Estimated Dietary Intakes of Toxic Elements from Four Staple Foods in Najran City, Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Population
2.3. Food Sample Collection
2.4. Pre-Treatment of Food Samples
2.5. Digestion of Food Samples
2.6. Elemental Analysis
2.7. Analytical Method
2.8. Health Risk Assessment for Humans and Estimated Dietary Intake Calculation
3. Results
3.1. Quality Control
3.2. Average Intake of the Four Staple Foods
3.3. Concentration of As, Cd, Pb and Cr in the Four Staple Foods
3.4. Daily Intakes of Toxic Elements
3.5. Estimated Provisional Tolerable Weekly Intakes (PTWIs) and Provisional Maximum Tolerable Daily Intake (PMTDI)
4. Discussion
4.1. Concentrations of Heavy Metals in Main Four Foods
4.1.1. Concentrations of Heavy Metals in Rice
4.1.2. Concentrations of Heavy Metals in Wheat
4.1.3. Concentrations of Heavy Metals in Meat
4.1.4. Concentrations of Heavy Metals in Chicken
4.2. Toxic Elements Estimated Deitary Intake (EDI)
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Islam, M.A.; Romić, D.; Akber, M.A.; Romić, M. Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. Environ. Geochem. Health 2017, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Arslan, B.; Djamgoz, M.B.; Akün, E. ARSENIC: A Review on Exposure Pathways, Accumulation, Mobility and Transmission into the Human Food Chain. Rev. Environ. Contam. Toxicol. 2016, 243, 27–51. [Google Scholar]
- Farid, A.T.; Roy, K.C.; Hossain, K.M.; Sen, R. A study of arsenic contaminated irrigation water and it’s carried over effect on vegetable. Dhaka Bangladesh Univ. Eng. Technol. 2003, 16, 113–121. [Google Scholar]
- Balkhair, K.S.; Ashraf, M.A. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Devkota, B.; Schmidt, G.H. Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agric. Ecosyst. Environ. 2000, 78, 85–91. [Google Scholar] [CrossRef]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [PubMed]
- Signes-Pastor, A.J.; Mitra, K.; Sarkhel, S.; Hobbes, M.; Burló, F.; De Groot, W.T. Carbonell-Barrachina AA: Arsenic speciation in food and estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India. J. Agric. Food Chem. 2008, 56, 9469–9474. [Google Scholar] [CrossRef] [PubMed]
- Rowell, C.; Kuiper, N.; Al-Saad, K.; Nriagu, J.; Shomar, B. A market basket survey of As, Zn and Se in rice imports in Qatar: Health implications. Food Chem. Toxicol. 2014, 70, 33–39. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Recommended Health-Based Limits in Occupational Exposure to Heavy Metals: Report of a WHO Study Group [Meeting Held in Geneva from 5 to 11 June 1979]; World Health Organization: Geneva, Switzerland, 1980. [Google Scholar]
- Das, G.; Jayanta, K.P.; Jaehyuk, C.; Kwang-Hyun, B. Rice grain, a rich source of natural bioactive compounds. Pak. J. Agric. Sci. 2017, 54, 671–682. [Google Scholar]
- Rohman, A.; Helmiyati, S.; Hapsari, M.; Larasati, S.D. Rice in health and nutrition. Int. Food Res. J. 2014, 21, 13–24. [Google Scholar]
- Beloshapka, A.N.; Buff, P.R.; Fahey, G.C.; Swanson, K.S. Compositional analysis of whole grains, processed grains, grain co-products, and other carbohydrate sources with applicability to pet animal nutrition. Foods 2016, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Hajeb, P.; Sloth, J.J.; Shakibazadeh, S.; Mahyudin, N.A.; Afsah-Hejri, L. Toxic elements in food: Occurrence, binding, and reduction approaches. Compr. Rev. Food Sci. Food Saf. 2014, 13, 457–472. [Google Scholar] [CrossRef]
- Bermudez, G.M.; Jasan, R.; Plá, R.; Pignata, M.L. Heavy metal and trace element concentrations in wheat grains: Assessment of potential non-carcinogenic health hazard through their consumption. J. Hazard. Mater. 2011, 193, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Kelly, C.N.; Stanner, S.A. Diet and cardiovascular disease in the UK: Are the messages getting across? Proc. Nutr. Soc. 2003, 62, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Bohrer, B.M. Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth 2014, 5, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Bourgoignie, T. Regional Integration and Consumr Safety: An Emerging Concern in the Gulf Region. Consum. Law Socioecon. Dev. 2017, 139–144. [Google Scholar] [CrossRef]
- Moghames, P.; Hammami, N.; Hwalla, N.; Yazbeck, N.; Shoaib, H.; Nasreddine, L.; Naja, F. Validity and reliability of a food frequency questionnaire to estimate dietary intake among Lebanese children. Nutr. J. 2016, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Al-Rmalli, S.W.; Jenkins, R.O.; Watts, M.J.; Haris, P.I. Risk of human exposure to arsenic and other toxic elements from geophagy: Trace element analysis of baked clay using inductively coupled plasma mass spectrometry. Environ. Health 2010, 9, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brima, E.I. Determination of Metal Levels in Shamma (Smokeless Tobacco) with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in Najran, KSA. Asian Pac. J. Cancer Prev. 2016. [Google Scholar] [CrossRef]
- Brima, E.I. Toxic Elements in Different Medicinal Plants and the Impact on Human Health. Int. J. Environ. Res. Public Health 2017, 11, 1209. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of Four Foodborne Chemical Toxins, 2010: A Data Synthesis. PLoS Med. 2010, 12, e1001940. [Google Scholar]
- Hald, T.; Aspinall, W.; Devleesschauwer, B.; Cooke, R.; Corrigan, T.; Havelaar, A.H.; Gibb, H.J.; Torgerson, P.R.; Kirk, M.D.; Angulo, F.J.; et al. World Health Organization Estimates of the Relative Contributions of Food to the Burden of Disease Due to Selected Foodborne Hazards: A Structured Expert Elicitation. PLoS ONE 2016, 11, e0145839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Expert Committee on Biological Standardization; Meeting and World Health Organization. WHO Expert Committee on Biological Standardization: Sixtieth Report; World Health Organization: Geneva, Switzerland, 2013; Volume 977. [Google Scholar]
- WHO Expert Committee on Biological Standardization; Meeting and World Health Organization. WHO Expert Committee on Biological Standardization: Sixty-Third Report; World Health Organization: Geneva, Switzerland, 2013; Volume 980. [Google Scholar]
- Kuhnlein, H.V.; Chan, H. Environment and contaminants in traditional food systems of northern indigenous peoples. Annu. Rev. Nutr. 2000, 20, 595–626. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Evaluation of Certain Food Additives: Sixty-Ninth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Rahman, M.A.; Rahman, M.M.; Reichman, S.M.; Lim, R.P.; Naidu, R. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicol. Environ. Saf. 2014, 100, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Rahman, M.M.; Islam, M.R.; Naidu, R. Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk. Environ. Int. 2016, 96, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Al-Rmalli, S.W.; Jenkins, R.O.; Watts, M.J.; Haris, P.I. Reducing human exposure to arsenic, and simultaneously increasing selenium and zinc intake, by substituting non-aromatic rice with aromatic rice in the diet. Biomed. Spectrosc. Imaging 2012, 1, 365–381. [Google Scholar]
- Yu, Z.; Qiu, W.; Wang, F.; Lei, M.; Wang, D.; Song, Z. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere 2017, 168, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, W.I.; Jeong, E.J.; Yoo, J.H.; Kim, J.Y.; Lee, J.B.; Im, G.J.; Hong, M.K. Assessment of health risk associated with arsenic exposure from soil, groundwater, polished rice for setting target cleanup level nearby abandoned mines. Korean J. Soil Sci. Fertil. 2011, 44, 38–47. [Google Scholar] [CrossRef]
