Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. HSPF Modeling Approach
2.2.1. Description of HSPF
2.2.2. Data Acquisition for HSPF Model Construction in the Xitiaoxi Watershed
2.2.3. Model Calibration and Validation
2.2.4. HSPF Model Performance Evaluation
3. Results and Analysis
3.1. Hydrological Simulation Results in Multiple Time Steps and Model Performance
3.1.1. Annual Streamflow Simulation Results and Model Performance
3.1.2. Monthly Streamflow Simulation Results and Model Performance
3.1.3. Daily Streamflow Simulation Results and Model Performance
3.2. Nutrients Simulation Results and Model Performance
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Voeroesmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Woodward, G.; Gessner, M.O.; Giller, P.S.; Gulis, V.; Hladyz, S.; Lecerf, A.; Malmqvist, B.; McKie, B.G.; Tiegs, S.D.; Cariss, H.; et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 2012, 336, 1438–1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Nguyen Hong, Q.; Meon, G. Nutrient dynamics during flood events in tropical catchments: A case study in Southern Vietnam. Clean-Soil Air Water 2015, 43, 652–661. [Google Scholar]
- Yuan, Y.P.; Bingner, R.L.; Rebich, R.A. Evaluation of annagnps nitrogen loading in an agricultural watershed. J. Am. Water Resour. Assoc. 2003, 39, 457–466. [Google Scholar] [CrossRef]
- Wischmeier, W.; Smith, D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agricultural Research Service, United States Department of Agriculture: Washington, DC, USA, 1978. [Google Scholar]
- Knisel, W.G. CREAMS: A Field-Scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems; United States Department of Agriculture (USDA): Washington, DC, USA, 1980.
- Beasley, D.B.; Huggins, L.F.; Monke, E.J. Anwers: A model for watershed planning. Trans. ASAE 1980, 23, 938–944. [Google Scholar] [CrossRef]
- Shrestha, S.; Babel, M.S.; Gupta, A.D.; Kazama, F. