Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa
Abstract
:1. Introduction
2. Vibrio Species
3. Ecology of Vibrio Species
4. Pathogenicity of Vibrio Species
5. Epidemiological Features of Vibrio Species
6. Treatment and Antibiotic Resistance of Vibrio Species
7. Mechanism of Antibiotics Resistance in Vibrio Species Infection
8. Strategic Recommendations for High-Risk Cholera Outbreak Areas
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations:
VBNC | Viable but non-culturable |
TCP | Toxin coregulated pili |
CT | Cholera toxin |
CTX | Cholera causing toxin phage |
LGT | Lateral gene transfer |
DNA | Deoxyribonucleic acid |
TDH | Thermostable direct haemolysin |
TLH | Thermolabile haemolysin |
CDC | Centres for Disease control |
WWTPs | Wastewater treatment plants |
ARGs | Antibiotic resistance genes |
SXT | Self-transmissible chromosomally integrating SXT elements |
ICE | Integrative conjugating elements |
AMR | Antimicrobial resistance |
HGT | Horizontal gene transfer |
MGEs | Mobile genetic elements |
GIS | Geographical information system |
WASH | Water Sanitation and hygiene |
UNICEF | The United Nations Children’s fund |
References
- Ashton, P.J.; Hardwick, D.; Breen, C.M. Changes in water availability and demand within South Africa’s shared river basins as determinants of regional social-ecological resilience. In Exploring Sustainability Science: A Southern African Perspective; Burns, M.J., Weaver, A., Eds.; Stellenbosch University Press: Stellenbosch, South Africa, 2008; pp. 279–310. [Google Scholar]
- Cabral, J.P.S. Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Pub. Health 2010, 7, 3657–3703. [Google Scholar] [CrossRef] [PubMed]
- Chigor, V.N.; Sibanda, T.; Okoh, A.I. Studies on the bacteriological qualities of the Buffalo River and three source water dams along its course in the Eastern Cape Province of South Africa. Environ. Sci. Pollut. Res. 2013, 20, 4125–4136. [Google Scholar] [CrossRef] [PubMed]
- ECOA (Equal Credit Opportunity Act). European Union Development Assistance for Drinking Water Supply and Basic Sanitation in Sub-Saharan Countries; European Court of Auditors, rue Alcide De Gasperi: Luxembourg, 2012. [Google Scholar]
- UNESCO (The United Nations Educational, Scientific and Cultural Organization). Water Quality and Wastewater; The United Nations Educational, Scientific and Cultural Organization: Paris, France, 2017. [Google Scholar]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; SànchezMelsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Smith, D.W. Advanced technologies in water and wastewater treatment. J. Environ. Eng. Sci. 2002, 1, 247–264. [Google Scholar] [CrossRef]
- Thapar, N.; Sanderson, I.R. Diarrhoea in children: An interface between developing and developed countries. Lancet 2004, 363, 641–653. [Google Scholar] [CrossRef]
- Li, Z.; Jennings, A. Worldwide Regulations of Standard Values of Pesticides for Human Health Risk Control: A Review. Int. J. Environ. Res. Public Health 2017, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, K.; Ramarani, S. Pathogenic changes due to inoculation of gram-negative bacteria Pseudomonas aeruginosa (MTCC 1688) on host tissue proteins and enzymes of the giant freshwater prawn, Macrobrachium rosenbergii (De Man). J. Environ. Biol. 2006, 27, 199–205. [Google Scholar]
- Alam, M.; Chowdhury, W.B.; Bhuiyan, N.A.; Islam, A.; Hasan, N.A.; Nair, G.B.; Watanabe, H.; Siddique, A.K.; Huq, A.; Sack, R.B.; et al. Serogroup, virulence, and genetic traits of Vibrio parahaemolyticus in the estuarine ecosystem of Bangladesh. Appl. Environ. Microbiol. 2009, 75, 6268–6274. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.N.; Bowers, J.C.; Griffitt, K.J.; Molina, V.; Clostio, R.W.; Pei, S.; Laws, E.; Paranjpye, R.N.; Strom, M.S.; Chen, A.; et al. Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl. Environ. Microbiol. 2012, 78, 7249–7257. [Google Scholar] [CrossRef] [PubMed]
- Austin, B.; Austin, D.; Sutherland, R.; Thompson, F.; Swings, J. Pathogenicity of vibrios to rainbow trout (Oncorhynchus mykiss, Walbaum) and Artemia nauplii. Environ. Microbiol. 2005, 7, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.; Angulo, F.J.; Tause, R.V.; Widdowson, M.A.; Roy, S.L. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Wang, H.Z.; Law, S.H.; Wu, R.S.; Kong, R.Y. Analysis of the 16S-23S rDNA intergenic spacers (IGSs) of marine vibrios for species-specific signature DNA sequences. Mar. Pollut. Bull. 2002, 44, 412–420. [Google Scholar] [CrossRef]
- Todar, K. Vibrio cholerae and Asiatic Cholera. Available online: http://textbookofbacteriology.net/cholera.html (accessed on 11 October 2015).
- Dechet, A.M.; Yu, P.A.; Koram, N.; Painter, J. Non-foodborne Vibrio infections: An important cause of morbidity and mortality in the United States, 1997–2006. Clin. Infect. Dis. 2008, 46, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Z.H.; Zwartkruis-Nahuis, J.T.M.; de Boer, E. Occurrence of Vibrio parahaemolyticus in retailed seafood in the Netherlands. Int. Food Res. J. 2012, 19, 39–43. [Google Scholar]
- Hoffmann, M.; Brown, E.W.; Feng, P.C.; Keys, C.E.; Fischer, M.; Monday, S.R. PCR-based method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species. BMC Microbiol. 2010, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Pruzzo, C.; Huq, A.; Colwell, R.R.; Donelli, G. Pathogenic Vibrio species in the marine and estuarine environment. In Ocean and Health Pathogens in the Marine Environment; Belkin, S., Colwell, R.R., Eds.; Springer: New York, NY, USA, 2005; pp. 217–252. [Google Scholar]
- Cazorla, C.; Guigon, A.; Noel, M.; Quilici, M.L.; Lacassin, F. Fatal Vibrio vulnificus Infections associated with Eating Raw Oysters, New Caledonia. Emerg. Infect. Dis. 2011, 17, 136–137. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.; Kendall, M.; Vugia, D.J.; Henao, O.L.; Mahon, B.E. Increasing rates of vibriosis in the United States, 1996–2010: Review of surveillance data from 2 systems. Clin. Infect. Dis. 2012, 54, S391–S395. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Bal, B.; Pal, R.; Niyogi, S.K.; Sarkar, K. Is Vibrio fluvialis emerging as a pathogen with epidemic potential in coastal region of eastern India following cyclone Aila? J. Health Popul. Nutr. 2010, 28, 311–317. [Google Scholar] [PubMed]
- Centers for Disease Control and Prevention. Cholera in Africa. Available online: https://www.cdc.gov/cholera/africa/index.html (accessed on 27 August 2017).
