Comparison of Health Risk Assessments of Heavy Metals and As in Sewage Sludge from Wastewater Treatment Plants (WWTPs) for Adults and Children in the Urban District of Taiyuan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Determination of the Total Heavy Metal Concentration
2.3. Health Risk Assessment
2.3.1. Exposure Assessment
2.3.2. Non-Carcinogenic Risk Assessment
2.3.3. Carcinogenic Risk Assessment
3. Results and Discussion
3.1. Heavy Metals and As Concentrations in Sewage Sludge from Different WWTPs in Taiyuan
3.2. Exposure Assessment
3.3. Health Risk Assessment
3.3.1. Non-Carcinogenic Health Risk
3.3.2. Carcinogenic Health Risk
3.4. Uncertainty Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, J.Y.; Zhuo, Z.X.; Sun, S.Y.; Ning, X.N.; Zhao, S.Y.; Xie, W.M.; Wang, Y.J.; Zheng, L.; Huang, R.; Li, B. Concentrations of heavy metals in six municipal sludges from Guangzhou and their potential ecological risk assessment for agricultural land use. Pol. J. Environ. Stud. 2015, 24, 165–174. [Google Scholar] [CrossRef]
- Dong, B.; Liu, X.; Dai, L.; Dai, X. Changes of heavy metal speciation during high-solid anaerobic digestion of sewage sludge. Bioresour. Technol. 2013, 131, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.H.; Chen, T.; Yang, J.; Zheng, G.; Ding, G. Regional distribution characteristics and variation of heavy metals in sewage sludge of China. Acta Sci. Circumstantiae 2014, 34, 2455–2461. [Google Scholar]
- Kendir, E.; Kentel, E.; Sanin, F.D. Evaluation of heavy metals and associated health risks in a metropolitan wastewater treatment plant’s sludge for its land application. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 1631–1643. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.B.; Huang, Q.F.; Gao, D.; Zheng, Y.Q.; Wu, J.F. Heavy metal concentrations and their decreasing trends in sewage sludges of China. Acta Sci. Circumstantiae 2003, 23, 561–569. [Google Scholar]
- Duan, B.L.; Liu, F.W.; Zhang, W.P.; Zheng, H.X.; Zhang, Q.; Li, X.M.; Bu, Y.S. Evaluation and source apportionment of heavy metals (HMs) in sewage sludge of municipal wastewater treatment plants (WWTPs) in Shanxi, China. Int. J. Environ. Res. Public Health 2015, 12, 15807–15818. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, K.; Ramteke, D.S.; Paliwal, L.J.; Naik, N.K. Agronomic application of food processing industrial sludge to improve soil quality and crop productivity. Geoderma 2013, 207–208, 205–211. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Le Velly, V.M.; Rhind, S.M.; Kyle, C.E.; Hough, R.L.; Duff, E.I.; Mckenzie, C. A study on temporal trends and estimates of fate of Bisphenol A in agricultural soils after sewage sludge amendment. Sci. Total Environ. 2015, 515, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Grotto, D.; Batista, B.L.; Souza, J.M.O.; Carneiro, M.F.H.; Santos, D.D.; Melo, W.J.; Barbosa, F., Jr. Essential and nonessential element translocation in corn cultivated under sewage sludge application and associated health risk. Water Air Soil Pollut. 2015, 226, 1–10. [Google Scholar] [CrossRef]
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Józefowska, A.; Zaleski, T.; Kepke, W.; Tymczuk, M.; Orlowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2016, 168, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Kachout, S.S.; Mansoura, A.B.; Ennajah, A.; Leclerc, J.C.; Ouerghi, Z.; KarrayBouraoui, N. Effects of metal toxicity on growth and pigment contents of annual halophyte (A. hortensis and A. rosea). Int. J. Environ. Res. 2015, 9, 613–620. [Google Scholar]
- Mishra, V.K.; Tripathi, B.D. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour. Technol. 2008, 99, 7091–7097. [Google Scholar] [CrossRef] [PubMed]
- Przewrocki, P.; Kulczycka, J.; Wzorek, Z.; Kowalski, Z.; Gorazda, K.; Jodko, M. Risk analysis of sewage sludge–Poland and EU comparative approach. Pol. J. Environ. Stud. 2004, 13, 39–59. [Google Scholar]
