Are Cockroaches an Important Source of Indoor Endotoxins?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cockroach Sampling
2.2. Endotoxin and Allergen Extraction and Measurement
2.3. Bacterial Community in the Whole Body Extracts
3. Results
3.1. Endotoxin and Allergen Levels in Feces
3.2. Bacterial Community in the Whole Body Extracts
4. Discussion
4.1. Cockroaches in Hong Kong and Other Cities Nearby
4.2. Allergen Levels in Different Cockroach Species
4.3. Endotoxin Levels in Different Cockroach Species
4.4. Environmental Importance of Cockroach Endotoxins
4.5. Applying a New Approach to Estimate Cockroach Endotoxins in the Environment
4.6. Limitations of Using Bla g 1 and Bla g 2 to Estimate Cockroach Endotoxins
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Pomés, A.; Wunschmann, S.; Hindley, J.; Vailes, L.D.; Chapman, M.D. Cockroach allergens: Function, structure and allergenicity. Protein Pept. Lett. 2007, 14, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, Ö. Cockroach allergy, respiratory allergic diseases and its immunotherapy. Int. J. Immunol. Immunother. 2014, 1, 1–5. [Google Scholar]
- Cochran, D.G. Cockroaches: Their Biology, Distribution and Control; WHO/CDPC/WHOPES: Geneva, Switzerland, 1999. [Google Scholar]
- Bonnefoy, X.; Kampen, H.; Sweeney, K. Public Health Significance of Urban Pests; WHO: Copenhagen, Denmark, 2008. [Google Scholar]
- Thorne, P.S.; Cohn, R.D.; Mav, D.; Arbes, S.J.; Zeldin, D.C. Predictors of endotoxin levels in US housing. Environ. Health Perspect. 2009, 117, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Kulhankova, K.; George, C.L.; Kline, J.N.; Darling, M.; Thorne, P.S. Endotoxin inhalation alters lung development in neonatal mice. Am. J. Ind. Med. 2012, 55, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, K.; Siebers, R.; Crane, J. Endotoxin and indoor allergen levels in kindergartens and daycare centres in Wellington, New Zealand. N. Z. Med. J. 2007, 120, U2400. [Google Scholar] [PubMed]
- Kulhankova, K.; George, C.L.; Kline, J.N.; Snyder, J.M.; Darling, M.; Field, E.H.; Thorne, P.S. Early-life co-administration of cockroach allergen and endotoxin augments pulmonary and systemic responses. Clin. Exp. Allergy 2009, 39, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Kim, J.; Bouchard, J.; Cruikshank, W.; Remick, D.G. Reducing LPS content in cockroach allergens increases pulmonary cytokine production without increasing inflammation: A randomized laboratory study. BMC Pulm. Med. 2011, 11. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, J.; Gehring, U.; Douwes, J.; Koch, A.; Fahlbusch, B.; Bischof, W.; Wichmann, H.E. Pets and vermin are associated with high endotoxin levels in house dust. Clin. Exp. Allergy 2001, 31, 1839–1845. [Google Scholar] [CrossRef] [PubMed]
- Tungtrongchitr, A.; Sookrung, N.; Chaicumpa, W.; Indrawattana, N.; Meechan, T.; Thavara, U.; Visitsunthorn, N.; Bunnag, C. Comparison of allergenic components and biopotency in whole body extracts of wild and laboratory reared American cockroaches, Periplaneta americana. Asian Pac. J. Allergy Immunol. 2012, 30, 231–238. [Google Scholar] [PubMed]
- Tungtrongchitr, A.; Sookrung, N.; Munkong, N.; Mahakittikun, V.; Chinabut, P.; Chaicumpa, W.; Bunnag, C.; Vichyanond, P. The levels of cockroach allergen in relation to cockroach species and allergic diseases in Thai patients. Asian Pac. J. Allergy Immunol. 2004, 22, 115–121. [Google Scholar] [PubMed]
- Komatsu, N.; Kishimoto, T.; Uchida, A.; Ooi, H.K. Cockroach fauna in the Ogasawara Chain Islands of Japan and analysis of their habitats. Trop. Biomed. 2013, 30, 141–151. [Google Scholar] [PubMed]