- Liang, P.; Cui, X.; Du, X.; Kan, B.; Liang, W. The virulence phenotypes and molecular epidemiological characteristics of Vibrio fluvialis in China. Gut Pathog. 2013, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Farmer, J.J., III; Hickman-Brenner, F.W. The genera Vibrio and Photobacterium. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, and Applications, 2nd ed.; Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, K.H., Eds.; Springer: Berlin, Germany, 1992; pp. 2952–3011. [Google Scholar]
- Cano-Gómez, A.; Goulden, E.F.; Owens, L.; Høj, L. Vibrio owensii sp. nov., isolated from cultured crustaceans in Australia. FEMS Microbiol. Lett. 2010, 302, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, E.O.; Okoh, A.I. Vibrio fluvialis: An unusual enteric pathogen of increasing public health concern. Int. J. Environ. Res. Public Health 2010, 7, 3628–3643. [Google Scholar] [CrossRef] [PubMed]
- Farmer, J.J., III; Janda, J.M.; Brenner, F.W.; Cameron, D.N.; Birkhead, K.M. Genus 1. Vibrio Pacini 1854, 411AL. In Bergey’s Manual of Systematic Bacteriology, 2nd ed.; The Proteobacteria Part B The Gammaproteobacteria ed.; Brenner, D.J., Krieg, N.R., Staley, J.T., Eds.; Springer: New York, NY, USA, 2005; Volume 2, pp. 494–546. [Google Scholar]
- Farmer, J.J.; Janda, J.M.; Birkhead, K. “Vibrio”. In Manual of Clinical Microbiology; Murray, P.R., Ed.; ASM Press: Washington, DC, USA, 2003; pp. 706–718. [Google Scholar]
- Ripabelli, G.; Sammarco, M.L.; Grasso, G.M.; Fanelli, I.; Caprioli, A.; Luzzi, I. Occurrence of Vibrio and other pathogenic bacteria in Mytilus galloprovincialis (mussels) harvested from Adriatic Sea, Italy. J. Food Microbiol. 1999, 49, 43–48. [Google Scholar] [CrossRef]
- Dryselius, R.; Kurokawa, K.; Iida, T. Vibrionaceae, a versatile bacterial family with evolutionarily conserved variability. Res. Microbiol. 2007, 158, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.J.; Chen, S.Y.; Lin, I.H.; Chang, C.H.; Wong, H.C. Change of protein profiles in the induction of the viable but nonculturable state of Vibrio parahaemolyticus. Int. J. Food Microbiol. 2009, 135, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Salter, I.; Zubkov, M.V.; Warwick, P.E.; Burkill, P.H. Marine bacterioplankton can increase evaporation and gas transfer by metabolizing insoluble surfactants from the air-seawater interface. FEMS Microbiol. Lett. 2009, 294, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Alderkamp, A.C.; Van Rijssel, M.; Bolhuis, H. Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan laminarin. FEMS Microbiol. Ecol. 2007, 59, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.E.; Arnosti, C.; De La Rocha, C.L.; Grossart, H.P.; Passow, U. Microbial dynamics in autotrophic and heterotrophic seawater mesocosms. II. Bacterioplankton community structure and hydrolytic enzyme activities. Aquat. Microb. Ecol. 2007, 49, 123–141. [Google Scholar] [CrossRef]
- Denner, E.B.M.; Vybiral, D.; Fischer, U.R.; Velimirov, B.; Busse, H.J. Vibrio calviensis sp. nov., a halophilic, facultatively oligotrophic 0.2 micron-filterable marine bacterium. Int. J. Syst. Evol. Microbiol. 2002, 52, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, M.; Sridhar, N.; Robertson, P.A.W.; Austin, B. Role of gut probionts in enhancing growth and disease resistance in rainbow trout (Oncorhynchus mykiss, Walbaum) fingerlings. Asian Fisher. Sci. 2006, 19, 1–13. [Google Scholar]
- Tortora, G.J.; Funke, B.R.; Case, C.L. Microbiology an Introduction 11th Edition; Pearson Education, Inc.: London, UK, 2013. [Google Scholar]
- Elliot, E.L.; Kaysner, C.A.; Jackson, L.; Tamplin, M.L. V. cholerae, V. parahaemolyticus, V. vulnificus, and other Vibrio spp. Ch. 9. In Food and Drug Administration Bacteriological Analytical Manual, 8th ed.; (revision A), (CD-ROM version); Merker, R.L., Ed.; AOAC International: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Tantillo, G.M.; Fontanarosa, M.; Di Pinto, A.; Musti, M. A Review Updated perspectives on emerging vibrios associated with human infections. Lett. Appl. Microbiol. 2004, 39, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Bryan, P.J.; Steffan, R.J.; DePaola, A.; Foster, J.W.; Bej, A.K. Adaptive response to cold temperatures in Vibrio vulnificus. Curr. Microbiol. 1999, 38, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Spira, W.M.; Huq, A.; Ahmed, Q.S.; Saeed, Y.A. Uptake of V. cholerae biotype El Tor from contaminated water by water hyacinth (Eichhornia crassipes). Appl. Environ. Microbiol. 1981, 42, 550–553. [Google Scholar] [PubMed]
- Tracz, D.M.; Backhouse, P.G.; Olson, A.B.; McCrea, J.K.; Walsh, J.A.; Ng, L.K.; Gilmour, M.W. Rapid detection of Vibrio species using liquid microsphere arrays and real-time PCR targeting the ftsZ locus. J. Med. Microbiol. 2007, 56, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Tendencia, E.A. The first report of Vibrio harveyi infection in the sea horse Hippocampus kuda Bleekers 1852 in the Philippines. Aquac. Res. 2004, 3, 1292–1294. [Google Scholar] [CrossRef]
- Qin, Y.X.; Wang, J.; Su, Y.Q.; Wang, D.X.; Chen, X.Z. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara. Acta Oceanol Sin. 2006, 25, 154–159. [Google Scholar]
- Cam, D.T.V.; Hao, N.V.; Dierckens, K.; Defoirdt, T.; Boon, N.; Sorgeloos, P.; Bossier, P. Novel approach of using homoserine lactone-degrading and poly-b-hydroxybutyrate-accumulating bacteria to protect Artemia from the pathogenic effects of Vibrio harveyi. Aquculture 2009, 291, 23–30. [Google Scholar]
- Summer, J.; De Paola, A.; Osaka, K.; Karunasager, I.; Walderhaug, M.; Bowers, J. Hazard Identification, Exposure Assessment and Hazard Characterization of Vibrio spp. in Seafood. In Joint FAO/WHO Activities on Risk Assessment of Microbiological Hazards in Foods; WHO: Geneva, Switzerland, 2001; pp. 1–105. [Google Scholar]
- Miyoshi, S. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species. Front. Microbiol. 2013, 4, 339. [Google Scholar] [CrossRef] [PubMed]
- Ruby, E.G. Lessons from a cooperative bacterial-animal association: The Vibrio fischeri—Euprymna scolopes light organ symbiosis. Annu. Rev. Microbiol. 1996, 50, 591–624. [Google Scholar] [CrossRef] [PubMed]
- Ben-Haim, Y.; Rosenberg, E. A novel Vibrio sp. pathogen of the coral Pocillopora damicronis. Mar. Biol. 2002, 141, 47–55. [Google Scholar]
- Sussman, M.; Mieog, J.C.; Doyle, J.; Victor, S.; Willis, B.; Bourne, D.G. Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS Biol. 2009, 4, 4511. [Google Scholar] [CrossRef] [PubMed]
- Akram, N.; Palovaara, J.; Forsberg, J.; Lindh, M.V.; Milton, D.L.; Luo, H.; Gonzalez, J.M.; Pinhassi, J. Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp. AND4. Environ. Microbiol. 2013, 15, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Colwell, R.R. Ecology of Vibrio parahaemolyticus in Chesapeake Bay. J. Bacteriol. 1973, 113, 24–32. [Google Scholar] [PubMed]
- Vezzulli, L.; Pezzati, E.; Moreno, M.; Fabiano, M.; Pane, L.; Pruzzo, C. The Vibrio Sea Consortium. Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microb. Ecol. 2009, 58, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Hood, M.A.; Winter, P.A. Attachment of Vibrio cholerae under various environmental conditions and to selected substrates. FEMS Microbiol. Ecol. 1997, 22, 215–223. [Google Scholar] [CrossRef]
- Grau, B.L.; Henk, M.C.; Pettis, G.S. High-frequency phase variation of Vibrio vulnificus 1003: Isolation and characterization of a rugose phenotypic variant. J. Bacteriol. 2005, 187, 2519–2525. [Google Scholar] [CrossRef] [PubMed]
- McCarter, L. The multiple identities of Vibrio parahaemolyticus. J. Mol. Microbiol. Biotechnol. 1999, 1, 51–57. [Google Scholar] [PubMed]
- Lipp, E.K.; Huq, A.; Colwell, R.R. Effects of global climate on infectious disease: The cholera model. Clin. Microbiol. Rev. 2002, 15, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.R.; Randa, M.A.; Marcelino, L.A.; Tomita-Mitchell, A.; Lim, E.; Polz, M.F. Diversity and dynamics of a north Atlantic coastal Vibrio community. Appl. Environ. Microbiol. 2004, 70, 4103–4110. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.L.; Gevers, D.; Thompson, C.C.; Dawyndt, P.; Naser, S.; Hoste, B.; Munn, C.B.; Swings, J. Phylogeny and molecular identification of Vibrios on the basis of multilocus sequence analysis. Appl. Environ. Microbiol. 2005, 71, 5107–5115. [Google Scholar] [CrossRef] [PubMed]
- Riemann, L.; Azam, F. Widespread N-acetyl-D-glucosamine uptake among pelagic marine bacteria and its ecological implications. Appl. Environ. Microbiol. 2002, 68, 5554–5562. [Google Scholar] [CrossRef] [PubMed]
- Guerrant, R.L.; Carneiro-Filho, B.A.; Dillingham, R.A. Cholera, diarrhea, and oral rehydration therapy: Triumph and indictment. Clin. Infect. Dis. 2003, 37, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Beardsley, C.; Pernthaler, J.; Wosniok, W.; Amann, R. Are readily culturable bacteria in coastal North Sea waters suppressed by selective grazing mortality? Appl. Environ. Microbiol. 2003, 69, 2624–2630. [Google Scholar] [CrossRef] [PubMed]
- Svitil, A.L.; Chadhain, S.M.; Moore, J.A.; Kirchman, D.L. Chitin degradation proteins produced by the marine bacterium Vibno harveyi growing on different forms of chitin. Appl. Environ. Microbiol. 1997, 63, 408–413. [Google Scholar] [PubMed]
- Sugita, H.; Matsuo, N.; Hirose, Y.; Iwato, M.; Deguchi, Y. Vibrio sp. strain NM10, isolated from the intestine of a Japanese coastal fish, has an inhibitory effect against Pasteurella piscicida. Appl. Environ. Microbiol. 1997, 63, 4986–4989. [Google Scholar] [PubMed]
- Cavallo, R.A.; Stabili, L. Presence of vibrios in seawater and Mytilus galloprovincialis (Lam) from the Mar Piccolo of Taranto (Ionian Sea). Water Res. 2002, 36, 3719–3726. [Google Scholar] [CrossRef]
- West, P.A. The human pathogenic vibrios—A public health update with environmental perspectives. Epidemiol. Infect. 1989, 103, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Hernroth, B.; Larsson, A.; Edebo, L. Influence on uptake, distribution and elimination of Salmonella typhimurium in the blue mussel, Mytilus edulis. J. Shellfish Res. 2000, 19, 167–174. [Google Scholar]
- Canesi, L.; Gavioli, M.; Pruzzo, C.; Gallo, G. Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microsc. Res. Tech. 2002, 57, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Parvathi, A.; Kumar, H.S.; Karunasagar, I. Detection and enumeration of Vibrio vulnificus in oysters from two estuaries along the southwest coast of India, using molecular methods. Appl. Environ. Microbiol. 2004, 70, 6909–6913. [Google Scholar] [CrossRef] [PubMed]
- Lutz, S.; Anesio, A.M.; Villar, S.E.J.; Benning, L.G. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 2014, 89, 402–414. [Google Scholar] [CrossRef] [PubMed]
- CDC. Recommendations for the Use of Antibiotics for the Treatment of Cholera. Available online: https://www.cdc.gov/cholera/treatment/antibiotic-treatment.html (accessed on 27 August 2017).