- Halder, D. Arsenic Exposure Risk from Rice and Other Dietary Components in Rural Bengal. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2013. [Google Scholar]
- Naujokas, M.F.; Anderson, B.; Ahsan, H.; Aposhian, H.V.; Graziano, J.H.; Thompson, C.; Suk, W.A. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect. 2013, 121, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zeng, X.; Geng, M.; Chen, C.; Cai, J.; Yu, X.; Zhang, H. Health Risks of Heavy Metals Uptake by Crops Grown in a Sewage Irrigation Area in China. Pol. J. Environ. Stud. 2015, 24, 1379–1386. [Google Scholar]
- Pérez-Carrera, A.L.; Arellano, F.E.; Fernández-Cirelli, A. Concentration of trace elements in raw milk from cows in the southeast of Córdoba province, Argentina. Dairy Sci. Technol. 2016, 96, 591–602. [Google Scholar] [CrossRef]
- Lopez-Alonso, M.; Miranda, M.; Benedito, J.L.; Pereira, V.; Garcia-Vaquero, M. Essential and toxic trace element concentrations in different commercial veal cuts in Spain. Meat Sci. 2016, 121, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, X.; Tang, Z.; Yang, Y.; Nie, Z.; Huang, Q. Concentrations and human health implications of heavy metals in market foods from a Chinese coal-mining city. Environ. Toxicol. Pharmacol. 2017, 50, 37–44. [Google Scholar] [CrossRef]
- Badis, B.; Rachid, Z.; Esma, B. Levels of selected heavy metals in fresh meat from cattle, sheep, chicken and camel produced in Algeria. Annu. Rev. Cancer Biol. 2014, 4, 1260–1267. [Google Scholar] [CrossRef]
- Sabir, S.M.; Khan, S.W.; Hayat, I. Effect of environmental pollution on quality of meat in district Bagh, Azad Kashmir. PJN 2003, 2, 98–101. [Google Scholar]
- World Health Organization. The World Health Report 2002: Reducing Risks, Promoting Healthy Life; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Ihedioha, J.N.; Okoye, C.O. Dietary intake and health risk assessment of lead and cadmium via consumption of cow meat for an urban population in Enugu State, Nigeria. Ecotoxicol. Environ. Saf. 2013, 93, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Batista, B.L.; Grotto, D.; Carneiro, M.F.; Barbosa, F., Jr. Evaluation of the concentration of nonessential and essential elements in chicken, pork, and beef samples produced in Brazil. Toxicol. Environ. Health 2012, 75, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Iwegbue, C.M.A.; Nwajei, G.E.; Iyoha, E.H. Heavy metal residues of chicken meat and gizzard and turkey meat consumed in southern Nigeria. Bulg. J. Vet. Med. 2008, 11, 275–280. [Google Scholar]
- Uluozlu, O.D.; Tuzen, M.; Mendil, D.; Soylak, M. Assessment of trace element contents of chicken products from Turkey. J. Hazard. Mater. 2009, 163, 982–987. [Google Scholar] [CrossRef] [PubMed]
- Lasky, T.; Sun, W.; Kadry, A.; Hoffman, M.K. Mean total arsenic concentrations in chicken 1989–2000 and estimated exposures for consumers of chicken. Environ. Health Perspect. 2004, 112, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Mariam, I.R.; Iqbal, S.H.; Nagra, S.A. Distribution of some trace and macrominerals in beef, mutton and poultry. Int. J. Agric. Biol. 2004, 6, 816–820. [Google Scholar]
- Bortey-Sam, N.; Nakayama, S.M.; Ikenaka, Y.; Akoto, O.; Baidoo, E.; Yohannes, Y.B.; Mizukawa, H.; Ishizuka, M. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: Estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicol. Environ. Saf. 2015, 31, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Singh, B.; Garg, V.K.; Mor, S.; Pulhani, V. Bioaccumulation and health risks of heavy metals associated with consumption of rice grains from croplands in Northern India. Hum. Ecol. Risk. Assess. 2017, 23, 14–27. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Fattahi, N.; Sharafi, K.; Khamotian, R.; Atafar, Z. Essential and toxic heavy metals in cereals and agricultural products marketed in Kermanshah, Iran, and human health risk assessment. Food Addit. Contam. 2016, 9, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Del Razo, L.M.; Garcia-Vargas, G.G.; Garcia-Salcedo, J.; Sanmiguel, M.F.; Rivera, M.; Hernandez, M.C.; Cebrian, M.E. Arsenic levels in cooked food and assessment of adult dietary intake of arsenic in the Region Lagunera, Mexico. Food Chem. Toxicol. 2002, 40, 1423–1431. [Google Scholar] [CrossRef]
