudini et al. 2014 [92] | 150/170 | Clinical evaluation and blood sample analysis | Plasma iron and copper levels were significantly elevated * in PD subjects compared to controls, with no significant difference in manganese and lead | |
Costa-Mallen et al. 2015 [95] | 128/226 | Serum iron, ferritin and haptoglobin phenotype testing | PD cases has lower serum iron levels than controls | |
Manganese | Gorell et al. 1997 [111] | 144/464 | Survey and estimates of occupational metal exposure | No significant elevated risk of PD with estimated manganese exposure |
Powers et al. 2003 [113] | 250/388 | Interview and nutrient intake estimates | High intake of iron with manganese associated with increased PD risk | |
Park et al. 2004 [118] | 105/129 | Interview and questionnaire | Occupations with high potential exposure to manganese not significantly associated with PD | |
Willis et al.. 2010 [112] | NA | PD incidence calculated and compared between counties with high or low industrial release of manganese | PD incidence was greatest in counties with high manganese release | |
Polychlorinated biphenyls (PCBs) | Steenland et al. 2005 [125] | N/A | Retrospective data analysis | No overall increased incidence of PD in PCB exposed workers |
Petersen et al. 2008 [123] | 79/154 | Clinical evaluation and serum and hair testing | Whale meat consumption significantly associated with PD, OR 6.53 (95% CI 3.02, 14.14) ** serum PCBs not associated with PD | |
Weisskopf et al. 2012 [124] | 101/349 | Nested case-control study within Finnish Mobile Clinic Health Examination survey with analysis of serum samples for PCBs | No significant association between increasing PCB serum levels and PD |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandipati, S.; Litvan, I. Environmental Exposures and Parkinson’s Disease. Int. J. Environ. Res. Public Health 2016, 13, 881. https://doi.org/10.3390/ijerph13090881
Nandipati S, Litvan I. Environmental Exposures and Parkinson’s Disease. International Journal of Environmental Research and Public Health. 2016; 13(9):881. https://doi.org/10.3390/ijerph13090881
Chicago/Turabian StyleNandipati, Sirisha, and Irene Litvan. 2016. "Environmental Exposures and Parkinson’s Disease" International Journal of Environmental Research and Public Health 13, no. 9: 881. https://doi.org/10.3390/ijerph13090881