- Harris, J.B.; LaRocque, R.C.; Qadri, F.; Ryan, E.T.; Calderwood, S.B. Seminar: Cholera. Lancet 2012, 379, 2466–2476. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chang, M.C.; Chuang, Y.C.; Jeang, C.L. Characterization and virulence of hemolysin III from Vibrio vulnificus. Curr. Microbiol. 2004, 49, 175–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janelidze, N.; Jaiani, E.; Lashkhi, N.; Tskhvediani, A.; Kokashvili, T.; Gvarishvili, T.; Jgenti, D.; Mikashavidze, E.; Diasamidze, R.; Narodny, S.; et al. Microbial water quality of the Georgian coastal zone of the Black Sea. Mar. Pollut. Bull. 2011, 62, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Jaiani, E.; Kokashvili, T.; Mitaishvili, N.; Elbakidze, T.; Janelidze, N.; Lashkhi, N.; Kalandadze, R.; Mikashavidze, E.; Natroshvili, G.; Whitehouse, C.A.; et al. Microbial water quality of recreational lakes near Tbilisi, Georgia. J. Water Health 2013, 11, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Arunagiri, K.; Jayashree, K.; Sivakumar, T. Isolation and identification of Vibrios from marine food resources. Int. J. Curr. Microbiol. App Sci. 2013, 2, 217–232. [Google Scholar]
- Ramirez, G.D.; Buck, G.W.; Smith, A.K.; Gordon, K.V.; Mott, J.B. Incidence of Vibrio vulnificus in estuarine waters of the south Texas Coastal Bend region. J. Appl. Microbiol. 2009, 107, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, E.O.; Obi, C.L.; Okoh, A.I. Seasonal abundance and distribution of Vibrio species in the treated effluent of wastewater treatment facilities in suburban and urban communities of Eastern Cape Province, South Africa. J. Microbiol. 2011, 49, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.L.; Fries, J.S.; Noble, R.T. Dynamics and predictive modelling of Vibrio spp. in the Neuse River Estuary, North Carolina, USA. Environ. Microbiol. 2008, 10, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Neogi, S.B.; Koch, B.P.; Schmitt-Kopplin, P.; Pohl, C.; Kattner, G.; Yamasaki, S.; Lara, R.J. Biogeochemical controls on the bacterial populations in the eastern Atlantic Ocean. Biogeosciences 2011, 8, 3747–3759. [Google Scholar] [CrossRef]
- Oberbeckmann, S.; Fuchs, B.M.; Meiners, M.; Wichels, A.; Wiltshire, K.H.; Gerdts, G. Seasonal dynamics and modeling of a Vibrio community in coastal waters of the North Sea. Microb. Ecol. 2012, 63, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Lizárraga-Partida, M.L.; Mendez-Gómez, E.; Rivas-Montaño, A.M.; Vargas-Hernández, E.; Portillo-López, A.; González-Ramírez, A.R.; Huq, A.; Colwell, R.R. Association of Vibrio cholerae with plankton in coastal areas of Mexico. Environ. Microbiol. 2009, 11, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Lara, R.J.; Neogi, S.B.; Islam, S.; Mahmud, Z.H.; Islam, S.; Paul, D.; Demoz, B.B.; Yamasaki, S.; Nair, G.B.; Kattner, G. Vibrio cholerae in waters of the Sunderban mangrove: Relationship with biogeochemical parameters and chitin in seston size fractions. Wetl. Ecol. Manag. 2011, 19, 109–119. [Google Scholar] [CrossRef]
- Kokashvili, T.; Elbakidze, T.; Jaiani, E.; Janelidze, N.; Kamkamidze, G.; Whitehouse, C.; Huq, A.; Tediashvili, M. Comparative phenotypic characterization of Vibrio cholerae isolates collected from aquatic environments of Georgia. Georgian Med. News 2013, 224, 55–62. [Google Scholar]
- Kokashvili, T.; Whitehouse, C.A.; Tskhvediani, A.; Grim, C.J.; Elbakidze, T.; Mitaishvili, N.; Janelidze, N.; Jaiani, E.; Haley, B.J.; Lashkhi, N.; et al. Occurrence and diversity of clinically important Vibrio species in the aquatic environment of Georgia. Front. Public Health 2015, 3, 232. [Google Scholar] [CrossRef] [PubMed]
- Banakar, V.; Constantin de Magny, G.; Jacobs, J.; Murtugudde, R.; Huq, A.; Wood, R.J.; Colwell, R.R. Temporal and spatial variability in the distribution of Vibrio vulnificus in the Chesapeake Bay: A hindcast study. EcoHealth 2012, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Caburlotto, G.; Bianchi, F.; Gennari, M.; Ghidini, V.; Socal, G.; Aubry, F.B.; Bastianini, M.; Tafi, M.; Tafi, M.M. Integrated evaluation of environmental parameters influencing Vibrio occurrence in the coastal Northern Adriatic Sea (Italy) facing the Venetian lagoon. Microb. Ecol. 2012, 63, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Schijven, J.F.; de Roda Husman, A.M. Effect of climate changes on waterborne disease in the Netherlands. Water Sci. Technol. 2005, 5, 79–87. [Google Scholar]
- Paz, S.; Bisharat, N.; Paz, E.; Kidar, O.; Cohen, D. Climate change and the emergence of Vibrio vulnificus disease in Israel. Environ. Res. 2007, 103, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Lama, J.R.; Seas, C.R.; León-Barúa, R.; Gotuzzo, E.; Sack, R.B. Environmental temperature, cholera, and acute diarrhoea in adults in Lima, Peru. J. Health Popul. Nutr. 2011, 22, 399–403. [Google Scholar]
- Rodo, X.; Pascual, M.; Fuchs, G.; Faruque, A.S. ENSO and cholera: A nonstationary link related to climate change? Proc. Natl. Acad. Sci. USA 2002, 99, 12901–12906. [Google Scholar] [CrossRef] [PubMed]
- CDC. Vibrio Outbreak Summaries; US Department of Health and Human Services: Atlanta, GA, USA, 2003. [Google Scholar]
- Turner, J.W.; Good, B.; Cole, D.; Lipp, E.K. Plankton composition and environmental factors contribute to Vibrio seasonality. ISME J. 2009, 3, 1082–1092. [Google Scholar] [CrossRef] [PubMed]
- Stauder, M.; Vezzulli, L.; Pezzati, E.; Repetto, B.; Pruzzo, C. Temperature affects Vibrio cholerae O1 El Tor persistence in the aquatic environment via an enhanced expression of GbpA and MSHA adhesins. Environ. Microbiol. Rep. 2010, 2, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Munro, P.D.; Barbour, A.; Birkbeck, T.H. Comparison of gut bacterial flora of start-feeding larval turbot under different conditions. J. Appl. Bacteriol. 1994, 77, 560–566. [Google Scholar] [CrossRef]
- Amel, B.K.; Amine, B.; Amina, B. Survival of Vibrio fluvialis in seawater under starvation conditions. Microbiol. Res. 2008, 163, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Struyf, E.; Damme, S.V.; Meire, P. Possible effects of climate change on estuarine nutrient fluxes: A case study in the highly nitrified Schelde estuary (Belgium, The Netherlands). Estuar. Coast. Shelf Sci. 2004, 52, 131–142. [Google Scholar]
- Constantin de Magny, G.; Mozumder, P.K.; Grim, C.J.; Hasan, N.A.; Naser, M.N.; Alam, M.; Bradley Sack, R.; Huq, A.; Colwell, R.R. Role of zooplankton diversity in Vibrio cholerae population dynamics and in the incidence of cholera in the Bangladesh Sundarbans. Appl. Environ. Microbiol. 2011, 77, 6125–6132. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Colwell, R.R. Viable but nonculturable bacteria: A survival strategy. J. Infect. Chemother. 2000, 6, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Colwell, R.R. Predicting the distribution of Vibrio spp. in the Chesapeake bay: A Vibrio cholerae case study. EcoHealth 2009, 6, 378–389. [Google Scholar]
- Mishra, M.; Mohammed, F.; Akulwar, S.L.; Katkar, V.J.; Tankhiwale, N.S.; Powar, R.M. Re-emergence of El Tor Vibrio in outbreak of cholera in and around Nagpur. Indian J. Med. Res. 2004, 120, 478–480. [Google Scholar] [PubMed]
- White, P.A.; Rasmussen, J.B. The genotoxic hazards of domestic wastes in surface waters. Mutat. Res. 1998, 460, 223–236. [Google Scholar] [CrossRef]
- Akselman, R.; Jurquiza, V.; Costagliola, M.C.; Fraga, S.G.; Pichel, M.; Hozbor, C.; Peressutti, S.; Binsztein, N. Vibrio cholerae O1 found attached to the dinoflagellate Noctiluca scintillans in Argentine shelf waters. Mar. Biodivers. Rec. 2010, 3, 120. [Google Scholar] [CrossRef]
