Polymorphisms in Long Noncoding RNA H19 Contribute to the Protective Effects of Coal Workers’ Pneumoconiosis in a Chinese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. SNP Selection
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Subjects
3.2. Associations between H19 Polymorphisms and the Risk of CWP
3.3. Stratified Analysis between the Genotypes of H19 rs2067051 and the Risk of CWP
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cullinan, P.; Reid, P. Pneumoconiosis. Prim. Care Respir. J. 2013, 22, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.C.; Yu, I.T.; Chen, W. Silicosis. Lancet 2012, 379, 2008–2018. [Google Scholar] [CrossRef]
- Chu, M.; Ji, X.; Chen, W.; Zhang, R.; Sun, C.; Wang, T.; Luo, C.; Gong, J.; Zhu, M.; Fan, J.; et al. A genome-wide association study identifies susceptibility loci of silica-related pneumoconiosis in Han Chinese. Hum. Mol. Genet. 2014, 23, 6385–6394. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Han, R.; Ji, X.; Wang, T.; Yang, J.; Yuan, J.; Wu, Q.; Zhu, B.; Zhang, H.; Ding, B.; et al. Prevalence characteristics of coal workers’ pneumoconiosis (CWP) in a state-owned mine in Eastern China. Int. J. Environ. Res. Public Health 2015, 12, 7856–7867. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Froberg, J.E.; Lee, J.T. Long noncoding RNAS: Fresh perspectives into the RNA world. Trends Biochem. Sci. 2014, 39, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chen, Q.; Liu, X.; Sun, Q.; Zhao, X.; Deng, R.; Wang, Y.; Huang, J.; Xu, M.; Yan, J.; et al. LncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 2014, 281, 3766–3775. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yin, C.; Dang, Y.; Ye, F.; Zhang, G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Li, Z.; Wang, W.; Zeng, Y.; Liu, Z.; Qiu, J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 2013, 333, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Matouk, I.J.; Halle, D.; Gilon, M.; Hochberg, A. The non-coding RNAs of the H19-IGF2 imprinted loci: A focus on biological roles and therapeutic potential in lung cancer. J. Transl. Med. 2015, 13. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.C.; Fu, W.M.; Wong, C.W.; Wang, Y.; Wang, W.M.; Hu, G.X.; Zhang, L.; Xiao, L.J.; Wan, D.C.; Zhang, J.F.; et al. The LncRNA H19 promotes epithelial to mesenchymal transition by functioning as MiRNA sponges in colorectal cancer. Oncotarget 2015, 6, 22513–22525. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Cao, L.; Qiu, L.; Dai, X.; Ma, L.; Zhou, Y.; Li, H.; Gao, M.; Li, W.; Zhang, Q.; et al. Upregulation of H19 promotes invasion and induces epithelial-to-mesenchymal transition in esophageal cancer. Oncol. Lett. 2015, 10, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Cao, W.; Yang, J.J.; Shi, K.H.; Zhou, X.; Liu, L.P.; Li, J. Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis. Cardiovasc. Pathol. 2016, 25, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, C.; Barbier, O.; Smalling, R.; Tsuchiya, H.; Lee, S.; Delker, D.; Zou, A.; Hagedorn, C.H.; Wang, L. Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and LncRNA H19 function. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Li, W.; Yin, D.; De, W.; Zhu, L.; Sun, S.; Han, L. c-Myc-regulated long non-coding RNA H19 indicates a poor prognosis and affects cell proliferation in non-small-cell lung cancer. Tumour. Biol. 2016, 37, 4007–4015. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.; Lee, J.Y.; Donaldson, A.V.; Natanek, S.A.; Vaidyanathan, S.; Man, W.D.; Hopkinson, N.S.; Sayer, A.A.; Patel, H.P.; Cooper, C.; et al. Increased expression of H19/miR-675 is associated with a low fat-free mass index in patients with COPD. J. Cachexia Sarcopenia Muscle 2016, 7, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Liu, W.; Zhang, J.; Miao, X.; Guo, A.Y. Lncrnasnp: A database of SNPs in IncRNAs and their potential functions in human and mouse. Nucleic Acids Res. 2015, 43, D181–D186. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pan, S.; Liu, L.; Zhai, X.; Liu, J.; Wen, J.; Zhang, Y.; Chen, J.; Shen, H.; Hu, Z. A genetic variant in long non-coding RNA HULC contributes to risk of HBV-related hepatocellular carcinoma in a Chinese population. PLoS ONE 2012, 7, e35145. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Zhu, M.; Wang, H.; Zhao, S.; Zhao, D.; Yang, Y.; Wang, Z.M.; Wang, F.; Yang, Z.J.; Lu, X.; et al. Association of polymorphisms in long non-coding RNA H19 with coronary artery disease risk in a Chinese population. Mutat. Res. 2015, 772, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Tang, R.; Ma, X.; Wang, Y.; Luo, D.; Xu, Z.; Zhu, Y.; Yang, L. Tag SNPs in long non-coding RNA H19 contribute to susceptibility to gastric cancer in the Chinese Han population. Oncotarget 2015, 6, 15311–15320. [Google Scholar] [CrossRef] [PubMed]
- The HapMap Database. Available online: http://hapmap.ncbi.nlm.nih.gov/ (accessed on 2 June 2016).
- The lncRNASNP Databases. Available online: http://bioinfo.life.hust.edu.cn/lncRNASNP/ (accessed on 20 July 2016).
- Wang, T.; Yang, J.; Han, R.; Ji, X.; Wu, B.; Han, L.; Luo, C.; Fan, J.; Zhu, B.; Ni, C. Polymorphisms in SPARC and coal workers’ pneumoconiosis risk in a Chinese population. PLoS ONE 2014, 9, e105226. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Wang, L.; Wu, B.; Han, R.; Han, L.; Wang, T.; Yang, J.; Ni, C. Associations of MMP1, MMP2 and MMP3 genes polymorphism with coal workers’ pneumoconiosis in Chinese Han population. Int. J. Environ. Res. Public Health 2015, 12, 13901–13912. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hua, Y.; Jin, J.; Wang, H.; Du, M.; Zhu, L.; Chu, H.; Zhang, Z.; Wang, M. Association of genetic variants in lncRNA H19 with risk of colorectal cancer in a Chinese population. Oncotarget 2016, 7, 25470–25477. [Google Scholar] [CrossRef] [PubMed]
- Adkins, R.M.; Somes, G.; Morrison, J.C.; Hill, J.B.; Watson, E.M.; Magann, E.F.; Krushkal, J. Association of birth weight with polymorphisms in the IGF2, H19, and IGF2R genes. Pediatr. Res. 2010, 68, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Saarenpaa, H.K.; Tikanmaki, M.; Sipola-Leppanen, M.; Hovi, P.; Wehkalampi, K.; Siltanen, M.; Vaarasmaki, M.; Jarvenpaa, A.L.; Eriksson, J.G.; Andersson, S.; et al. Lung function in very low birth weight adults. Pediatrics 2015, 136, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Kallen, A.N.; Zhou, X.B.; Xu, J.; Qiao, C.; Ma, J.; Yan, L.; Lu, L.; Liu, C.; Yi, J.S.; Zhang, H.; et al. The imprinted H19 LncRNA antagonizes Let-7 MicroRNAs. Mol. Cell 2013, 52, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Vennin, C.; Spruyt, N.; Dahmani, F.; Julien, S.; Bertucci, F.; Finetti, P.; Chassat, T.; Bourette, R.P.; Le Bourhis, X.; Adriaenssens, E. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget 2015, 6, 29209–29223. [Google Scholar] [PubMed]
- Sa, P.M.; Lopes, A.J.; Jansen, J.M.; Melo, P.L. Oscillation mechanics of the respiratory system in never-smoking patients with silicosis: Pathophysiological study and evaluation of diagnostic accuracy. Clinics 2013, 68, 644–651. [Google Scholar] [CrossRef]
- Tse, L.A.; Yu, I.T.; Qiu, H.; Leung, C.C. Joint effects of smoking and silicosis on diseases to the lungs. PLoS ONE 2014, 9, e104494. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Ji, X.; Wu, B.; Wang, T.; Han, L.; Yang, J.; Zhu, B.; Ni, C. Polymorphisms in interleukin 17A gene and coal workers’ pneumoconiosis risk in a Chinese population. BMC Pulm. Med. 2015, 15. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, S.; Song, Z.; Ji, X.; Zhang, Z.; Zhou, J.; Ni, C. Associations of IL-4, IL-4R, and IL-13 gene polymorphisms in coal workers’ pneumoconiosis in China: A case-control study. PLoS ONE 2011, 6, e22624. [Google Scholar] [CrossRef] [PubMed]