- Sun, Y.; Zhou, Q.; Xie, X.; Liu, R. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J. Hazard. Mater. 2010, 174, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, J.; Pan, Y.; Chai, X. Human health risk assessment of heavy metals in a replaced urban industrial area of Qingdao, China. Environ. Monit. Assess. 2016, 188, 1–12. [Google Scholar] [CrossRef] [PubMed]
- He, X.W.; Fang, Z.Q.; Wang, Y.X.; Jia, M.Y.; Song, J.Y.; Cheng, Y.J. Pollution characteristics, potential ecological risk and health risk assessment of heavy metal in a sewage treatment plant in Beijing. Acta Sci. Circumstantiae 2016, 36, 1092–1098. [Google Scholar]
- Zhao, L.; Xi, Y.; Hou, H.; Shangguan, Y.; Li, F. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci. Total Environ. 2014, 468–469, 654–662. [Google Scholar] [CrossRef] [PubMed]
- USEPA. A Guide to the Biosolids Risk Assessments for the EPA Part 503 Rule; U.S. Environmental Protection Agency Office of Wastewater Management: Washington, DC, USA, 1995.
- USEPA. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual, (Part A); Office of Emergency and Remedial Response: Washington, DC, USA, 1989.
- USEPA. A Plain English Guide to the EPA Part 503 Biosolids Rule; U.S. Environmental Protection Agency Office of Wastewater Management: Washington, DC, USA, 1994.
- Acosta, J.A.; Cano, A.F.; Arocena, J.M.; Debela, F.; Martínez-Martínez, S. Distribution of metals in soil particle size fractions and its implication to risk assessment of playground in Murcia City (Spain). Geoderma 2009, 149, 101–109. [Google Scholar] [CrossRef]
- Ljung, K.; Oomen, A.; Duits, M.; Selinus, O.; Berglund, M. Bioaccessibility of metals in urban playground soils. J. Environ. Sci. Health Part A 2007, 42, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Li, S.F.; Wang, W.C. Research on low-carbon developing of traditional heavy-industrial city based on energy consumption and society balance taking: Taiyuan city as example. Urban Dev. Stud. 2016, 23, 7–10. [Google Scholar]
- Pan, L.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, Y.; Wang, Z.S.; Wang, L.; Xiang, B. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi province, China. Environ. Sci. Pollut. Res. 2016, 23, 19330–19340. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lei, M.; Chen, T.; Gao, D.; Zheng, G.D.; Guo, G.H.; Lee, D.J. Current status and developing trends of the contents of heavy metals in sewage sludges in China. Front. Environ. Sci. Eng. 2014, 8, 719–728. [Google Scholar] [CrossRef]
- Mckenzie, L.M.; Witter, R.Z.; Newman, L.S.; Adgate, J.L. Human health risk assessment of air emissions from development of unconventional natural gas resources. Sci. Total Environ. 2012, 424, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.S.; Ding, J.; Xu, B.; Wang, Y.J.; Li, H.B.; Yu, S. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci. Total Environ. 2012, 424, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Maghakyan, N.; Saghatelyan, A. Human health risk assessment and riskiest heavy metal origin identification in urban soils of Yerevan, Armenia. Chemosphere 2017, 184, 1230–1240. [Google Scholar] [CrossRef] [PubMed]
- Praveena, S.M.; Ismail, S.N.S.; Aris, A.Z. Health risk assessment of heavy metal exposure in urban soil from Seri Kembangan (Malaysia). Arab. J. Geosci. 2015, 8, 9753–9761. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ma, Z.W.; van der Kuijp, T.J.; Yuan, Z.W.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, Y.; Wu, L.; Xie, L.P.; Wu, J. Concentration and health risk of heavy metals in topsoil of paddy field of Chengdu Plain. Environ. Chem. 2014, 33, 269–275. [Google Scholar]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual Supplemental, Guidance “Standard Default Exposure Factors” Interim Final; Office of Emergency and Remedial Response Toxics Integration Branch: Washington, DC, USA, 1991.