- Shikuma, N.J.; Hadfield, M.G. Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling 2010, 26, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Faruque, S.M.; Islam, M.J.; Ahmad, Q.S.; Faruque, A.S.G.; Sack, D.A.; Nair, G.B.; Mekalanos, J.J. Self-limiting nature of seasonal cholera epidemics: Role of host-mediated amplification of phage. Proc. Natl. Acad. Sci. USA 2005, 102, 6119–6124. [Google Scholar] [CrossRef] [PubMed]
- Janda, J.M.; Powers, C.; Bryant, R.G.; Abbott, S. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin. Microbiol. Rev. 1988, 1, 245–267. [Google Scholar] [CrossRef] [PubMed]
- Austin, B.; Austin, D.A.; Blanch, A.R.; Cerda, M.; Grimont, P.A.D.; Jofre, J.; Koblavi, S.; Larsen, J.L.; Pedersen, K.; Tiainen, T.; et al. A comparison of methods for the typing of fish-pathogenic Vibrio spp. Syst. Appl. Microbiol. 1997, 20, 89–101. [Google Scholar] [CrossRef]
- Harrington, D.J. Bacterial collagenases and collagen-degrading enzymes and their role in human disease. Infect. Immun. 1996, 64, 1885–1891. [Google Scholar] [PubMed]
- Huq, A.; Grim, C.; Taylor, R. Detection, Isolation, and Identification of Vibrio cholerae from the Environment. In Current Protocols in Microbiology; John Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Karaolis, D.K.; Johnson, J.A.; Bailey, C.C.; Boedeker, E.C.; Kaper, J.B.; Reeves, P.R. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 1998, 95, 3134–3139. [Google Scholar] [CrossRef] [PubMed]
- Heymann, D. Vibrio cholerae serogroups 01 and 0139. In Control of Communicable Diseases Manual, 19th ed.; Am Pub Health Ass: Washington, DC, USA, 2008; pp. 120–128. [Google Scholar]
- Vezzulli, L.; Guzmán, C.A.; Colwell, R.R.; Pruzzo, C. Dual role colonization factors connecting Vibrio cholerae’s lifestyles in human and aquatic environments open new perspectives for combating infectious diseases. Curr. Opin. Biotechnol. 2008, 19, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Hang, L.; John, M.; Asaduzzaman, M.; Bridges, E.A.; Vanderspurt, C.; Kirn, T.J.; Taylor, R.K.; Hillman, J.D.; Progulske-Fox, A.; Handfield, M.; Ryan, E.T.; Calderwood, S.B. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2003, 100, 8508–8513. [Google Scholar] [CrossRef] [PubMed]
- Faruque, S.M.; Nair, G.B.; Mekalanos, J.J. Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae. DNA Cell Biol. 2004, 11, 723–741. [Google Scholar] [CrossRef] [PubMed]
- Daniels, N.A.; MacKinnon, L.; Bishop, R.; Altekruse, S.; Ray, B.; Hammond, R.M.; Thompson, S.; Wilson, S.; Bean, N.H.; Griffin, P.M.; et al. Vibrio parahaemolyticus infections in the United States, 1973–1998. J. Infect. Dis. 2000, 181, 1661–1666. [Google Scholar] [CrossRef] [PubMed]
- Broberg, C.A.; Calder, T.J.; Orth, K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect. 2011, 13, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Paranjpye, R.; Hamel, O.S.; Stojanovski, A.; Liermann, M. Genetic diversity of clinical and environmental Vibrio parahaemolyticus strains from the Pacific Northwest. Appl. Environ. Microbiol. 2012, 78, 8631–8638. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Orth, K. Virulence determinants for Vibrio parahaemolyticus infection. Curr. Opin. Microbiol. 2013, 16, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Austin, B. A Review Haemolysins in Vibrio species. J. Appl. Microbiol. 2005, 98, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Makino, K.; Oshima, K.; Kurokawa, K.; Yokoyama, K.; Uda, T.; Tagomori, K.; Iijima, Y.; Najima, M.; Nakano, M.; Yamashita, A.; et al. Genome sequence of Vibrio parahaemolyticus: A pathogenic mechanism distinct from that of V. cholerae. Lancet 2003, 361, 743–749. [Google Scholar] [CrossRef]
- Liu, H. Analysis of the collective food poisoning events in Shanghai from 1990 to 2000. Chin. J. Nat. Med. 2003, 5, 17–20. [Google Scholar]
- McCarthy, S.A.; DePaola, A.; Cook, D.W.; Kaysner, C.A.; Hill, W.E. Evaluation of alkaline phosphatase- and digoxigenin-labelled probes for detection of the thermolabile hemolysin (tlh) gene of Vibrio parahaemolyticus. Lett. Appl. Microbiol. 1999, 28, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, L.; Su, J.Y.; Ye, Y.X.; Zhong, Q.P. Detection of Vibrio parahaemolyticus in food samples using in situ loop-mediated isothermal amplification method. Gene 2013, 515, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Bej, A.K.; Patterson, D.P.; Brasher, C.W.; Vicker, M.C.L.; Jones, D.D.; Kaysner, C.A. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J. Microbiol. Methods 1999, 36, 215–225. [Google Scholar] [CrossRef]
- Gotoh, K.; Kodama, T.; Hiyoshi, H.; Izutsu, K.; Park, K.S.; Dryselius, R.; Akeda, Y.; Honda, T.; Iida, T. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS ONE 2010, 5, 13365. [Google Scholar] [CrossRef] [PubMed]
- Gulig, P.A.; Bourdage, K.L.; Starks, A.M. Molecular pathogenesis of Vibrio vulnificus. J. Microbiol. 2005, 43, 118–131. [Google Scholar] [PubMed]
- Chowdhury, G.; Pazhani, G.P.; Dutta, D.; Guin, S.; Dutta, S.; Ghosh, S.; Izumiya, H.; Asakura, M.; Yamasaki, S.; Takeda, Y.; et al. Vibrio fluvialis in patients with diarrhea, Kolkata, India. Emerg. Infect. Dis. 2012, 18, 1868–1871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strom, M.S.; Paranjpye, R.N. Epidemiology and pathogenesis of Vibrio vulnificus. Microb. Infect. 2000, 2, 177–188. [Google Scholar] [CrossRef]
- Scoglio, M.E.; Di Pietro, A.; Picerno, I.; Delia, S.; Mauro, A.; Lagana, P. Virulence factors in Vibrios and Aeromonads isolated from seafood. New Microbiol. 2001, 24, 273–280. [Google Scholar] [PubMed]
- Di Pietro, A.; Picerno, I.; Visalli, G.; Chirico, C.; Scoglio, M.E. Effects of “host factor” bile on adaptability and virulence of vibrios, foodborne potential pathogenic agents. Ann. Ig. 2004, 16, 615–625. [Google Scholar] [PubMed]
- Rahman, M.M.; Qadri, F.; Albert, M.J.; Hossain, A.; Mosihuzzaman, M. Lipopolysaccharide composition and virulence properties of clinical and environmental strains of Vibrio fluvialis and Vibrio mimicus. Microbiol. Immunol. 1992, 36, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.C.; Ting, S.H.; Shieh, W.R. Incidence of toxigenic vibrios in foods available in Taiwan. J. Appl. Bacteriol. 1992, 73, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, K.; Kiiyukia, C.; Takak, M.; Nakano, H.; Matsuda, H.; Kawakami, H.; Hashimoto', H. Characterization of toxigenic vibrios isolated from the freshwater environment of Hiroshima, Japan. Appl. Environ. Microbiol. 1989, 55, 2613–2618. [Google Scholar] [PubMed]
- Janda, J.M. Mucinase activity among selected members of the family Vibrionaceae. Microb. Lett. 1986, 33, 19–22. [Google Scholar]
- Han, J.H.; Lee, J.H.; Choi, Y.H.; Park, J.H.; Choi, T.J.; Kong, I.S. Purification, characterization and molecular cloning of Vibrio fluvialis hemolysin. Biochim. Biophys. Acta 2002, 1599, 106–114. [Google Scholar] [CrossRef]
- Kothary, M.H.; Lowman, H.; McCardell, B.A.; Tall, B.D. Purification and characterization of enterotoxigenic El Tor-like hemolysin produced by Vibrio fluvialis. Infect. Immun. 2003, 71, 3213–3220. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, D.E.; Kreger, A.S.; Richardson, S.H. Detection of toxins produced by Vibrio fluvialis. Infect. Immun. 1982, 35, 702–708. [Google Scholar] [PubMed]
- Thompson, J.R.; Polz, M.F. Dynamics of Vibrio populations and their role in environmental nutrient cycling. In The Biology of Vibrios; Thompson, F.L., Austin, B., Swings, J., Eds.; ASM Press: Washington, DC, USA, 2006; pp. 190–203. [Google Scholar]
- Igomu, T. Cholera Epidemic: Far from Being over. NBF News. Available online: www.nigerianbestforum.com/blog/?p=60321 (accessed on 23 August 2011).