Variables | CWP Cases (n = 703) | Controls (n = 705) | p | ||
---|---|---|---|---|---|
N | % | N | % | ||
Age, years (mean ± SD) | 67.26 ± 10.78 | 66.32 ± 9.72 | 0.086 | ||
Exposure years (mean ± SD) | 24.91 ± 8.54 | 25.48 ± 7.06 | 0.170 | ||
Smoking status | 0.088 | ||||
Never | 374 | 53.2 | 343 | 48.7 | |
Ever | 329 | 46.8 | 362 | 51.3 | |
Pack-years smoked | <0.001 | ||||
0 | 374 | 53.2 | 343 | 48.7 | |
0–20 | 201 | 28.6 | 165 | 23.4 | |
>20 | 128 | 18.2 | 197 | 27.9 | |
Job type | 0.703 | ||||
Tunnel and coal mining | 590 | 83.9 | 599 | 85.0 | |
Transport | 40 | 5.7 | 42 | 6.0 | |
Others | 73 | 10.4 | 64 | 9.1 | |
Stage | |||||
I | 431 | 61.3 | |||
II | 209 | 29.7 | |||
III | 63 | 9.0 |
SNPs | Region | dbSNPAllele | MAF | HWEa | |
---|---|---|---|---|---|
Case | Control | ||||
rs2067051 | Exon | C>T | 0.0971 | 0.1368 | 0.259 |
rs217727 | Exon | G>A | 0.3459 | 0.3755 | 0.568 |
rs2839702 | Exon | A>C | 0.2905 | 0.2939 | 0.233 |
Variables | CWP Cases | Controls | OR (95%CI) a | p a | OR (95%CI) b | p b | p c | ||
---|---|---|---|---|---|---|---|---|---|
N | % | N | % | ||||||
rs2067051 | n = 695 | n = 691 | |||||||
CC | 563 | 81.0 | 511 | 74.0 | 1.00 | 1.00 | |||
CT | 129 | 18.6 | 171 | 24.7 | 0.68 (0.53–0.89) | 0.004 | 0.67 (0.51–0.86) | 0.002 | 0.048 |
TT | 3 | 0.4 | 9 | 1.3 | 0.30 (0.08–1.12) | 0.074 | 0.28 (0.07–1.05) | 0.059 | 1.000 |
C allele | 1255 | 90.3 | 1193 | 86.3 | 1.00 | 1.00 | |||
T allele | 135 | 9.7 | 189 | 13.7 | 0.68 (0.54–0.86) | 0.001 | 0.66 (0.52–0.84) | 0.001 | 0.024 |
Dominant | 0.67 (0.52–0.86) | 0.002 | 0.65 (0.50–0.84) | 0.001 | 0.024 | ||||
Recessive | 0.33 (0.09–1.22) | 0.096 | 0.31 (0.08–1.15) | 0.080 | 1.000 | ||||
Additive | 0.67 (0.52–0.85) | 0.001 | 0.65 (0.51–0.82) | 0.001 | 0.024 | ||||
rs217727 | n = 691 | n = 683 | |||||||
GG | 296 | 42.8 | 270 | 39.5 | 1.00 | 1.00 | |||
AG | 312 | 45.2 | 313 | 45.8 | 0.91 (0.72–1.14) | 0.413 | 0.91 (0.72–1.15) | 0.422 | 1.000 |
AA | 83 | 12.0 | 100 | 14.7 | 0.76 (0.54–1.06) | 0.103 | 0.74 (0.53–1.04) | 0.087 | 1.000 |
G allele | 904 | 65.4 | 853 | 62.4 | 1.00 | 1.00 | |||
A allele | 478 | 34.6 | 513 | 37.6 | 0.88 (0.75–1.03) | 0.105 | 0.87 (0.75–1.02) | 0.095 | 1.000 |
Dominant | 0.87 (0.70–1.08) | 0.213 | 0.87 (0.70–1.08) | 0.210 | 1.000 | ||||
Recessive | 0.80 (0.58–1.09) | 0.152 | 0.78 (0.57–1.07) | 0.128 | 1.000 | ||||
Additive | 0.89 (0.75–1.03) | 0.108 | 0.88 (0.75–1.02) | 0.090 | 1.000 | ||||
rs2839702 | n = 697 | n = 689 | |||||||
AA | 363 | 52.1 | 350 | 50.8 | 1.00 | 1.00 | |||
CA | 263 | 37.7 | 273 | 39.6 | 0.93 (0.74–1.16) | 0.519 | 0.94 (0.75–1.18) | 0.601 | 1.000 |
