Bioabsorption and Bioaccumulation of Cadmium in the Straw and Grain of Maize (Zea mays L.) in Growing Soils Contaminated with Cadmium in Different Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climatic and Soil Characteristics of Each Environment
2.2. Cadmium Rates and Maize Genotypes
2.3. Agronomic Management of the Experiment
2.4. Plant Tissue Dry Matter, Soil Analysis, and Plant Tissue
2.5. Data Analysis
2.5.1. Bioconcentration and Bioaccumulation Factor
2.5.2. Translocation Factor
2.5.3. Tolerance Index
2.6. Experimental Design and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Siebers, N.; Godlinski, F.; Leinweber, P. Bone char as phosphorus fertilizer involved in cadmium immobilization in lettuce, wheat, and potato cropping. J. Plant Nutr. Soil Sci. 2014, 177, 75–83. [Google Scholar] [CrossRef]
- Honma, T.; Ohba, H.; Makino, T.; Ohyama, T. Relationship between Cadmium fractions obtained by sequential extraction of soil and the soil properties in contaminated and uncontaminated paddy soils. J. Chem. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Zhao, B.; Xin, X.; Zhang, C.; Zhang, H. The influence of long-term fertilization on cadmium (Cd) accumulation in soil and its uptake by crops. Environ. Sci. Pollut. Res. 2014, 21, 10377–10385. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Hex, Z.; Yang, X.; Stoffellax, P.J.; Baligarjj, V.C. Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils. Adv. Agron. 2015, 134, 135–225. [Google Scholar]
- Sozubek, B.; Belliturk, K.; Saglam, M.T. Effect of zinc application on cadmium uptake of maize grown in alkaline soil. Commun. Soil Sci. Plant Anal. 2015, 46, 1244–1248. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, D.; Gao, F.; Li, M.; Luo, X. Effects of biochar-derived sewage sludge on heavy metal adsorption and immobilization in soils. Int. J. Environ. Res. Public Health 2017, 14, 681. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiao, T.; Baveye, P.C.; Zhu, J.; Ning, Z.; Li, H. Potential health risk in areas with high naturally-occurring cadmium background in southwestern China. Ecotoxicol. Environ. Saf. 2015, 112, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.F.; Wen, J.F.; Cai, J.F.; W, X.Y.; Yang, L.; Guo, Y.D. An investigation and pathological analysis of two fatal cases of cadmium poisoning. Forensic Sci. Int. 2012, 220, e5–e8. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.; Herman, J.L. Summary and Conclusions of a Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Quezada-Hinojosa, R.; Föllmi, K.B.; Gillet, F.; Matera, V. Cadmium accumulation in six common plant species associated with soils containing high geogenic cadmium concentrations at Le Gurnigel, Swiss Jura Mountains. Catena 2015, 124, 85–96. [Google Scholar] [CrossRef]
- Liu, K.; Lv, J.; He, W.; Zhang, H.; Cao, Y.; Dai, Y. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxicol. Environ. Saf. 2015, 113, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.L.; Jiang, T.; Du, B. Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on/from purple paddy soils. Chemosphere 2013, 99, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Nan, Z.; Zhao, Z. Bioaccumulation and translocation of cadmium in wheat (Triticum aestivum L.) and maize (Zea mays L.) from the polluted oasis soil of Northwestern China. Chem. Spec. Bioavailab. 2014, 26, 43–51. [Google Scholar] [CrossRef]