- Nevondo, T.S.; Cloete, T.E. Bacterial and chemical quality of water supply in the Dertig village settlement. Water S. Afr. 1999, 25, 215–220. [Google Scholar]
- Mackintosh, G.; Colvin, C. Failure of rural schemes in South Africa to provide potable water. Environ. Geol. 2003, 44, 101–105. [Google Scholar]
- Obi, C.L.; Bessong, P.O.; Momba, M.N.B.; Potegieter, N.; Samie, A.; Igumbor, E.O. Profile of antibiotic susceptibilities of bacterial isolates and physicochemical quality of water supply in rural Venda communities of South Africa. Water SA 2004, 30, 515–520. [Google Scholar] [CrossRef]
- Qadri, F.; Chowdhury, N.R.; Takeda, Y.; Nair, G.B. Vibrio parahaemolyticus—Seafood safety and associations with higher organisms. In Oceans and Health: Pathogens in the Marine Environment; Springer: Berlin, Germany, 2005; pp. 277–295. [Google Scholar]
- WHO. Yemen Cholera Situation Report no. 4 19 JULY, 2017; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Sur, D. Severe cholera outbreak following floods in a northern district of West Bengal. Indian J. Med. Res. 2000, 112, 178–182. [Google Scholar] [PubMed]
- Quilici, M.L. Vibrio cholerae O1 Variant with Reduced Susceptibility to Ciprofloxacin, Western Africa. Emerg. Infect. Dis. 2010, 16, 1804–1805. [Google Scholar] [CrossRef] [PubMed]
- Abia, A.L.K.; Ubomba-Jaswa, E.; Momba, M.N.B. Riverbed Sediments as Reservoirs of Multiple Vibrio cholerae Virulence-Associated Genes: A Potential Trigger for Cholera Outbreaks in Developing Countries. J. Environ. Public Health 2017, 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. WCAR Epidemiological Updates; The United Nations Children’s Fund: New York, NY, USA, 2016. [Google Scholar]
- Abia, A.L.K.; Ubomba-Jaswa, E.; Genthe, B.; Momba, M.N.B. Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension. Sci. Total Environ. 2016, 566, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.A.; Thompson, C.C.; Freitas, F.S.; Fonseca, E.L.; Aboderin, A.O.; Zailani, S.B.; Quartey, N.K.E.; Okeke, I.N.; Vicente, A.C.P. Cholera outbreaks in Nigeria are associated with multidrug resistant atypical El Tor and non-O1/non-O139 Vibrio cholerae. PLoS Negl. Trop. Dis. 2013, 7, 2049. [Google Scholar] [CrossRef] [PubMed]
- Engel, M.F.; Muijsken, M.A.; Mooi-Kokenberg, E.; Kuijper, E.J.; van Westerloo, D.J. Vibrio cholerae non-O1 bacteraemia: Description of three cases in The Netherlands and a literature review. Eur. Surveill. 2016, 21, 30197. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shimada, T.; Morris, J.G.; Sulakvelidze, A.; Sozhamannan, S. Evidence for the emergence of non-O1 and non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect. Immun. 2002, 70, 2441–2453. [Google Scholar] [CrossRef] [PubMed]
- Montilla, R.; Chowdhury, M.A.; Huq, A.; Xu, B.; Colwell, R.R. Serogroup conversion of Vibrio cholerae non-O1 to Vibrio cholerae O1: Effect of growth state of cells, temperature and salinity. Can. J. Microbiol. 1996, 42, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Blokesch, M.; Schoolnik, G.K. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog. 2007, 3, 2007. [Google Scholar] [CrossRef] [PubMed]
- Huq, A.; Colwell, R.R.; Rahman, R.; Ali, A.; Chowdhury, M.A.; Parveen, S.; Sack, D.A.; Russek-Cohen, E. Detection of Vibrio cholerae O1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods. Appl. Environ. Microbiol. 1990, 56, 2370–2373. [Google Scholar] [PubMed]
- Srinivasan, V.B.; Virk, R.K.; Kaundal, A.; Chakraborty, R.; Datta, B.; Ramamurthy, T.; Mukhopadhyay, A.K.; Ghosh, A. Mechanism of drug resistance in clonally related clinical isolates of Vibrio fluvialis isolated in Kolkata, India. Antimicrob. Agents Chemother. 2006, 50, 2428–2432. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, E.O.; Obi, L.C.; Okoh, A.I. Occurrence of potentially pathogenic vibrios in final effluents of a wastewater treatment facility in a rural community of the Eastern Cape Province of South Africa. Res. Microbiol. 2009, 160, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Ohnaka, T. Food poisoning due to newly recognized pathogens. Asian Med. J. 1989, 32, 1–12. [Google Scholar]
- Levine, W.C.; Griffin, P.M. Vibrio infections on the Gulf Coast: Results of first year of regional surveillance Gulf Coast Vibrio Working Group. J. Infect. Dis. 1993, 167, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Hollis, D.G.; Weave, R.E.; Baker, C.N.; Thornsberry, C. Halophilic Vibrio species isolated from blood cultures. J. Clin. Microbiol. 1976, 3, 425–431. [Google Scholar] [PubMed]
- Blake, P.A.; Weaver, R.E.; Hollis, D.G. Diseases of humans (other than cholera) caused by vibrios. Annu. Rev. Microbiol. 1980, 34, 341–367. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.G., Jr.; Black, R.E. Cholera and other vibrioses in the United States. New Engl. J. Med. 1985, 312, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; McArthur, J.V.; Tuckfield, R.C.; Najarro, M.; Lindell, A.H.; Gooch, J.; Stepanauskas, R. Antibiotic resistance in the shellfish pathogen Vibrio parahaemolyticus isolated from the coastal water and sediment of Georgia and South Carolina, USA. J. Food Prot. 2008, 71, 2552–2558. [Google Scholar] [CrossRef] [PubMed]
- Zaidenstein, R.; Sadik, C.; Lerner, L.; Valinsky, L.; Kopelowitz, J.; Yishai, R.; Agmon, V.; Parsons, M.; Bopp, C.; Weinberger, M. Clinical characteristics and molecular subtyping of Vibrio vulnificus illnesses, Israel. Emerg. Infect. Dis. 2008, 14, 1875–1882. [Google Scholar] [CrossRef] [PubMed]
- Okuda, J.; Ishibashi, M.; Abbott, S.; Janda, J.; Nishibuchi, M. Analysis of the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes in urease-positive strains of Vibrio parahaemolyticus isolated on the West Coast of the United States. J. Clin. Microbiol. 1997, 35, 1965–1971. [Google Scholar] [PubMed]
- Fujino, T.; Okuno, Y.; Nakada, D.; Aoyama, A.; Fukai, K.; Mukai, T.; Ueho, T. On the bacteriological examination of shirasu-food poisoning. Med. J. Osaka Univ. 1953, 4, 299–304. [Google Scholar]
- Su, Y.C.; Liu, C.C. Vibrio parahaemolyticus: A concern of seafood safety. Food microbiol. 2007, 24, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Letchumanan, V.; Chan, K.; Lee, L. Vibrio parahaemolyticus: A review on the pathogenesis, prevalence and advance molecular identification techniques. Front. Microbiol. 2014, 5, 705. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.P.; Chen, Y.W.; Huang, H.; Huang, Z.B.; Chen, H.; Shao, Z.Z. Isolation and identification of Vibrio campbellii as a bacterial pathogen for luminous vibriosis of Litopenaeus vannamei. Aquac. Res. 2015, 46, 395–404. [Google Scholar] [CrossRef]
- Kaysner, C.A.; DePaola, A. Vibrio . In Bacteriological Analytical Manual, 8th ed.; Revision, A., Ed.; U.S. Food and Drug Administration: Arlington, VA, USA, 2001; Chapter 9. [Google Scholar]
- Joseph, S.W.; Colwell, R.R.; Kaper, J.B. Vibrio parahaemolyticus and related halophilic Vibrios. Crit. Rev. Microbiol. 1982, 10, 77–124. [Google Scholar] [CrossRef] [PubMed]