- Muhammad, S.; Shah, M.T.; Khan, S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, Northern Pakistan. Microchem. J. 2011, 98, 334–343. [Google Scholar] [CrossRef]
- Zhao, H.R.; Xia, B.C.; Fan, C.; Zhao, P.; Shen, S.L. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan mine, Southern China. Sci. Total Environ. 2012, 417, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.Z.; Duan, X.L.; Zhao, X.G.; Ma, J.; Dong, T.; Huang, N.; Sun, C.Y.; He, B.; Wei, F.S. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Sci. Total Environ. 2014, 472, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Man, Y.B.; Sun, X.L.; Zhao, Y.G.; Lopez, B.N.; Chung, S.S.; Wu, S.C.; Cheung, K.C.; Wong, M.H. Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world’s most populated city. Environ. Int. 2010, 36, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Sun, D.J. The mechanism of carcinogenic for arsenic. Chin. J. End. 2004, 23, 570–576. [Google Scholar]
- Li, Y.H. Review on the mechanism of carcinogenesis of arsenic. Chin. J. Control Endem. Disenaces 2007, 22, 264–267. [Google Scholar]
- Deng, S.P.; Luo, Y.M.; Song, J.; Teng, Y.; Chen, Y.S. Carcinogenic risk assessment of polychlorinated biphenyls and cadmium in multi-media of a typical area. Acta Pedol. Sin. 2011, 48, 731–742. [Google Scholar]
- Che, F.; Yu, Y.J.; Hu, C.; Yang, X.N.; Duan, X.L.; Li, Q.; Lin, H.P. Preliminary health risk assessment of heavy metals in soil in Shen-fu irrigation area. J. Agro-Environ. Sci. 2009, 28, 1439–1443. [Google Scholar]
- Yang, M.; Teng, Y.; Ren, W.J.; Huang, Y.; Xu, D.F.; Fu, Z.C.; Ma, W.T.; Luo, Y.M. Pollution and health risk assessment of heavy metals in agricultural soil around Shimen Realgar Mine. Soils 2016, 48, 1172–1178. [Google Scholar]
- Lin, M.; Gui, H.; Yao, W.; Peng, W. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China. Environ. Sci. Pollut. Res. 2017, 24, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, T.M.; Zhou, J.; Xie, Z.M. Assessment of health risk for mined soils based on critical thresholds for lead, zinc, cadmium and copper. Environ. Sci. 2008, 29, 2327–2330. [Google Scholar]
- Perez-Vazquez, F.J.; Flores-Ramirez, R.; Ochoa-Martínez, A.C.; Carrizales-Yáñez, L.; Ilizaliturri-Hernández, A.C.; Moctezuma-González, J.; Pruneda-Álvarez, L.G.; Ruiz-Vera, T.; Orta-García, S.T.; González-Palomo, A.K.; et al. Human health risks associated with heavy metals in soil in different areas of San Luis Potosi, Mexico. Hum. Ecol. Risk Assess. 2016, 22, 323–336. [Google Scholar] [CrossRef]
