Spatial and Temporal Variations of PM2.5 and Its Relation to Meteorological Factors in the Urban Area of Nanjing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Data
2.2. Methods
2.2.1. Analysis of Spatial and Temporal Variations
2.2.2. CEEMDAN Decomposition
- Initialize signal x(t) + ε0 wi(t), and decompose it by EMD to obtain their IMF1, where x(t) is the daily PM2.5 mass concentration series and w(t) is the appended white noise.
- Compute first residue in the first cycle: r1(t) = x(t) – IMF1(t).
- Decompose i-th r1(t) + ε1 E1(wi(t)), until their IMF1 of EMD and define IMF2, where Ej(.) produce the j-th mode obtained by EMD for the given signal.
- Calculate k-th residue by rk(t) = r(k−1)(t) – IMFk(t).
- Decompose i-th rk(t) + εk Ek(wi(t)) until their IMF1 of EMD and define (k + 1)-th IMF.
- Repeat step d for the next k until the residue R(t) has no more than two extrema.
2.2.3. Relationship between PM2.5 and Meteorological Factors
3. Results and Discussion
3.1. PM2.5 Data Overview
3.2. Regional Variation
3.3. Temporal Variation
3.4. Decomposition of Time Series Data
3.5. Correlation between PM2.5 and Meteorological Factors
3.6. Effect of Wind Direction on PM2.5 Concentration
4. Conclusions
- (a)
- Daily average PM2.5 concentration varied from 7.3 μg/m3 to 336.4 μg/m3. The ArcGIS map shows that Maigaoqiao suffered the poorest air quality, followed by Aotizhongxin and Ruijinlu. The lowest concentration was found at the Xuanwuhu site. The results show that spatial distribution of PM2.5 is not only related to geographical location but also other factors.
- (b)
- Seasonal variation of PM2.5 was obvious and the highest concentration was found in winter while the lowest occurred in summer. The diurnal PM2.5 concentration increased significantly from 6:00 to 10:00 in the morning and after 6:00 in the evening and stayed relatively high in the early morning. There was no significant weekend effect in Nanjing city. The CEEMDAN decomposition results show that the frequency and intensity of sudden change decreased year by year and there was a decreasing trend from 2014.
- (c)
- Spearman-Rank analysis was involved to explore the relationship between PM2.5 and meteorological factors. PM2.5 exhibited a negative association with wind speed, relative humidity, and precipitation. Temperature positively correlated with PM2.5 in most months but showed a negative correlation during the whole period, indicating a complex influence. In addition, high PM2.5 concentration was mainly related to southwest wind.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, S.; Hao, J. Air quality management in China: Issues, challenges, and options. J. Environ. Sci. 2012, 24, 2–13. [Google Scholar] [CrossRef]
- Han, L.J.; Zhou, W.Q.; Li, W.F.; Li, L. Impact of urbanization level on urban air quality: A case of fine particles (PM2.5) in Chinese cities. Environ. Pollut. 2014, 194, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cheng, H.R.; Wang, Z.W.; Lv, X.P.; Zhu, Z.M.; Zhang, G.; Wang, X.M. Fine particles (PM2.5) at a CAWNET background site in Central China: Chemical compositions, seasonal variations and regional pollution events. Atmos. Environ. 2014, 86, 193–202. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Zhang, T.-T.; Liu, Q.-Y.; Zhang, R.-J.; Sun, Z.-Q.; Zhang, M.-G. Seasonal variation of physical and chemical properties in TSP, PM10 and PM2.5 at a roadside site in Beijing and their influence on atmospheric visibility. Aerosol Air Qual. Res. 2014, 14, 954–969. [Google Scholar] [CrossRef]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, P.; Xu, J.; Meng, W.; Pu, W.; Dong, F.; He, D.; Shi, Q. Analysis of a winter regional haze event and its formation mechanism in the North China Plain. Atmos. Chem. Phys. 2013, 13, 5685–5696. [Google Scholar] [CrossRef]
- Bell, M.L.; Dominici, F.; Ebisu, K.; Zeger, S.L.; Samet, J.M. Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ. Health Perspect. 2007, 115, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G., Jr.; Speizer, F.E. An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Burden of Disease from Household Air Pollution for 2012. Available online: http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24March2014.pdf?ua=1 (accessed on 10 March 2016).