- Yeung, M.; Boor, K. Epidemiology, Pathogenesis, and Prevention of Foodborne Vibrio parahaemolyticus Infections. Foodborne Pathog. Dis. 2004, 1, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Nair, G.B.; Ramamurthy, T.; Bhattacharya, S.K.; Dutta, B.; Takeda, Y.; Sack, D.A. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin. Microbiol. Rev. 2007, 20, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.J.; Tomochika, K.I.; Miyoshi, S.I.; Shinoda, S. Environmental investigation of potentially pathogenic Vibrio parahaemolyticus in the Seto-Inland Sea, Japan. FEMS Microbiol. Lett. 2002, 208, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Koralage, M.; Alter, T.; Pichpol, D.; Strauch, E.; Zessin, K.; Huehn, S. Prevalence and molecular characteristics of Vibrio spp. isolated from preharvest shrimp of the North Western Province of Sri Lanka. J. Food Prot. 2012, 75, 1846–1850. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.T.; Jong, K.J.; Lin, Y.R.; Tsai, S.E.; Tey, Y.H.; Wong, H.C. Prevalence of Vibrio parahaemolyticus in oyster and clam culturing environments in Taiwan. Int. J. Food Microbiol. 2013, 160, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Adeleye, I.A.; Daniels, F.V.; Enyinnia, V.A. Characterization and pathogenicity of Vibrio spp. contaminating seafoods In Lagos, Nigeria. Int. J. Food Saf. 2010, 1, 1–9. [Google Scholar]
- CDC. National Enteric Disease Surveillance: COVIS Annual Summary; Centers for Disease Control and Prevention. Department of Health and Human Services: Atlanta, GA, USA, 2014. [Google Scholar]
- Saga, T.; Kaku, M.; Onodera, Y.; Yamachika, S.; Sato, K.; Takase, H. Vibrio parahaemolyticus chromosomal qnr homologue VPA0095: Demonstration by transformation with a mutated gene of its potential to reduce quinolone susceptibility in Escherichia coli. Antimicrob. Agents Chemother. 2005, 49, 2144–2145. [Google Scholar] [CrossRef] [PubMed]
- Aminov, R.I. Horizontal gene exchange in environmental microbiota. Front. Microbiol. 2011, 2, 158. [Google Scholar] [CrossRef] [PubMed]
- Carlet, J.; Collignon, P.; Goldmann, D.; Goossens, H.; Gyssens, I.C.; Harbarth, S.; Jarlier, V.; Levy, S.B.; N'Doye, B.; Pittet, D.; et al. Society’s failure to protect a precious resource: Antibiotics. Lancet 2011, 378, 369–371. [Google Scholar] [CrossRef]
- Finley, R.L.; Collignon, P.; Larsson, J.D.G.; McEwen, S.A.; Li, X.Z.; Gaze, W.H.; Reid-Smith, R.; Timinouni, M.; Graham, D.W.; Topp, E. The scourge of antibiotic resistance: The important role of the environment. Clin. Infect. Dis. 2013, 57, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Shears, P. Recent developments in cholera. Curr. Opin. Infect. Dis. 2001, 14, 553–558. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Clinical and laboratory standards institute. In Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline-Second Edition. CLSI Document M45-A2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010; pp. 1087–1898. [Google Scholar]
- Crowther-Gibson, P.; Govender, N.; Lewis, D.A.; Bamford, C.; Brink, A.; von Gottberg, A.; Klugman, K.; du Plessis, M.; Fali, A.; Harris, B.; et al. Part IV. GARP: Human infections and antibiotic resistance. SAM J. 2011, 101, 567–578. [Google Scholar]
- Slama, T.G.; Amin, A.; Brunton, S.A. A clinician’s guide to the appropriate and accurate use of antibiotics: The Council for Appropriate and Rational Antibiotic Therapy (CARAT) criteria. Am. J. Med. 2005, 118, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Raissy, M. In vitro susceptibility of commonly used antibiotics against Vibrio spp. isolated from Lobster (Panulirus homarus). Afr. J. Microbiol. Res. 2010, 4, 2629–2631. [Google Scholar]
- Saga, T.; Yamaguchi, K. History of antimicrobial agents and resistant bacteria. JMJA 2009, 52, 103–108. [Google Scholar]
- World Health Organization (WHO). Cholera, Wkly. Epidemiol. Rec. 2013, 89, 345–356. [Google Scholar]
- Sudha, S.; Mridula, C.; Silvester, R.; Hatha, A.A.M. Prevalence and antibiotic resistance of pathogenic Vibrios in shellfishes from Cochin market. Indian J. Mar. Sci. 2014, 43, 815–824. [Google Scholar]
- Singer, A.C.; Colizza, V.; Schmitt, H.; Andrews, J.; Balcan, D.; Huang, W.E.; Keller, V.D.J.; Vespignani, A.; Williams, R.J. Assessing the ecotoxicologic hazards of a pandemic influenza medical response. Environ. Health Perspect. 2011, 119, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Zambello, E. Predicted and measured concentrations of pharmaceuticals in hospital effluents. Examination of the strengths and weaknesses of the two approaches through the analysis of a case study. Sci. Total Environ. 2016, 565, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.E.; Zhang, H.; Ying, G.G.; Zhou, L.J.; Jones, K.C. Passive sampling: A cost-effective method for understanding antibiotic fate, behaviour and impact. Environ. Int. 2015, 85, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, T. Biodegradation and adsorption of antibiotics in the activated sludge process. Environ. Sci. Technol. 2010, 44, 3468–3473. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015, 532, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. Rev. Chemosphere 2013, 93, 1268–1287. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 47, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M.; Jones, V.; Comber, S.; Scrimshaw, M.D.; Coello-Garcia, T.; Cartmell, E.; Lester, J.; Ellor, B. Performance of UK wastewater treatment works with respect to trace contaminants. Sci. Total Environ. 2013, 45, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, B.J.A.; Wegh, R.S.; Memelink, J.; Zuidema, T.; Stolker, L.A.M. The analysis of animal faeces as a tool to monitor antibiotic usage. Talanta 2015, 132, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Udikovic-Kolic, N.; Wichmann, F.; Broderick, N.A.; Handelsman, J. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc. Natl. Acad. Sci. USA 2014, 111, 15202–15207. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, F.; Udikovic-Kolic, N.; Andrew, S.; Handelsman, J. Diverse antibiotic resistance genes in dairy cow manure. MBio 2014, 5, 01017. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.A. Tropical diarrhea: New developments in traveler’s diarrhea. Curr. Opin. Infect. Dis. 2001, 14, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Laganà, P.; Caruso, G.; Minutoli, E.; Zaccone, R.; Santi, D. Susceptibility to antibiotics of Vibrio spp. and Photobacterium damsela ssp. Piscicida strains isolated from Italian aquaculture farms. New Microbiol. 2011, 34, 53–63. [Google Scholar] [PubMed]
- Kitaoka, M.; Miyata, S.T.; Unterweger, D.; Pukatzki, S. Antibiotic resistance mechanisms of Vibrio cholerae. J. Med. Microbiol. 2011, 60, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Appl. Eviron. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef] [PubMed]
- Letchumanan, V.; Chan, K.G.; Lee, L.H. An insight of traditional plasmid curing in Vibrio species. Front. Microbiol. 2015, 6, 735. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, T.U.; Adhikari, N.; Maharjan, R.; Banjara, M.R.; Rijal, K.R.; Basnyat, S.R.; Agrawal, V.P. Multidrug resistant Vibrio cholerae O1 from clinical and environmental samples in Kathmandu city. BMC Infect. Dis. 2015, 15, 104. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, D.; Hasan, N.A.; Huq, A.; Colwell, R.R. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front. Cell Infect. Microbiol. 2013, 3, 97. [Google Scholar] [CrossRef] [PubMed]
- Maher, M.C.; Alemayehu, W.; Lakew, T.; Gaynor, B.D.; Haug, S.; Cevallos, V.; Keenan, J.D.; Lietman, T.M.; Porco, T.C. The fitness cost of antibiotic resistance in Streptococcus pneumoniae: Insight from the field. PLoS ONE 2012, 7, 29407. [Google Scholar] [CrossRef] [PubMed]
- Roux, D.; Danilchanka, O.; Guillard, T.; Cattoir, V.; Aschard, H.; Fu, Y.; Angoulvant, F.; Messika, J.; Ricard, J.D.; Mekalanos, J.J.; et al. Fitness cost of antibiotic susceptibility during bacterial infection. Sci. Transl. Med. 2015, 7, 297ra114. [Google Scholar] [CrossRef] [PubMed]