- Diami, S.M.; Kusin, F.M.; Madzin, Z. Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia. Environ. Sci. Pollut. Res. 2016, 23, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Selinus, O.; Otabbong, E. Metals in soils of children’s urban environments in the small Northern European city of Uppsala. Sci. Total Environ. 2005, 366, 749–759. [Google Scholar]
No. | Name | Latitude | Longitude | Treatment Technology |
---|---|---|---|---|
1 | Taiyuan drainage management office sewage purification II plant | 112.530767 | 37.940478 | Carrousel oxidation ditch |
2 | Taiyuan Xinlangming Sewage Treatment Co., Ltd. | 112.536829 | 37.831682 | Anaerobic/Anoxic/Oxic |
3 | Taiyuan Haofeng Sewage Treatment Co., Ltd. | 112.550556 | 37.806389 | Activated sludge process |
4 | Taiyuan South Weir Sewage Treatment Branch | 112.581518 | 37.722606 | Biological contact oxidation process |
5 | Taiyuan Golden Century Sunshine Water Purification Co., Ltd. | 112.507611 | 37.802056 | Activated sludge process |
Heavy Metal | Certified Value (mg/kg) | Measured Value (mg/kg) | Accuracy (%) | Precision (%) | Recovery (%) | Method Detection Limit (mg/kg) |
---|---|---|---|---|---|---|
Cu | 482 | 471.04 | 4.31 | −2.27 | 94.40% | 1.03 |
Zn | 1240 | 1229.91 | 5.77 | −0.81 | 93.00% | 0.97 |
Hg | 12.5 | 11.40 | 0.76 | −8.81 | 91.20% | 0.0042 |
Pb | 154 | 147.89 | 3.25 | −3.97 | 92.95% | 0.28 |
Cr | 289 | 281.41 | 4.60 | −2.63 | 94.80% | 4.83 |
As | 229 | 221.91 | 3.88 | −3.09 | 95.75% | 0.015 |
Cd | 60 | 62.92 | 1.30 | 4.87 | 105.55% | 0.0056 |
Heavy Metal | RfD (mg·kg−1·d−1) | SF (kg·d·mg−1) | |
---|---|---|---|
Ingestion | Inhalation | ||
Cu | 0.004 | 0.004 | |
Zn | 0.300 | 0.300 | |
Hg | 0.0001 | 0.0001 | |
Pb | 0.038 | 0.038 | |
Cr | 0.005 | 0.005 | |
As | 1.5 | ||
Cd | 6.1 |
Heavy Metal | MIN | MAX | Mean | Standard Deviation |
---|---|---|---|---|
Cu | 149.94 | 261.00 | 214.08 | 54.30 |
Zn | 63.44 | 121.10 | 93.64 | 21.86 |
Hg | 1.72 | 3.74 | 2.80 | 0.96 |
Pb | 41.13 | 57.39 | 50.84 | 7.82 |
Cr | 54.48 | 186.24 | 111.54 | 49.91 |
As | 13.85 | 22.51 | 16.69 | 3.56 |
Cd | 0.33 | 1.06 | 0.68 | 0.29 |
Cu | Zn | Hg | Pb | Cr | As | Cd | |
---|---|---|---|---|---|---|---|
USEPA a | 1500 | 2800 | - | 300 | 1200 | 41 | 39 |
European Union b | 1000–1750 | 2500–4000 | 16–25 | 750–1200 | - | - | 20–40 |
Spain c | |||||||
pH < 7 | 1000 | 2500 | 16 | 750 | 300 | - | 20 |
pH > 7 | 1750 | 4000 | 25 | 1200 | 400 | - | 40 |
Canada d | 500 | 2000 | 10 | 200 | 1000 | 10 | 20 |
CJ/T 309-2009 e | |||||||