- Chen, Z.; Wang, J.N.; Ma, G.X.; Zhang, Y.S. China tackles the health effects of air pollution. Lancet 2013, 382, 1959–1960. [Google Scholar] [CrossRef]
- Xiao, Z.; Bi, X.; Feng, Y.; Wang, Y.; Zhou, J.; Fu, X.; Weng, Y. Source apportionment of ambient PM10 and PM2.5 in urban area of Ningbo city. Res. Environ. Sci. 2012, 25, 549–555. [Google Scholar]
- Sun, Y.W.; Zhou, X.H.; Wai, K.M.; Yuan, Q.; Xu, Z.; Zhou, S.Z.; Qi, Q.; Wang, W.X. Simultaneous measurement of particulate and gaseous pollutants in an urban city in North China Plain during the heating period: Implication of source contribution. Atmos. Res. 2013, 134, 24–34. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, M.; Wu, Z.; Yue, D.; He, L.; Huang, X.; Liu, X.; Wiedensohler, A. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing. Atmos. Chem. Phys. 2013, 13, 10159–10170. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Z.; Wu, M.; Feng, J.; Horii, Y.; Ohura, T.; Kannan, K. Airborne PM2.5/PM10-associated chlorinated polycyclic aromatic hydrocarbons and their parent compounds in a suburban area in Shanghai, China. Environ. Sci. Technol. 2013, 47, 7615–7623. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Yang, L.; Dong, C.; Yan, C.; Meng, C.; Sui, X.; Wang, W. Particle physical characterisation in the Yellow River Delta of Eastern China: Number size distribution and new particle formation. Air Qual. Atmos. Health 2015, 8, 441–452. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environ. Health Perspect. 2015, 124, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liu, Y.; Zhao, Q.; Liu, M.; Zhou, Y.; Bi, J. Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta Region of China using improved linear mixed effects model. Atmos. Environ. 2016, 133, 156–164. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Ying, Q.; Hu, J.L.; Zhang, H.L. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ. Int. 2014, 73, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Zhang, W. Exploring spatiotemporal patterns of PM2.5 in China based on ground-level observations for 190 cities. Environ. Pollut. 2016. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Cao, H.; Chen, Y.; Wu, C.; Hong, T.; Fan, H. Spatial and temporal characteristics of air quality and air pollutants in 2013 in Beijing. Environ. Sci. Pollut. Res. 2016, 23, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Li, X.; Wang, C.; Xu, Q.; Wang, W.; Luo, Y.; Tao, L.; Gao, Q.; Guo, J.; Chen, S. PM2.5 spatiotemporal variations and the relationship with meteorological factors during 2013–2014 in Beijing, China. PLoS ONE 2015, 10, e0141642. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Yang, J.; Qiu, M.; Zhang, H.; Zhang, S.; Li, Z. Analysis of an extremely dense regional fog event in Eastern China using a mesoscale model. Atmos. Res. 2010, 95, 428–440. [Google Scholar] [CrossRef]
- Ding, A.; Fu, C.; Yang, X.; Sun, J.; Zheng, L.; Xie, Y.; Herrmann, E.; Nie, W.; Petäjä, T.; Kerminen, V.-M. Ozone and fine particle in the western Yangtze River Delta: An overview of 1 yr data at the SORPES station. Atmos. Chem. Phys. 2013, 13, 5813–5830. [Google Scholar]
- Deng, J.J.; Wang, T.J.; Jiang, Z.Q.; Xie, M.; Zhang, R.J.; Huang, X.X.; Zhu, J.L. Characterization of visibility and its affecting factors over Nanjing, China. Atmos. Res. 2011, 101, 681–691. [Google Scholar] [CrossRef]
- Nanjing Meteorology Bureau. Available online: http://www.njqxj.gov.cn/ (accessed on 26 August 2016).
- Rose-Red Haze Show Nanjing. Available online: http://www.sh.xinhuanet.com/2015-12/23/c_134943910.htm (accessed on 26 August 2016).
- Kong, S.; Li, X.; Li, L.; Yin, Y.; Chen, K.; Yuan, L.; Zhang, Y.; Shan, Y.; Ji, Y. Variation of polycyclic aromatic hydrocarbons in atmospheric PM2.5 during winter haze period around 2014 Chinese Spring Festival at Nanjing: Insights of source changes, air mass direction and firework particle injection. Sci. Total Environ. 2015, 520, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Cui, F.; Chen, M.; Ma, Y.; Zheng, J.; Yao, L.; Zhou, Y. Optical properties and chemical apportionment of summertime PM2.5 in the suburb of Nanjing. J. Atmos. Chem. 2016, 73, 119–135. [Google Scholar] [CrossRef]
- Shen, G.F.; Yuan, S.Y.; Xie, Y.N.; Xia, S.J.; Li, L.; Yao, Y.K.; Qiao, Y.Z.; Zhang, J.; Zhao, Q.Y.; Ding, A.J. Ambient levels and temporal variations of PM2.5 and PM10 at a residential site in the mega-city, Nanjing, in the western Yangtze River Delta, China. J. Environ. Sci. Health Part A 2014, 49, 171–178. [Google Scholar] [CrossRef] [PubMed]
- China Environmental Monitoring Center. Available online: http://113.108.142.147:20035/emcpublish/ (accessed on 20 March 2016).
- China Meteorological Data Network. Available online: http://data.cma.gov.cn/ (accessed on 20 March 2016).
- Feng, X.; Li, Q.; Zhu, Y.; Wang, J.; Liang, H.; Xu, R. Formation and dominant factors of haze pollution over Beijing and its peripheral areas in winter. Atmos. Pollut. Res. 2014, 5, 528–538. [Google Scholar] [CrossRef]
- Baxter, L.K.; Sacks, J.D. Clustering cities with similar fine particulate matter exposure characteristics based on residential infiltration and in-vehicle commuting factors. Sci. Total Environ. 2014, 470, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147.
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Luukko, P.; Helske, J.; Räsänen, E. Introducing libeemd: A program package for performing the ensemble empirical mode decomposition. Computat. Stat. 2016, 31, 1–13. [Google Scholar] [CrossRef]
- Ministry of Environment Protection of China. Ambient Air Quality Standards (GB3095–2012); China Environmental Science Press: Beijing, China, 2012.
- World Health Organization. Air Quality Guidelines—Global Update 2005; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- China MEP Expose 9 Big Cities’ Pollution Source, Nanjing Blame Fired-Coal. Available online: http://www.njhb.gov.cn/43123/201504/t20150402_3248553.html (accessed on 30 April 2016).
- Pastuszka, J.S.; Rogula-Kozłowska, W.; Zajusz-Zubek, E. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environ. Monit. Assess. 2010, 168, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, Y.; Ying, Q.; Zhang, H. Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ. 2014, 95, 598–609. [Google Scholar] [CrossRef]
- Yang, L.; Gao, X.; Wang, X.; Nie, W.; Wang, J.; Gao, R.; Xu, P.; Shou, Y.; Zhang, Q.; Wang, W. Impacts of firecracker burning on aerosol chemical characteristics and human health risk levels during the Chinese New Year Celebration in Jinan, China. Sci. Total Environ. 2014, 476, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ogawa, S. Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Wang, G.H.; Wang, X.M.; Cao, J.J.; Sun, T.; Cheng, C.L.; Meng, J.J.; Hu, T.F.; Liu, S.X. Abundance, composition and source of atmospheric PM2.5 at a remote site in the Tibetan Plateau, China. Tellus B 2013, 65, 20281. [Google Scholar] [CrossRef]