- Gullberg, E.; Albrecht, L.M.; Karlsson, C.; Sandegren, L.; Andersson, D.I. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. MBio 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Gifford, D.R.; Moss, E.; MacLean, R.C. Environmental variation alters the fitness effects of rifampicin resistance mutations in Pseudomonas aeruginosa. Evolution 2016, 70, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Amini, S.; Hottes, A.K.; Smith, L.E.; Tavazoie, S. Fitness landscape of antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2011, 7, 1002298. [Google Scholar] [CrossRef] [PubMed]
- Burrus, V.; Marrero, J.; Waldor, M.K. The current ICE age: Biology and evolution of SXT-related integrating conjugative elements. Plasmid 2006, 55, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, I.T.; Brown, M.H.; Skurray, R.A. Proton dependent multidrug efflux systems. Microbiol. Rev. 1996, 60, 575–608. [Google Scholar] [PubMed]
- Waldor, M.K.; Mekalanos, J.J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 1996, 272, 1910–1914. [Google Scholar] [CrossRef] [PubMed]
- Akoachere, J.F.T.K.; Masalla, T.N.; Njom, H.A. Multi-drug resistant toxigenic Vibrio cholerae O1 is persistent in water sources in New Bell-Douala Cameroon. BMC Infect. Dis. 2013, 13, 366. [Google Scholar] [CrossRef] [PubMed]
- Opintan, J.A.; Newman, M.J.; Nsiah-Poodoh, O.A.; Okeke, I.N. Vibrio cholerae O1 from Accra, Ghana carrying a class 2 integron and the SXT element. J. Antimicrob. Chemother. 2008, 62, 929–933. [Google Scholar] [CrossRef] [PubMed]
- Eibach, D.; Herrera-Leon, S.; Gil, H.; Hogan, B.; Ehlkes, L.; Adjabeng, M.; Kreuels, B.; Nagel, M.; Opare, D.; Fobil, J.N.; et al. Molecular Epidemiology and Antibiotic Susceptibility of Vibrio cholerae Associated with a Large Cholera Outbreak in Ghana in 2014. PLoS Negl. Trop. Dis. 2016, 10, 4751. [Google Scholar] [CrossRef] [PubMed]
- Mandomando, I.; Espasa, M.; Valles, X.; Sacarlal, J.; Sigau que, B.; Ruiz, J.; Alonso, P. Antimicrobial resistance of Vibrio cholerae O1 serotype Ogawa isolated in Manhica District Hospital, southern Mozambique. J. Antimicrob. Chemother. 2007, 60, 662–664. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, Y.A.; Reen, F.J.; Quirke, A.M.; Boyd, E.F. Evolutionary genetic analysis of the emergence of epidemic Vibrio cholerae isolates on the basis of comparative nucleotide sequence analysis and multilocus virulence gene profiles. J. Clin. Microbiol. 2004, 42, 4657–4671. [Google Scholar] [CrossRef] [PubMed]
- Manga, N.M.; Ndour, C.T.; Diop, S.A.; Dia, N.M.; Ka-Sall, R.; Diop, B.M.; Sow, A.I.; Sow, P.S. Cholera in Senegal from 2004 to 2006: Lessons learned from successive outbreaks. Med. Trop. (Mars) 2008, 68, 589–592. [Google Scholar] [PubMed]
- Ngandjio, A.; Tejiokem, M.; Wouafo, M.; Ndome, I.; Yonga, M.; Guenole, A.; Lemee, L.; Quilici, M.L.; Fonkoua, M.C. Antimicrobial resistance and molecular characterization of Vibrio cholerae O1 during the 2004 and 2005 outbreak of cholera inCameroon. Foodborne Pathog. Dis. 2009, 6, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Abera, B.; Bezabih, B.; Dessie, A. Antimicrobial susceptibilityof V. cholerae in north west, Ethiopia. Ethiop. Med. J. 2010, 48, 23–28. [Google Scholar] [PubMed]
- Miwanda, B.; Moore, S.; Muyembe, J.J.; Nguefack-Tsague, G.; Kabangwa, I.K.; Ndjakani, D.Y.; Mutreja, A.; Thomson, N.; Thefenne, H.; Garnotel, E.; et al. Antimicrobial drug resistance of Vibrio cholerae, Democratic Republic of the Congo. Emerg. Infect. Dis. 2015, 21, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Keddy, K.H.; De Wee, L. Characterization of cholera outbreak isolates from Namibia. Epidemiol. Infect. 2008, 136, 1207–1209. [Google Scholar] [PubMed]
- Mwansa, J.C.L.; Mwaba, J.; Lukwesa, C.; Bhuiyan, N.A.; Ansaruzzaman, M.; Ramamurthy, T.; Alam, M.; Nair, G.B. Multiply antibiotic-resistant Vibrio cholerae O1 biotype El Tor strains emerge during cholera outbreaks in Zambia. Epidemiol. Infect. 2007, 135, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, D.; Salvia, A.M.; Sami, J.; Cappuccinelli, P.; Colombo, M.M. New Cluster of plasmid-located class 1 integrons in Vibrio cholerae O1 and a dfrA15 cassette-containing integrin in Vibrio parahaemolyticus isolated in Angola. Antimicrob. Agents Chemother. 2006, 50, 2493–2499. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.; Smith, A.M.; Archer, B.N.; Tau, N.P.; Sooka, A.; Thomas, J.; Prinsloo, B.; Keddy, K.H. Group for Enteric, Respiratory and Meningeal Disease Surveillance in South Africa (GERMS-SA). Case of imported Vibrio cholerae O1 from India to South Africa. J. Infect. Dev. Ctries 2012, 6, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Urtaza, J.; Lozano-Leon, A.; Varela-Pet, J.; Trinanes, J.; Pazos, Y.; Garcia-Martin, O. Environmental determinants of the occurrence and distribution of Vibrio parahaemolyticus in the rias of Galicia, Spain. Appl. Environ. Microbiol. 2008, 74, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yang, X.; Qin, J.; Lu, N.; Cheng, G.; Wu, N.; Pan, Y.; Li, J.; Zhu, L.; Wang, X.; et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat. Commun. 2013, 4, 2151. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.H.; Cohen, T.; Grad, Y.H.; Hanage, W.P.; O’Brien, T.F.; Lipsitch, M. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol. Mol. Biol. Rev. 2015, 79, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.J.; McLellan, S.L.; Dila, D.K.; Vineis, J.H.; Morrison, H.G.; Eren, A.M.; Soqin, M.L. Sewage reflects the microbiomes of human populations. MBio 2015, 6, 02574. [Google Scholar] [CrossRef] [PubMed]
- Manjusha, S.; Sarita, G.B. Plasmid associated antibiotic resistance in Vibrio isolated from coastal waters of Kerala. Int. Food Res. J. 2011, 18, 1171–1181. [Google Scholar]
- Szczepanowski, R.; Krahn, I.; Linke, B.; Goesmann, A.; Pühler, A.; Schlüter, A. Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. Microbiology 2004, 150, 3613–3630. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X.; Meng, W. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 2015, 119, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Nam, H.M.; Nguyen, L.T.; Tamilselvam, B.; Murinda, S.E.; Oliver, S.P. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog. Dis. 2005, 2, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Zhang, T.; Fang, H.H.P. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotech. 2009, 82, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.Y.; Ren, J.; Song, L.S.; Sun, S.; An, L.G. Dominant chloramphenicol-resistant bacteria and resistance genes in coastal marine waters of Jiazhou Bay, China. World J. Microbiol. Biotech. 2008, 24, 209–217. [Google Scholar] [CrossRef]
- Kim, M.; Kwon, T.H.; Jung, S.M.; Cho, S.H.; Jin, S.Y.; Park, N.H.; Kim, C.; Kim, J. Antibiotic resistance of bacteria isolated from the internal organs of edible snow crabs. PLoS ONE 2013, 8, 70887. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, K.J.; Reyes, A.; Wang, B.; Selleck, E.M.; Sommer, M.O.A.; Dantas, G. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012, 337, 1107–1111. [Google Scholar] [CrossRef] [PubMed]
- Cox, G.; Wright, G.D. Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol. 2013, 303, 287–292. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. The Review on Antimicrobial Resistance Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste. Available online: https://www.noah.co.uk/wp-content/uploads/2016/06/Critique-ONeill-Report-Final.pdf (accessed on 27 August 2017).