Grade A f | 500 | 1500 | 3 | 300 | 500 | 30 | 3 |
Grade B g | 1500 | 3000 | 15 | 1000 | 1000 | 75 | 15 |
Heavy Metal | Adults | Children | |||||
---|---|---|---|---|---|---|---|
ADDingest | ADDinhale | ADD | ADDingest | ADDinhale | ADD | ||
Cu | Range | 2.05 × 10−4–3.58 × 10−4 | 3.02 × 10−8–5.26 × 10−8 | 2.05 × 10−4–3.58 × 10−4 | 1.80 × 10−3–3.13 × 10−3 | 5.02 × 10−8–8.74 × 10−8 | 1.80 × 10−3–3.13 × 10−3 |
Mean | 2.93 × 10−4 | 4.31 × 10−8 | 2.93 × 10−4 | 2.57 × 10−3 | 7.17 × 10−8 | 2.57 × 10−3 | |
95% UCL | 3.97 × 10−4 | 6.78 × 10−8 | 3.97 × 10−4 | 4.03 × 10−3 | 1.13 × 10−7 | 4.03 × 10−3 | |
Zn | Range | 8.69 × 10−5–1.66 × 10−4 | 1.28 × 10−8–2.44 × 10−8 | 8.69 × 10−5–1.19 × 10−4 | 7.60 × 10−4–1.45 × 10−3 | 2.12 × 10−8–4.06 × 10−8 | 7.60 × 10−4–1.04 × 10−3 |
Mean | 1.28 × 10−4 | 1.89 × 10−8 | 1.28 × 10−4 | 1.12 × 10−3 | 3.14 × 10−8 | 1.12 × 10−3 | |
95% UCL | 1.70 × 10−4 | 1.89 × 10−8 | 1.70 × 10−4 | 1.12 × 10−3 | 3.14 × 10−8 | 1.12 × 10−3 | |
Hg | Range | 2.36 × 10−6–5.12 × 10−6 | 3.46 × 10−10–7.53 × 10−10 | 2.36 × 10−6–5.12 × 10−6 | 2.06 × 10−5–4.48 × 10−5 | 5.76 × 10−10–1.25 × 10−9 | 2.06 × 10−5–4.48 × 10−5 |
Mean | 3.83 × 10−6 | 5.64 × 10−10 | 3.83 × 10−6 | 3.35 × 10−5 | 9.37 × 10−10 | 3.35 × 10−5 | |
95% UCL | 5.65 × 10−6 | 1.02 × 10−9 | 5.65 × 10−6 | 6.07 × 10−5 | 1.70 × 10−9 | 6.07 × 10−5 | |
Pb | Range | 5.63 × 10−5–7.86 × 10−5 | 8.29 × 10−9–1.16 × 10−8 | 5.64 × 10−5–7.86 × 10−5 | 4.93 × 10−4–6.88 × 10−4 | 1.38 × 10−8–1.92 × 10−8 | 4.93 × 10−4–6.88 × 10−4 |
Mean | 6.96 × 10−5 | 1.02 × 10−8 | 6.96 × 10−5 | 6.09 × 10−4 | 1.70 × 10−8 | 6.09 × 10−4 | |
95% UCL | 8.45 × 10−5 | 1.37 × 10−8 | 8.45 × 10−5 | 8.18 × 10−4 | 2.29 × 10−8 | 8.18 × 10−4 | |
Cr | Range | 2.55 × 10−4–7.46 × 10−5 | 1.10 × 10−8–3.75 × 10−8 | 7.46 × 10−5–2.55 × 10−4 | 6.53 × 10−4–2.23 × 10−3 | 1.82 × 10−8–6.24 × 10−8 | 6.53 × 10−4–2.23 × 10−3 |
Mean | 1.53 × 10−4 | 2.25 × 10−8 | 1.53 × 10−4 | 1.34 × 10−3 | 3.74 × 10−8 | 1.34 × 10−3 | |
95% UCL | 2.48 × 10−4 | 5.15 × 10−8 | 2.48 × 10−4 | 3.06 × 10−3 | 8.56 × 10−8 | 3.06 × 10−3 | |
As | Range | 8.13 × 10−6–1.32 × 10−5 | 1.20 × 10−9–1.94 × 10−9 | 8.13 × 10−6–1.03 × 10−5 | 1.42 × 10−5–2.31 × 10−5 | 3.97 × 10−10–6.46 × 10−10 | 1.42 × 10−5–2.31 × 10−5 |
Mean | 9.80 × 10−6 | 1.44 × 10−9 | 9.80 × 10−6 | 1.71 × 10−5 | 4.79 × 10−10 | 1.71 × 10−5 | |
95% UCL | 1.27 × 10−5 | 1.67 × 10−9 | 1.27 × 10−5 | 1.99 × 10−5 | 5.55 × 10−10 | 1.99 × 10−5 | |
Cd | Range | 1.95 × 10−7–6.21 × 10−7 | 2.87 × 10−11–9.14 × 10−11 | 1.95 × 10−7–6.21 × 10−7 | 3.42 × 10−7–8.25 × 10−7 | 3.04 × 10−11–9.55 × 10−12 | 3.42 × 10−7–1.09 × 10−6 |