- Schram, D.; Doekes, G.; Boeve, M.; Douwes, J.; Riedler, J.; Ublagger, E.; Mutius, E.; Budde, J.; Pershagen, G.; Nyberg, F.; et al. PARSIFAL Study Group. Bacterial and fungal components in house dust of farm children, Rudolf Steiner school children and reference children—The PARSIFAL Study. Allergy 2005, 60, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.P.; Chung, Y.T.; Li, R.; Wan, H.T.; Wong, C.K.C. Bisphenol A alters gut microbiome: Comparative metagenomics analysis. Enviorn. Pollut. 2016, 218, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Chong, N.L.; Yap, H.H. A study on domiciliary cockroach infestation in Penang, Malaysia. J. Biosci. 1993, 2, 95–98. [Google Scholar]
- Tawatsin, A.; Thavara, U.; Chompoosri, J.; Kong-ngamsuk, W.; Chansang, C.; Paosriwong, S. Cockroach surveys in 14 provinces in Thailand. J. Vector Ecol. 2001, 26, 1–7. [Google Scholar]
- Pai, H.H.; Chen, W.C.; Peng, C.F. Isolation of bacteria with antibiotic resistance from household cockroaches (Periplaneta americana and Blattella germanica). Acta Trop. 2005, 93, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Rivault, C.; Cloarec, A.; Le Guyader, A. Bacterial load of cockroaches in relation to urban environment. Epidemiol. Infect. 1993, 110, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Ye, L.; Ge, F. Habitat influences on diversity of bacteria found on German cockroach in Beijing. J. Environ. Sci. 2009, 21, 249–254. [Google Scholar] [CrossRef]
- Vinokurov, K.; Taranushenko, Y.; Krishnan, N.; Sehnal, F. Proteinase, amylase, and proteinase-inhibitor activities in the gut of six cockroach species. J. Insect Physiol. 2007, 53, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Schauer, C.; Thompson, C.L.; Brune, A. The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl. Environ. Microbiol. 2012, 78, 2758–2767. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, P.; Perez-Cobas, A.E.; van de Pol, C.; Baixeras, J.; Moya, A.; Latorre, A. Succession of the gut microbiota in the cockroach Blattella germanica. Int. Microbiol. 2014, 17, 99–109. [Google Scholar] [PubMed]
- Remenant, B.; Jaffrès, E.; Dousset, X.; Pilet, M.F.; Zagorec, M. Bacterial spoilers of food: Behavior, fitness and functional properties. Food Microbiol. 2015, 45, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Auckland Regional Public Health Service. Cockroaches. Available online: http://www.arphs.govt.nz/Portals/0/Health%20Information/HealthyEnvironments/Factsheets/Cockroaches/Cockroaches.pdf (accessed on 13 December 2016).
- Leung, R.; Lam, C.W.; Chan, A.; Lee, M.; Chan, I.H.; Pang, S.W.; Lai, C.K.W. Indoor environment of residential homes in Hong Kong-Relevance to asthma and allergic disease. Clin. Exp. Allergy 1998, 28, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Gore, J.C.; Schal, C. Expression, production and excretion of Bla g 1, a major human allergen, in relation to food intake in the German cockroach, Blattella germanica. Med. Vet. Entomol. 2005, 19, 127–134. [Google Scholar] [CrossRef] [PubMed]
Household | Trap Location | Species | Endotoxin (EU·mg−1) | Bla g 1 (U·g−1) | Bla g 2 (ng·g−1) | Endotoxin/Bla g 1 (EU·mg−1/U·g−1) | Endotoxin/Bla g 2 (EU·mg−1/ng·g−1) |
---|---|---|---|---|---|---|---|
1 | Bathroom | P. australasiae | 1816 | 35 | 692 | 51.9 | 2.62 |
Kitchen | P. australasiae | 975 | 19 | 200 | 51.3 | 4.88 | |
2 | Bathroom | P. australasiae | 21,031 | 36 | 568 | 584 | 37.0 |
3 | Bathroom | P. australasiae | 31,292 | 40 | 440 | 782 | 71.1 |
Average (standard deviation) | 13,779 (14,904) | 32.5 (9.26) | 475 (210) | 367 (373) | 28.9 (32.2) | ||
Geometric mean (geometric standard deviation) | 5843 (5.67) | 31.3 (1.40) | 431 (1.73) | 187 (4.44) | 13.5 (4.86) | ||
4 | Bathroom | S. longipalpa | 3891 | 53 | 63 | 73.4 | NA |
Kitchen | S. longipalpa | 3403 | 14 | < 29 | 243 | NA | |
Bathroom | S. longipalpa | 3241 | 43 | < 29 | 75.4 | NA | |
Average (standard deviation) | 3512 (338) | 36.7 (20.3) | NA | 131 (97.3) | NA | ||
Geometric mean (geometric standard deviation) | 3501 (1.10) | 31.7 (2.05) | NA | 110 (1.98) | NA | ||
5 | Bathroom | B. germanica | 3040 | 500 | 34,500 | 6.08 | 0.09 |
6 | Bathroom | B. germanica | 2993 | 580 | 29,834 | 5.16 | 0.10 |
Bathroom | B. germanica | 3000 | 612 | 27,685 | 4.90 | 0.11 | |