- Oger, P.Y.; Sudre, B. Water, Sanitation and Hygiene and Cholera Epidemiology: An Integrated Evaluation in the Countries of the Lake Chad Basin; UNICEF WCAR: Dakar, Senegal, 2011. [Google Scholar]
- WASH and Cholera in Ghana, positioning paper, UNICEF. Available online: http://www.plateformecholera.info/attachments/article/221/UNICEF-Factsheet-Ghana-EN-FINAL.pdf (accessed on 27 August 2017).
Vibrio Species | Intestinal Syndromes | Extra-Intestinal Syndromes | |||
Diarrhea | Cholera | Septicemia | Skin-infection | Others * | |
Vibrio cholerae O1/139 | - | ## | - | - | ≠ |
Vibrio cholerae non O1/non 139 | ## | # | # | ≠ | |
Vibrio alginolyticus | - | ≠ | ## | ≠ | |
Vibrio damsela | - | ## | ## | - | |
Vibrio fluvialis | ## | - | - | - | |
Vibrio metschnikovi | ≠ | - | - | ≠ | |
Vibrio mimicus | ## | - | - | ≠ | |
Vibrio parahaemolyticus | ## | ## | ## | ≠ | |
Vibrio vuinificus | ≠ | ## | ## | ≠ |
Caption | V. cholerae | V. parahaemolyticus | V. fluvialis | V. furnisii | V. vulnificus | V. alginolyticus | V. cincinnatiensis | V. damsela | V. hollisae | V. metchnikovii | V. mimicus |
---|---|---|---|---|---|---|---|---|---|---|---|
TCBC agar | YLW | GRN | YLW | YLW | GRE | YLW | YLW | GRE | ABS | GRE | GRE |
mCPC agar | Purple | ABS | ABS | ABS | YLW | ABS | NOTD | ABS | ABS | ABS | ABS |
AGS | AKa | AKa | AKAK | AKAK | AKa | AKa | NOTD | NAD | Aka | AKAK | AKa |
Grth. NaCl (0%) | + | − | − | − | − | − | − | − | − | − | + |
Grth. NaCl (3%) | + | + | + | + | + | + | + | + | + | + | + |
Grth .NaCl (6%) | − | + | + | + | + | + | + | V | + | + | − |
Grth NaCl (8%) | − | + | V | + | − | + | − | − | − | V | − |
Grth. NaCl (10%) | − | − | − | − | − | + | − | − | − | − | − |
Grth at 42 °C | + | + | V | - | + | + | − | − | NOTD | V | + |
CA | NOTD | + | − | NOTD | + | − | NOTD | NOTD | NOTD | NOTD | NOTD |
VP | NOTD | - | - | NOTD | - | + | NOTD | NOTD | NOTD | NOTD | NOTD |
SU | + | − | + | + | − | + | + | − | − | + | − |
CE | − | V | + | − | + | − | + | + | − | − | − |
LA | − | − | − | − | − | − | − | − | − | − | − |
AB | − | − | + | + | − | + | − | + | − | − | |
MA | + | + | + | + | + | + | + | + | + | + | + |
MA | + | + | + | + | Va | + | − | − | + | + | + |
OX | + | + | + | + | + | + | + | + | + | − | + |
Ad | − | − | + | + | − | − | - | + | + | − | |
Ld | + | + | − | − | + | + | + | − | − | + | + |
Od | + | + | − | − | + | + | − | − | − | − | + |
S 0/129 (10 μg) | SNTIVE | REST | REST | REST | SNTIVE | REST | SNTIVE | SNTIVE | NAD | SNTIVE | SNTIVE |
S 0/129 150 μg) | SNTIVE | SNTIVE | SNTIVE | SNTIVE | SNTIVE | SNTIVE | SNTIVE | SNTIVE | NAD | SNTIVE | SNTIVE |
GE | + | + | + | + | + | + | − | + | − | + | + |
UR | − | V | − | − | − | − | − | + | − | − | − |
Vibrio Species | Vibrolysin | Collagenase | Chymotrypsin-Like Protease | Haemolysin |
---|---|---|---|---|
Vibrio alginolyticus | Present | Present | ||
Vibrio parahaemolyticus | Present | Present | Present | |
Vibrio mimicus | Present | |||
Vibrio cholerae | Present | Present | ||
Vibrio vulnificus | Present | Present | ||
Vibrio fluvialis | Present | Present | ||
Vibrio metschnikovii | Present | |||
Vibrio anguillarium | Present | |||
Vibrio tubiashii | Present |
Name of Countries | Cases between (1994–2013) | Cases in 2014 | Cases in 2015 | Cases in 2016 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Cases | Death | CFR | Cases | Death | CFR | Cases | Death | CFR | Cases | Death | CFR | |
Nigeria | 2004–2013 | 105,483 | 3913 | 3.7 | 35,996 | 755 | 02 | 5913 | 188 | 3.2 | 768 | 32 | 4.2 |
Cameroun | 2004–2013 | 46,172 | 1817 | 3.9 | 3355 | 184 | 05 | 120 | 5 | 4.2 | 77 | 1 | 1.2 |
Niger | 1994–3013 | 21,538 | 978 | 4.5 | 2059 | 80 | 04 | 51 | 4 | 7.8 | 38 | 5 | 13.2 |
Lake Chad Basin | 2004–2013 | 31,918 | 996 | 3.2 | 41,188 | 994 | 2.4 | 6084 | 197 | 3.2 | 883 | 38 | 4.3 |
Ghana | 1998–2013 | 55,784 | 1095 | 2 | 28,944 | 247 | 01 | 687 | 10 | 1.5 | 600 | 00 | 00 |
Benin | 2004–2013 | 5432 | 48 | 0.9 | 874 | 14 | 02 | 00 | 00 | 00 | 874 | 13 | 1.5 |
Togo | 2006–2013 | 2142 | 38 | 1.8 | 329 | 11 | 03 | 50 | 02 | 4.0 | 02 | 00 | 00 |
Cote d’Ivoire | 2002–2013 | 7573 | 272 | 3.6 | 248 | 14 | 06 | 200 | 02 | 1.0 | 16 | 01 | 06 |
Guinea Bissau | 1996–2013 | 74,031 | 1684 | 2.3 | 18 | 3 | 7 | 00 | 00 | 00 | 00 | 00 | 00 |
DR Congo | - | - | - | - | 19,305 | 265 | 01 | 18,403 | 272 | 1.5 | 28,162 | 772 | 2.7 |
Year | Country | Strain | Antibiotic Resistance | Mechanism | Reference |
---|---|---|---|---|---|
2006 | Accra, Ghana | O1 | SXT | SXT element, Class 2 integron, Class 1 integron. | [223] |
2011–2014 | Ghana | O1 biotype El Tor | Am, Cpr, NA, SXT. | ND | [224] |
Nov. 2002–April 2004 | Mozambique | O1 El Tor Ogawa | Cm, Co, Tet, Qu. | ND | [225] |
1994 | Rwanda | O1 EL Tor | Co | ND | [226] |
Oct. 2004–Mar. 2006 | Senegal | O1 El Tor | Co | ND | [227] |
2009–2010 | Nigeria | atypical El Tor | SXT, Spec | ND | [154] |
2004–2005 | Cameroun | O1 | SXT, Amp | ND | [228] |
Aug. 2006–Sep. 2008 | North-west Ethiopia | O1 Inaba | Co, Cm, Amp, Ery, Tet, Cpr. | ND | [229] |
2011–2012 | DR Congo | Ogawa and Inaba | NA, Am, Cm, Tet, Do, Nf, SXT, Ery. | ND | [230] |
Dec. 2006–Feb. 2007 | Namibia | O1 El Tor Inaba | SXT, Sm. | ND | [231] |
1998–1999 | Kenya | O1 | Spec, Cm, Co, Tet | ND | [232] |
2006 | Angola | O1 and Vibrio parahaemolyticus | Am, Cm, Tri, SXT, Tet. | Plasmid located Class 1 integrons. | [233] |
2010 | South Africa | Vibrio fluvialis, Vibrio species | Vf (Tri, Pen, Co, Spec). V spp. (Am and SXT). | ND | [28] |
2008–2009 | South Africa | O1 Inaba | Co, NA, Am, Tet, Cm, Ery, Ce. | Tet A gene, SXT element-integrase | [234] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osunla, C.A.; Okoh, A.I. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2017, 14, 1188. https://doi.org/10.3390/ijerph14101188
Osunla CA, Okoh AI. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa. International Journal of Environmental Research and Public Health. 2017; 14(10):1188. https://doi.org/10.3390/ijerph14101188
Chicago/Turabian StyleOsunla, Charles A., and Anthony I. Okoh. 2017. "Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa" International Journal of Environmental Research and Public Health 14, no. 10: 1188. https://doi.org/10.3390/ijerph14101188
APA StyleOsunla, C. A., & Okoh, A. I. (2017). Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa. International Journal of Environmental Research and Public Health, 14(10), 1188. https://doi.org/10.3390/ijerph14101188