Mean | 3.98 × 10−7 | 5.85 × 10−11 | 3.98 × 10−7 | 6.96 × 10−7 | 1.94 × 10−11 | 6.96 × 10−7 | |
95% UCL | 6.33 × 10−7 | 7.36 × 10−11 | 6.34 × 10−7 | 8.76 × 10−7 | 2.45 × 10−11 | 8.76 × 10−7 | |
Sum | Mean | 6.58 × 10−4 | 9.68 × 10−8 | 6.58 × 10−4 | 5.69 × 10−3 | 1.59 × 10−7 | 5.69 × 10−3 |
95% UCL | 9.18 × 10−4 | 1.55 × 10−7 | 9.18 × 10−4 | 9.12 × 10−3 | 2.55 × 10−7 | 9.12 × 10−3 |
Heavy Metal | Adults | Children | |||||
---|---|---|---|---|---|---|---|
HQingest | HQinhale | HQ | HQingest | HQinhale | HQ | ||
Cu | Range | 5.13 × 10−2–8.94 × 10−2 | 7.55 × 10−6–1.31 × 10−5 | 5.14 × 10−2–8.94 × 10−2 | 4.49 × 10−1–7.82 × 10−1 | 1.26 × 10−5–2.19 × 10−5 | 4.49 × 10−1–7.82 × 10−1 |
Mean | 7.33 × 10−2 | 1.08 × 10−5 | 7.33 × 10−2 | 6.42 × 10−1 | 1.79 × 10−5 | 6.42 × 10−1 | |
95% UCL | 9.91 × 10−2 | 1.69 × 10−5 | 9.91 × 10−2 | 1.01 × 100 | 2.82 × 10−5 | 1.01 × 100 | |
Zn | Range | 2.90 × 10−4–5.53 × 10−4 | 4.26 × 10−8–8.13 × 10−8 | 2.90 × 10−4–5.53 × 10−4 | 2.53 × 10−3–4.84 × 10−3 | 7.08 × 10−8–1.35 × 10−7 | 2.53 × 10−3–4.28 × 10−3 |
Mean | 4.28 × 10−4 | 6.29 × 10−8 | 4.28 × 10−4 | 3.74 × 10−3 | 1.05 × 10−7 | 3.74 × 10−3 | |
95% UCL | 5.66 × 10−4 | 6.30 × 10−8 | 5.66 × 10−4 | 3.75 × 10−3 | 1.05 × 10−7 | 3.75 × 10−3 | |
Hg | Range | 2.36 × 10−2–5.12 × 10−2 | 3.46 × 10−6–7.53 × 10−6 | 2.36 × 10−2–5.12 × 10−2 | 2.06 × 10−1–4.48 × 10−1 | 1.25 × 10−5–5.76 × 10−6 | 2.06 × 10−1–4.48 × 10−1 |
Mean | 3.83 × 10−2 | 5.64 × 10−6 | 3.83 × 10−2 | 3.35 × 10−1 | 9.37 × 10−6 | 3.35 × 10−1 | |
95% UCL | 5.65 × 10−2 | 1.02 × 10−5 | 5.65 × 10−2 | 6.07 × 10−1 | 1.70 × 10−5 | 6.07 × 10−1 | |
Pb | Range | 1.48 × 10−3–2.07 × 10−3 | 2.18 × 10−7–3.04 × 10−7 | 1.48 × 10−3–2.07 × 10−3 | 1.30 × 10−2–1.81 × 10−2 | 3.63 × 10−7–5.06 × 10−7 | 1.30 × 10−2–1.81 × 10−2 |
Mean | 1.83 × 10−3 | 2.69 × 10−7 | 1.83 × 10−3 | 1.60 × 10−2 | 4.48 × 10−7 | 1.60 × 10−2 | |
95% UCL | 2.22 × 10−3 | 3.62 × 10−7 | 2.22 × 10−3 | 2.15 × 10−2 | 6.02 × 10−7 | 2.15 × 10−2 | |
Cr | Range | 1.49 × 10−2–5.10 × 10−2 | 2.19 × 10−6–7.50 × 10−6 | 1.49 × 10−2–5.10 × 10−2 | 1.31 × 10−1–4.46 × 10−1 | 3.65 × 10−6–1.25 × 10−5 | 1.31 × 10−1–4.46 × 10−1 |
Mean | 3.06 × 10−2 | 4.49 × 10−6 | 3.06 × 10−2 | 2.67 × 10−1 | 7.47 × 10−6 | 2.67 × 10−1 | |
95% UCL | 4.95 × 10−2 | 1.03 × 10−5 | 4.96 × 10−2 | 6.13 × 10−1 | 1.71 × 10−5 | 6.13 × 10−1 | |
HI | Range | 9.89 × 10−2–1.94 × 10−1 | 8.65 × 10−1–1.26 × 100 | ||||
Mean | 1.44 × 10−1 | 1.26 × 100 | |||||
95% UCL | 2.08 × 10−1 | 2.25 × 100 |
Heavy Metal | Adults | Children | |||||