- Charron, A.; Harrison, R.M. Fine (PM2.5) and coarse (PM2.5–10) particulate matter on a heavily trafficked London highway: Sources and processes. Environ. Sci. Technol. 2005, 39, 7768–7776. [Google Scholar] [CrossRef] [PubMed]
Station | Basic Statistic (μg/m3) | Percentage Reaching for Standard 1 (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Max. | Mean | Median | Min. | Std. | IT-1 | IT-2 | IT-3 | AQG | |
Aotizhongxin | 373.3 | 68.4 | 58.0 | 2.0 | 46.8 | 67.6 | 41.4 | 24.5 | 9.5 |
Caochangmen | 353.1 | 66.9 | 56.9 | 4.0 | 43.4 | 69.6 | 41.4 | 24.5 | 9.0 |
Maigaoqiao | 327.7 | 70.4 | 61.0 | 8.7 | 43.0 | 64.8 | 35.6 | 21.0 | 6.6 |
Pukou | 336.0 | 67.0 | 57.5 | 2.7 | 42.5 | 67.7 | 40.9 | 23.8 | 7.8 |
Ruijinlu | 338.0 | 68.1 | 58.0 | 9.7 | 42.1 | 69.6 | 40.3 | 23.8 | 4.3 |
Shanxilu | 332.6 | 65.0 | 55.4 | 6.1 | 42.7 | 70.6 | 44.3 | 27.1 | 11.6 |
Xianlindaxuecheng | 319.5 | 63.2 | 53.0 | 3.0 | 45.6 | 72.0 | 46.3 | 31.5 | 15.3 |
Xuanwuhu | 366.7 | 63.2 | 54.0 | 1.0 | 44.5 | 70.8 | 46.2 | 29.8 | 14.3 |
Zhonghuamen | 303.0 | 64.1 | 56.0 | 4.8 | 39.3 | 71.5 | 43.5 | 26.4 | 10.4 |
Station | Main Activities and Characteristics around Station |
---|---|
Aotizhongxin | New city area, frequent urban construction activities |
Caochangmen | Adjacent to the Yangtze River, around the universities, tourism |
Maigaoqiao | Once urban-rural binding region, frequent urban construction activities, petrochemical technology, thermal power plant |
Pukou | Nanjing Laoshan National Forest Park (station inside), dense construction activities, tourism |
Ruijinlu | Dense residential area, tourism |
Shanxilu | Residential area, shopping center |
Xianlindaxuecheng | University area, shopping malls |
Xuanwuhu | Xuanwuhu Lake (largest city park in the Jiangnan region), tourism |
Zhonghuamen | Traffic arteries, tourism |
Month/Season | WS | T | RH | Pre |
---|---|---|---|---|
January | −0.07 | 0.53 ** | −0.01 | −0.43 |
February | −0.22 | 0.35 ** | −0.17 | −0.76 ** |
March | −0.06 | 0.43 ** | 0.06 | −0.39 |
April | −0.23 | 0.28 * | −0.04 | 0.32 |
May | −0.41 ** | 0.41 ** | −0.17 | −0.27 |
June | −0.37 ** | 0.34 ** | −0.23 * | −0.23 |
July | −0.36 ** | −0.02 | −0.06 | 0.05 |
August | −0.35 ** | 0.33 ** | −0.45 ** | 0.07 |
September | −0.36 ** | 0.35 ** | 0.05 | −0.35 |
October | −0.30 ** | −0.03 | −0.10 | −0.28 |
November | −0.38 ** | 0.35 ** | −0.34 ** | −0.26 |
December | −0.16 | 0.29 ** | 0.28 ** | −0.80 |
Winter | −0.17 | 0.35 ** | 0.02 | −0.67 ** |
Spring | −0.26 ** | 0.22 ** | −0.05 | −0.17 |
Summer | −0.26 ** | −0.03 | −0.60 * | −0.05 |
Autumn | −0.38 ** | −0.26 ** | −0.19 ** | −0.28 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; He, J.; Lu, X.; She, J.; Guan, Z. Spatial and Temporal Variations of PM2.5 and Its Relation to Meteorological Factors in the Urban Area of Nanjing, China. Int. J. Environ. Res. Public Health 2016, 13, 921. https://doi.org/10.3390/ijerph13090921
Chen T, He J, Lu X, She J, Guan Z. Spatial and Temporal Variations of PM2.5 and Its Relation to Meteorological Factors in the Urban Area of Nanjing, China. International Journal of Environmental Research and Public Health. 2016; 13(9):921. https://doi.org/10.3390/ijerph13090921
Chicago/Turabian StyleChen, Tao, Jun He, Xiaowei Lu, Jiangfeng She, and Zhongqing Guan. 2016. "Spatial and Temporal Variations of PM2.5 and Its Relation to Meteorological Factors in the Urban Area of Nanjing, China" International Journal of Environmental Research and Public Health 13, no. 9: 921. https://doi.org/10.3390/ijerph13090921