- Othman, Z.A. Lead contamination in selected foods from Riyadh city market and estimation of the daily intake. Molecules 2010, 15, 7482–7497. [Google Scholar] [CrossRef] [PubMed]
Toxic Element | As | Cd | Pb | Cr |
---|---|---|---|---|
QC (%) * | 94.10 | 98.20 | 97.35 | 94.15 |
Recovery (%) $ | ||||
Rice | 92.52 | 109.67 | 115.63 | 96.14 |
Wheat | 90.59 | 108.80 | 113.27 | 91.85 |
Meat | 94.18 | 109.77 | 115.28 | 90.14 |
Chicken | 93.16 | 106.65 | 112.25 | 92.65 |
Food Type | Toxic Elements (mg/kg) | |||
---|---|---|---|---|
As | Cd | Pb | Cr | |
Rice | 0.02–0.07 (0.03) | 0.00–0.20 (0.03) | 0.00–0.13 (0.04) | 0.00–0.65 (0.23) |
Wheat | 0.00–0.003 (0.001) | 0.00–0.03 (0.01) | 0.00–0.31 (0.14) | 0.00–0.75 (0.15) |
Meat | 0.01–0.01 (0.01) | 0.00–0.01 (0.01) | 0.01–0.03 (0.01) | 0.00–0.76 (0.25) |
Chicken | 0.00–0.03 (0.01) | 0.06–0.07 (0.06) | 0.53–0.70 (0.62) | 0.07–0.26 (0.14) |
Total means | 0.01 | 0.03 | 0.20 | 0.19 |
DI of the Toxic Elements (µg/day) | ||||
---|---|---|---|---|
Food Type | As | Cd | Pb | Cr |
Rice | 8.18 | 8.24 | 9.36 | 56.93 |
Wheat | 0.08 | 1.50 | 23.11 | 24.24 |
Meat | 1.86 | 1.01 | 1.62 | 50.71 |
Chicken | 1.24 | 15.37 | 149.79 | 34.03 |
Total | 11.36 | 26.12 | 183.88 | 165.91 |
No. | Elements | PTWI | PMTDI | Reference |
---|---|---|---|---|
1 | As | 3.0 μg/kg bw per week | 0.42 μg/kg bw per day | [25] |
2 | Cd | 7 μg/Kg bw per week | 1 μg/kg bw per day | [26] |
3 | Pb | 25 μg/kg bw per week | 3.57 μg/kg bw per day | [27] |
4 | Cr | 0.7 mg/kg bw per week | 0.1 mg/kg bw per day * | [28] |
EDI of the Toxic Elements (As, Cd, Pb and Cr) (mg/kg bw day) | ||||
---|---|---|---|---|
Food Type | As | Cd | Pb | Cr |
Rice | 1.14 × 10−4 | 1.15 × 10−4 | 1.31 × 10−4 | 7.96 × 10−4 |
Wheat | 1.11 × 10−6 | 2.10 × 10−5 | 3.23 × 10−4 | 3.39 × 10−4 |
Meat | 2.60 × 10−5 | 1.42 × 10−5 | 2.26 × 10−5 | 7.09 × 10−4 |
Chicken | 1.73 × 10−5 | 2.15 × 10−4 | 2.09 × 10−3 | 4.76 × 10−4 |
Hazard Quotient (HQ) | ||||
Rice | 0.27 | 0.12 | 0.04 | 0.01 |
Wheat | 2.64 × 10−3 | 2.1 × 10−2 | 9.1 × 10−2 | 3.4 × 10−3 |
Meat | 0.06 | 0.01 | 0.01 | 0.01 |
Chicken | 0.04 | 0.21 | 0.59 | 4.76 × 10−3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, H.; Haris, P.I.; Brima, E.I. Estimated Dietary Intakes of Toxic Elements from Four Staple Foods in Najran City, Saudi Arabia. Int. J. Environ. Res. Public Health 2017, 14, 1575. https://doi.org/10.3390/ijerph14121575
Mohamed H, Haris PI, Brima EI. Estimated Dietary Intakes of Toxic Elements from Four Staple Foods in Najran City, Saudi Arabia. International Journal of Environmental Research and Public Health. 2017; 14(12):1575. https://doi.org/10.3390/ijerph14121575
Chicago/Turabian StyleMohamed, Hatem, Parvez I. Haris, and Eid I. Brima. 2017. "Estimated Dietary Intakes of Toxic Elements from Four Staple Foods in Najran City, Saudi Arabia" International Journal of Environmental Research and Public Health 14, no. 12: 1575. https://doi.org/10.3390/ijerph14121575
APA StyleMohamed, H., Haris, P. I., & Brima, E. I. (2017). Estimated Dietary Intakes of Toxic Elements from Four Staple Foods in Najran City, Saudi Arabia. International Journal of Environmental Research and Public Health, 14(12), 1575. https://doi.org/10.3390/ijerph14121575