---|---|---|---|---|---|---|---|
RISKingest | RISKinhale | RISK | RISKingest | RISKinhale | RISK | ||
As | Range | 1.22 × 10−5–1.98 × 10−5 | 1.79 × 10−9–2.91 × 10−9 | 1.22 × 10−5–1.98 × 10−5 | 2.13 × 10−5–3.47 × 10−5 | 5.96 × 10−10–9.69 × 10−10 | 2.13 × 10−5–3.47 × 10−5 |
Mean | 1.47 × 10−5 | 2.16 × 10−9 | 1.47 × 10−5 | 2.57 × 10−5 | 7.19 × 10−10 | 2.57 × 10−5 | |
95% UCL | 1.90 × 10−5 | 2.50 × 10−9 | 1.90 × 10−5 | 2.98 × 10−5 | 8.32 × 10−10 | 2.98 × 10−5 | |
Cd | Range | 1.19 × 10−6–3.79 × 10−6 | 1.75 × 10−10–5.57 × 10−10 | 1.19 × 10−6–3.79 × 10−6 | 2.08 × 10−6–6.63 × 10−6 | 5.82 × 10−11–1.85 × 10−10 | 2.08 × 10−6–6.63 × 10−6 |
Mean | 2.43 × 10−6 | 3.57 × 10−10 | 2.43 × 10−6 | 4.24 × 10−6 | 1.19 × 10−10 | 4.24 × 10−6 | |
95% UCL | 3.86 × 10−6 | 4.49 × 10−10 | 3.86 × 10−6 | 5.34 × 10−6 | 1.49 × 10−10 | 5.34 × 10−6 | |
RISK | Range | 1.43 × 10−5–2.10 × 10−5 | 2.50 × 10−5–3.68 × 10−5 | ||||
Mean | 1.71 × 10−5 | 3.00 × 10−5 | |||||
95% UCL | 2.29 × 10−5 | 3.51 × 10−5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, B.; Zhang, W.; Zheng, H.; Wu, C.; Zhang, Q.; Bu, Y. Comparison of Health Risk Assessments of Heavy Metals and As in Sewage Sludge from Wastewater Treatment Plants (WWTPs) for Adults and Children in the Urban District of Taiyuan, China. Int. J. Environ. Res. Public Health 2017, 14, 1194. https://doi.org/10.3390/ijerph14101194
Duan B, Zhang W, Zheng H, Wu C, Zhang Q, Bu Y. Comparison of Health Risk Assessments of Heavy Metals and As in Sewage Sludge from Wastewater Treatment Plants (WWTPs) for Adults and Children in the Urban District of Taiyuan, China. International Journal of Environmental Research and Public Health. 2017; 14(10):1194. https://doi.org/10.3390/ijerph14101194
Chicago/Turabian StyleDuan, Baoling, Wuping Zhang, Haixia Zheng, Chunyan Wu, Qiang Zhang, and Yushan Bu. 2017. "Comparison of Health Risk Assessments of Heavy Metals and As in Sewage Sludge from Wastewater Treatment Plants (WWTPs) for Adults and Children in the Urban District of Taiyuan, China" International Journal of Environmental Research and Public Health 14, no. 10: 1194. https://doi.org/10.3390/ijerph14101194
APA StyleDuan, B., Zhang, W., Zheng, H., Wu, C., Zhang, Q., & Bu, Y. (2017). Comparison of Health Risk Assessments of Heavy Metals and As in Sewage Sludge from Wastewater Treatment Plants (WWTPs) for Adults and Children in the Urban District of Taiyuan, China. International Journal of Environmental Research and Public Health, 14(10), 1194. https://doi.org/10.3390/ijerph14101194