Average (standard deviation) | 3011 (25.4) | 564 (57.7) | 30,673 (3484) | 5.38 (0.62) | 0.10 (0.01) | ||
Geometric mean (geometric standard deviation) | 3011 (1.01) | 562 (1.11) | 30,544 (1.12) | 5.36 (1.12) | 0.10 (1.11) |
Phylum | Class | Order | Family | Genus | Species |
---|---|---|---|---|---|
Firmicutes (+ve): 76.05% | Bacilli: 73.40% | Lactobacillales: 72.92% | Enterococcaceae: 46.18% | Enterococcus: 44.27% | gilvus: 14.12% |
avium: 10.92% | |||||
Lactobacillaceae: 25.97% | Pediococcus: 14.70% | cellicola: 1.70% | |||
claussenii: 1.68% | |||||
Lactobacillus: 10.00% | japonicas: 3.10% | ||||
jensenii: 1.66% | |||||
Clostridia: 2.30% | Clostridiales: 2.25% | ||||
Bacteroidetes (−ve): 12.92% | Bacteroidia: 8.86% | Bacteroidales: 8.86% | Porphyromonadaceae: 6.84% | Parabacteroides: 2.68% | |
Flavobacteriia: 3.92% | Flavobacteriales: 3.92% | Blattabacteriaceae: 2.78% | Blattabacterium: 2.78% | ||
Proteobacteria (−ve): 9.02% | Gammaproteobacteria: 6.77% | Enterobacteriales: 3.78% | Enterobacteriaceae: 3.78% | Enterobacter: 2.43% | |
Pseudomonadales: 2.68% | Pseudomonadaceae: 2.64% | Pseudomonas: 2.64% | fragi: 2.01% | ||
Deltaproteobacteria: 1.58% | Desulfovibrionales: 1.41% | Desulfovibrionaceae: 1.37% | |||
Verrucomicrobia (−ve): 0.69% | Verrucomicrobiae: 0.68% | ||||
Total identified: 23 * | 39 | 79 | 172 | 392 | 667 |
Unclassified: 0.63% | 0.78% | 0.89% | 1.81% | 4.29% | 48.03% |
Phylum | Class | Order | Family | Genus | Species |
---|---|---|---|---|---|
Proteobacteria (−ve): 79.63% | Gammaproteobacteria: 78.60% | Pseudomonadales: 60.14% | Pseudomonadaceae: 60.08% | Pseudomonas: 59.95% | fragi: 18.21% |
azotoformans: 12.88% | |||||
lundensis: 8.91% | |||||
moraviensis: 7.23% | |||||
Enterobacteriales: 16.73% | Enterobacteriaceae: 16.73% | Enterobacter: 4.86% | hormaechei: 2.70% | ||
Citrobacter: 8.00% | freudii: 2.09% | ||||
Aeromonadales: 0.61% | Aeromonadaceae: 0.60% | ||||
Deltaproteobacteria: 0.46% | Desulfovibrionales: 0.35% | ||||
Alphaproteobacteria: 0.32% | Gluconacetobacter: 0.69% | ||||
Firmicutes (+ve): 16.52% | Bacilli: 16.11% | Lactobacillales: 15.90% | Enterococcaceae: 11.65% | Enterococcus: 11.19% | gilvus: 8.61% |
Streptococcaceae: 1.99% | Lactococcus: 1.96% | ||||
Lactobacillaceae: 1.95% | Lactobacillus: 1.63% | ||||
Clostridia: 0.31% | |||||
Bacteroidetes (−ve): 2.24% | Bacteroidia: 1.62% | Bacteroidales: 1.62% | Porphyromonadaceae: 1.16% | ||
Flavobacteriia: 0.47% | Flavobacteriales: 0.47% | ||||
Total identified: 24 * | 40 | 85 | 189 | 455 | 751 |
Unclassified: 0.85% | 1.04% | 1.54% | 1.76% | 4.76% | 26.17% |
Cockroaches | Environments Studied | Bla g 1 (U·g−1) | Bla g 2 (ng·g−1) | Endotoxin (EU·mg−1) | Endotoxin from Cockroaches |
---|---|---|---|---|---|
New Zealand (Auckland Regional Public Health Service) [25]—Common species in homes—P. americana, B. germanica, B. asahiniai, and Blatta orientalis | Kindergartens and daycare centres, New Zealand [7] | No data | 28 | 29 | 9.67% from B. germanica. Other cockroach species may be present but the measurement of Bla g 2 alone cannot reveal endotoxin levels from other species. |
© 2017 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, K.M. Are Cockroaches an Important Source of Indoor Endotoxins? Int. J. Environ. Res. Public Health 2017, 14, 91. https://doi.org/10.3390/ijerph14010091
Lai KM. Are Cockroaches an Important Source of Indoor Endotoxins? International Journal of Environmental Research and Public Health. 2017; 14(1):91. https://doi.org/10.3390/ijerph14010091
Chicago/Turabian StyleLai, Ka Man. 2017. "Are Cockroaches an Important Source of Indoor Endotoxins?" International Journal of Environmental Research and Public Health 14, no. 1: 91. https://doi.org/10.3390/ijerph14010091
APA StyleLai, K. M. (2017). Are Cockroaches an Important Source of Indoor Endotoxins? International Journal of Environmental Research and Public Health, 14(1), 91. https://doi.org/10.3390/ijerph14010091