- Cajuste, L.J.; Cajuste, L., Jr.; García, C.; Cruz, J. Distribution and availability of heavy metals in raw and acidulated phosphate rock-amended soils. Commun. Soil Sci. Plant Anal. 2006, 37, 2541–2552. [Google Scholar] [CrossRef]
- Tanaka, K.; Fujimaki, S.; Fujiwara, T.; Yoneyama, T.; Hayashi, H. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Sci. Plant Nutr. 2007, 53, 72–77. [Google Scholar] [CrossRef]
- Hirzel, J.; Retamal-Salgado, J.; Walter, I.; Matus, I. Cadmium accumulation and distribution in plants of three durum wheat cultivars under different agricultural environments in Chile. J. Soil Water Conserv. 2017, 72, 77–88. [Google Scholar] [CrossRef]
- Hirzel, J.; Retamal-Salgado, J.; Walter, I.; Matus, I. Effect of soil cadmium concentration on three Chilean durum wheat cultivars in four environments. Arch. Agron. Soil Sci. 2017, 1–11. [Google Scholar] [CrossRef]
- Bao, T.; Sun, L.; Sun, T. The effects of Fe deficiency on low molecular weight organic acid exudation and cadmium uptake by Solanum nigrum L. Acta Agric. Scand. 2011, 61, 305–312. [Google Scholar]
- McDowell, R.W.; Taylor, M.D.; Stevenson, B.A. Natural background and anthropogenic contributions of cadmium to New Zealand soils. Agric. Ecosyst. Environ. 2013, 165, 80–87. [Google Scholar] [CrossRef]
- Hechmi, N.; Aissa, N.B.; Abdennaceur, H.; Jedidi, N. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. Int. J. Phytorem. 2013, 15, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Putwattana, N.; Kruatrachue, M.; Kumsopa, A.; Pokethitiyook, P. Evaluation of organic and inorganic amendments on maize growth and uptake of Cd and Zn from contaminated paddy soils. Int. J. Phytorem. 2015, 17, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Adeniji, B.A.; Budimir-Hussey, M.T.; Macfie, S.M. Production of organic acids and adsorption of Cd on roots of durum wheat (Triticum turgidum L. var. durum). Acta Physiol. Plant. 2010, 32, 1063–1072. [Google Scholar] [CrossRef]
- Arduini, I.; Masoni, A.; Mariotti, M.; Pampana, S.; Ercoli, L. Cadmium uptake and translocation in durum wheat varieties differing in grain-Cd accumulation. Plant Soil Environ. 2014, 60, 43–49. [Google Scholar]
- Fahad, S.; Hussain, S.; Saud, S.; Hassan, S.; Darakh, S.; Chen, Y.; Deng, N.; Khan, F.; Wu, C.; Wu, W.; et al. Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization. CLEAN–Soil Air Water 2015, 43, 1433–1440. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Red Agrometeorológica de INIA. Agromet: Red Agrometeorológica del INIA. 2013. Available online: http://www.agromet.inia.cl/estaciones.php (accessed on 7 April 2017).
- Sadzawka, A.; Carrasco, M.A.; Grez, R.; Mora, M.; Flores, H.; Neaman, A. Recommended Analysis Methods for Chilean Soils; Instituto de Investigaciones Agropecuarias: Santiago, Chile, 2006. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Trejo, N.; Matus, I.; del Pozo, A.; Walter, I.; Hirzel, J. Cadmium phytoextraction capacity of white lupine (Lupinus albus L.) and narrow-leafed lupine (Lupinus angustifolius L.) in three contrasting agroclimatic conditions of Chile. Chil. J. Agric. Res. 2016, 76, 228–235. [Google Scholar] [CrossRef]
- Galal, T.M.; Shehatab, H.S. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol. Indic. 2015, 48, 244–251. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Mohamed, H.M. Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere 2009, 76, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Usman, A.R.A.; Alkreda, R.S.; Al-Wabel, M.I. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol. Environ. Saf. 2013, 97, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Azzia, V.; Kansoa, A.; Kazparda, V.; Kobeissid, A.; Lartigesb, B.; Samrania, A.E. Lactuca sativa growth in compacted and non-compacted semi-arid alkaline soil under phosphate fertilizer treatment and cadmium contamination. Soil Tillaje Res. 2017, 165, 1–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Wang, X.; Shi, G. Cadmium-induced alterations in morpho-physiology of two peanut cultivars differing in cadmium accumulation. Acta Physiol. Plant 2013, 35, 2105–2112. [Google Scholar] [CrossRef]
- Klaus, A.A.; Lysenko, E.A.; Kholodova, V.P. Maize plant growth and accumulation of photosynthetic pigmentsat short- and long-term exposure to cadmium. Rus. J. Plant Physiol. 2013, 60, 250–259. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, P.; Xie, R.; Li, S.; Zhang, H.; Ming, B.; Ma, D.; Liang, S. Spatial adaptabilities of spring maize to variation of climatic conditions. Crop Sci. 2013, 53, 1693–1703. [Google Scholar] [CrossRef]
- Tanwir, K.; Akram, M.S.; Masood, S.; Chaudhary, H.J.; Lindberg, S.; Javed, M.T. Cadmium-induced rhizospheric pH dynamics modulated nutrient acquisition and physiological attributes of maize (Zea mays L.). Environ. Sci. Pollut. Res. 2015, 22, 9193–9203. [Google Scholar] [CrossRef] [PubMed]
- Slycken, S.V.; Witters, N.; Meers, E.; Peene, A.; Michels, E.; Adriaensen, K.; Ruttens, A.; Vangronsveld, J.; Du Laing, G.; Wierinck, I.; et al. Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays). Environ. Pollut. 2013, 178, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Malhi, S.S.; Zia, M.H.; Naeem, A.; Bibia, S.; Farida, G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric. 2010, 90, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Lu, G.; Wang, R.; Guo, C.; Liao, C.; Yi, X.; Dang, Z. The Effect of pollination on Cd phytoextraction from soil by maize (Zea mays L.). Int. J. Phytorem. 2015, 17, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Wahsha, M.; Fontana, S.; Nadimi-Goki, M.; Bini, C. Potentially toxic elements in foodcrops (Triticum aestivum L., Zea mays L.) grown on contaminated soils. J. Geochem. Explor. 2014, 147, 189–199. [Google Scholar] [CrossRef]
- Liang, Y.; Wong, J.; Wei, L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 2005, 58, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Stritsis, Ch.; Steingrobe, B.; Claassen, N. Shoot cadmium concentration of soil-grown plants as related to their root properties. J. Plant Nutr. Soil Sci. 2012, 175, 456–465. [Google Scholar] [CrossRef]
- Egwu, G.; Agbenin, J. Field assessment of cadmium, lead and zinc contamination of soils and leaf vegetables under urban and peri-urban agriculture in northern Nigeria. Arch. Agron. Soil Sci. 2013, 59, 875–887. [Google Scholar] [CrossRef]
- Zhang, Y.; Tai, C.; Li, P.; Liu, W.; Yin, W.; Zao, Q.; Dong, D. Cadmium accumulation of Tagetes erecta L. affected by plant growth inhibitors and glutathione. J. Plant Nutr. 2012, 35, 1053–1064. [Google Scholar] [CrossRef]
- Chen, G.; Zeng, G.; Tang, L.; Du, C.; Jiang, X.; Huang, G.; Liu, H.; Shen, G. Cadmium removal from simulated wastewater to biomass by product of Lentinus edodes. Bioresour. Technol. 2008, 99, 7034–7040. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.L.; He, M.M.; Xu, M.; Yan, Z.G.; Zhou, Y.Y.; Guo, G.L.; Nie, J.; Wang, L.Q.; Hou, H.; Li, F.S. Interactive effects between earthworms and maize plants on the accumulation and toxicity of soil cadmium. Soil Biol. Biochem. 2014, 72, 193–202. [Google Scholar] [CrossRef]