CC | 71 | 10.2 | 66 | 9.6 | 1.04 (0.72–1.50) | 0.845 | 1.03 (0.72–1.50) | 0.839 | 1.000 |
A allele | 989 | 70.1 | 973 | 70.6 | 1.00 | 1.00 | |||
C allele | 405 | 29.1 | 405 | 29.4 | 0.98 (0.84–1.16) | 0.845 | 0.99 (0.84–1.17) | 0.900 | 1.000 |
Dominant | 0.95 (0.77–1.17) | 0.633 | 0.96 (0.78–1.19) | 0.710 | 1.000 | ||||
Recessive | 1.07 (0.75–1.52) | 0.705 | 1.07 (0.75–1.52) | 0.725 | 1.000 | ||||
Additive | 0.99 (0.84–1.15) | 0.850 | 0.99 (0.84–1.16) | 0.903 | 1.000 |
Variables | Cases/Controls | Genotypes (Cases/Controls) | OR (95%CI) a | p a | |||
---|---|---|---|---|---|---|---|
CC | CT/TT | ||||||
N | % | N | % | ||||
Total | 695/691 | 563/511 | 81.0/74.0 | 132/180 | 19.0/26.0 | 0.64 (0.49–0.83) | 0.001 |
Exposure Years | |||||||
<25 | 315/322 | 256/246 | 81.3/76.4 | 59/76 | 18.7/23.6 | 0.63 (0.42–0.95) | 0.026 |
≥25 | 380/369 | 307/265 | 80.8/71.8 | 73/104 | 19.2/28.2 | 0.57 (0.40–0.80) | 0.001 |
Smoking Status | |||||||
Never | 368/335 | 300/240 | 81.5/71.6 | 68/95 | 18.5/28.4 | 0.55 (0.39–0.79) | 0.001 |
Ever | 327/356 | 263/271 | 80.4/76.1 | 64/85 | 19.6/23.9 | 0.75 (0.51–1.10) | 0.138 |
Pack-Years Smoked | |||||||
0 | 368/335 | 300/240 | 81.5/71.6 | 68/95 | 18.5/28.4 | 0.55 (0.39–0.79) | 0.001 |
>0–20 | 199/163 | 158/123 | 79.4/75.5 | 41/40 | 20.6/24.5 | 0.76 (0.46–1.27) | 0.297 |
>20 | 128/193 | 105/148 | 82.0/76.7 | 23/45 | 18.0/23.3 | 0.70 (0.39–1.25) | 0.223 |
Stage | |||||||
I | 426/691 | 352/511 | 82.6/74.0 | 74/180 | 17.4/26.0 | 0.63 (0.46–0.86) | 0.004 |
II | 207/691 | 160/511 | 77.3/74.0 | 47/180 | 22.7/26.0 | 0.69 (0.47–1.02) | 0.061 |
III | 62/691 | 51/511 | 82.3/74.0 | 11/180 | 17.7/26.0 | 0.51 (0.25–1.03) | 0.060 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Yan, W.; Han, R.; Yang, J.; Yuan, J.; Ji, X.; Liu, Y.; Ni, C. Polymorphisms in Long Noncoding RNA H19 Contribute to the Protective Effects of Coal Workers’ Pneumoconiosis in a Chinese Population. Int. J. Environ. Res. Public Health 2016, 13, 903. https://doi.org/10.3390/ijerph13090903
Wu Q, Yan W, Han R, Yang J, Yuan J, Ji X, Liu Y, Ni C. Polymorphisms in Long Noncoding RNA H19 Contribute to the Protective Effects of Coal Workers’ Pneumoconiosis in a Chinese Population. International Journal of Environmental Research and Public Health. 2016; 13(9):903. https://doi.org/10.3390/ijerph13090903
Chicago/Turabian StyleWu, Qiuyun, Weiwen Yan, Ruhui Han, Jingjin Yang, Jiali Yuan, Xiaoming Ji, Yi Liu, and Chunhui Ni. 2016. "Polymorphisms in Long Noncoding RNA H19 Contribute to the Protective Effects of Coal Workers’ Pneumoconiosis in a Chinese Population" International Journal of Environmental Research and Public Health 13, no. 9: 903. https://doi.org/10.3390/ijerph13090903