- Singh, M.; Srivastavaa, R.K. Feasibility of using tuberose (P. tuberosa L.) in horizontal subsurface flow constructed wetland for heavy metal removal from domestic wastewater. Environ. Prog. Sustain. Energy 2016, 35, 125–132. [Google Scholar] [CrossRef]
Parameters | Environments and Depths (m) | |||||
---|---|---|---|---|---|---|
La Serena | Los Tilos | Chillán | ||||
0–0.2 | 0.2–0.4 | 0–0.2 | 0.2–0.4 | 0–0.2 | 0.2–0.4 | |
Clay (%) | 20.2 | 20.3 | 21.5 | 27.3 | 20.7 | 15.9 |
Silt (%) | 30.2 | 31.2 | 50.0 | 49.3 | 43.6 | 45.4 |
Sand (%) | 49.6 | 48.5 | 28.5 | 23.4 | 35.7 | 38.7 |
Bulk density (g·cm−3) | 1.76 | 1.80 | 1.20 | 1.24 | 1.00 | 1.05 |
pH (soil:water 1:2.5) | 6.94 | 6.87 | 8.25 | 8.19 | 5.74 | 5.76 |
Organic matter (g·kg−1) | 11.6 | 11.3 | 19.6 | 21.7 | 63.0 | 56.2 |
EC * (dS·m−1) | 0.15 | 0.23 | 0.11 | 0.15 | 0.11 | 0.07 |
Available N (mg·kg−1) | 18.0 | 20.0 | 11.0 | 14.0 | 40.0 | 38.0 |
Olsen P (mg·kg−1) | 51.3 | 44.9 | 3.9 | 5.1 | 35.2 | 25.3 |
Exchangeable K (cmoL·kg−1) | 0.85 | 0.67 | 0.35 | 0.41 | 0.65 | 0.39 |
Exchangeable Ca (cmoL·kg−1) | 8.12 | 8.22 | 20.70 | 19.66 | 6.74 | 5.89 |
Exchangeable Mg (cmoL·kg−1) | 2.41 | 2.61 | 0.92 | 0.86 | 0.95 | 0.72 |
Exchangeable Na (cmoL·kg−1) | 0.59 | 0.69 | 0.49 | 0.40 | 0.16 | 0.19 |
Exchangeable Al (cmoL kg−1) | 0.05 | 0.05 | 0.04 | 0.04 | 0.21 | 0.10 |
Available Fe (mg·kg−1) | 21.5 | 20.8 | 16.7 | 17.0 | 59.8 | 46.5 |
Available Mn (mg·kg−1) | 36.3 | 34.3 | 11.8 | 11.5 | 9.8 | 5.4 |
Available Zn (mg·kg−1) | 4.5 | 4.4 | 1.1 | 1.2 | 0.7 | 0.6 |
Available Cu (mg·kg−1) | 9.2 | 9.3 | 8.9 | 8.8 | 1.4 | 1.2 |
Available B (mg·kg−1) | 2.3 | 2.4 | 0.8 | 0.8 | 0.5 | 0.4 |
Available S (mg·kg−1) | 40.8 | 64.9 | 11.9 | 13.5 | 14.2 | 15.4 |
Total Cd (mg·kg−1) | 1.33 | 1.49 | 0.52 | 0.51 | 0.21 | 0.18 |
Parameters | La Serena | Los Tilos | Chillán | ||||||
---|---|---|---|---|---|---|---|---|---|
Tm 1 | pp 2 | Ev 3 | Tm | pp | Ev | Tm | pp | Ev | |
January | 19.5 | 0.0 | 60.0 | 20.7 | 0.0 | 138.1 | 19.9 | 1.2 | 134.4 |
February | 19.8 | 0.0 | 47.9 | 18.8 | 0.0 | 105.8 | 18.5 | 19.3 | 101.9 |
March | 16.6 | 0.0 | 103.6 | 17.0 | 0.0 | 88.4 | 15.1 | 4.1 | 78.5 |
April | 14.1 | 0.0 | 62.5 | 13.4 | 0.0 | 36.6 | 12.4 | 6.1 | 40.6 |
May | 12.3 | 61.1 | 37.1 | 11.4 | 0.0 | 20.9 | 9.4 | 183.0 | 21.5 |
June | 10.4 | 8.2 | 22.9 | 7.3 | 39.1 | 16.5 | 7.3 | 123.7 | 12.4 |
July | 9.9 | 5.7 | 28.7 | 8.2 | 4.5 | 20.3 | 7.1 | 110.1 | 16.1 |
August | 11.3 | 0.5 | 47.2 | 9.3 | 35.8 | 34.6 | 8.2 | 128.0 | 20.8 |
September | 12.9 | 0.3 | 71.1 | 11.3 | 5.7 | 45.6 | 9.7 | 49.9 | 52.6 |
October | 13.5 | 0.2 | 102.0 | 14.3 | 0.1 | 74.1 | 12.7 | 35.7 | 86.4 |
November | 15.6 | 7.8 | 78.7 | 16.4 | 0.0 | 125.9 | 15.2 | 11.0 | 123.1 |
December | 17.8 | 0.0 | 142.6 | 19.2 | 0.0 | 146.9 | 19.1 | 0.0 | 156.7 |
Total accumulate | - | 83.8 | 804.3 | - | 85.2 | 853.7 | - | 672.1 | 845.0 |
Parameter | L 1 | R 2 | C 3 | L × R | L × C | R × C | L × R × C |
---|---|---|---|---|---|---|---|
Grain yield | ** | NS | NS | NS | NS | * | NS |
Straw DM production | ** | NS | NS | NS | ** | NS | NS |
Roots DM production | ** | NS | ** | NS | ** | NS | NS |
Grain Cd uptake | ** | ** | NS | ** | * | NS | NS |
Straw Cd uptake | NS | ** | NS | * | NS | NS | NS |
Roots Cd uptake | ** | ** | NS | ** | * | NS | NS |
Total Cd uptake | NS | ** | NS | NS | NS | NS | NS |
Grain Cd distribution | ** | NS | NS | NS | * | NS | NS |
Straw Cd distribution | ** | NS | NS | NS | NS | NS | NS |
Roots Cd distribution | ** | NS | NS | NS | NS | NS | NS |
Parameter Group | Parameters | Dry Matter Production (Mg·ha−1) | |||
---|---|---|---|---|---|
Grain | Straw | Root | Total | ||
a | La Serena | 15.45 a A | 14.74 a A | 2.04 a B | 32.23 a |
Los Tilos | 5.90 c A | 7.04 c A | 0.82 c B | 13.76 c | |
Chillán | 10.67 b A | 9.32 b A | 1.36 b B | 21.34 b | |
Control | 8.28 a A | 9.78 a A | 1.27 a B | 19.33 a | |
b | 1 mg·kg−1 | 7.68 a B | 9.78 a A | 1.25 a C | 18.71 a |
2 mg·kg−1 | 8.06 a B | 10.19 a A | 1.29 a C | 19.55 a | |
Syngenta | 8.19 a B | 10.93 a A | 1.48 a C | 20.61 a | |
c | Pionner | 8.12 a A | 9.07 a A | 1.10 c B | 18.29 b |
Dekalb | 7.71 a B | 9.75 a A | 1.23 b C | 18.69 b |
Parameter Group | Parameters | Cadmium Extraction (g·ha−1) | |||
---|---|---|---|---|---|
Grain | Straw | Root | Total | ||
a | La Serena | 0.45 a C | 18.87 b A | 4.45 a B | 23.77 a |
Los Tilos | 0.08 c B | 23.93 a A | 0.24 b B | 24.25 a | |
Chillán | 0.12 bc B | 18.54 b A | 0.61 b B | 19.27 b | |
Control | 0.06 b C | 2.24 c A | 0.57 c B | 2.87 c | |
b | 1 mg·kg−1 | 0.19 a C | 16.01 b A | 1.53 b B | 17.72 b |
2 mg·kg−1 | 0.25 a C | 32.14 a C | 2.06 a B | 34.44 a | |
Syngenta | 0.16 a C | 14.80 b A | 1.43 a B | 16.39 b | |
c | Pionner | 0.19 a C | 15.89 b A | 1.07 a B | 17.15 b |
Dekalb | 0.14 a C | 19.70 a A | 1.66 a B | 21.50 a |
Parameter Group | Parameters | BAF | BCF | TF | Tolerance Index | ||
---|---|---|---|---|---|---|---|
TI Grain | TI Straw | TI Root | |||||
a | La Serena | 0.67 c | 1.20 a | 0.57 c | 1.87 a A | 1.78 a A | 0.15 a B |
Los Tilos | 1.71 b | 0.20 c | 11.82 a | 0.71 c A | 0.85 c A | 0.10 b B | |
Chillán | 2.54 a | 0.70 b | 4.63 b | 1.29 b A | 1.13 b B | 0.16 a C | |
Control | 0.48 c | 0.66 c | 0.73 c | 1.33 a A | 1.26 a A | 0.17 a B | |
b | 1 mg·kg−1 | 1.33 b | 0.82 a | 1.96 b | 1.24 a A | 1.25 a A | 0.17 a B |
2 mg·kg−1 | 1.70 a | 0.75 b | 2.84 a | 1.30 a A | 1.25 a A | 0.17 a B | |
Syngenta | 1.35 a | 0.68 c | 2.31 a | 1.32 a A | 1.33 a A | 0.20 a B | |
c | Pionner | 1.44 a | 0.78 b | 2.23 a | 1.31 a A | 1.15 a A | 0.14 a B |
Dekalb | 1.47 a | 0.82 a | 2.21 a | 1.24 a A | 1.28 a A | 0.16 a B |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retamal-Salgado, J.; Hirzel, J.; Walter, I.; Matus, I. Bioabsorption and Bioaccumulation of Cadmium in the Straw and Grain of Maize (Zea mays L.) in Growing Soils Contaminated with Cadmium in Different Environment. Int. J. Environ. Res. Public Health 2017, 14, 1399. https://doi.org/10.3390/ijerph14111399
Retamal-Salgado J, Hirzel J, Walter I, Matus I. Bioabsorption and Bioaccumulation of Cadmium in the Straw and Grain of Maize (Zea mays L.) in Growing Soils Contaminated with Cadmium in Different Environment. International Journal of Environmental Research and Public Health. 2017; 14(11):1399. https://doi.org/10.3390/ijerph14111399
Chicago/Turabian StyleRetamal-Salgado, Jorge, Juan Hirzel, Ingrid Walter, and Iván Matus. 2017. "Bioabsorption and Bioaccumulation of Cadmium in the Straw and Grain of Maize (Zea mays L.) in Growing Soils Contaminated with Cadmium in Different Environment" International Journal of Environmental Research and Public Health 14, no. 11: 1399. https://doi.org/10.3390/ijerph14111399
APA StyleRetamal-Salgado, J., Hirzel, J., Walter, I., & Matus, I. (2017). Bioabsorption and Bioaccumulation of Cadmium in the Straw and Grain of Maize (Zea mays L.) in Growing Soils Contaminated with Cadmium in Different Environment. International Journal of Environmental Research and Public Health, 14(11), 1399. https://doi.org/10.3390/ijerph14111399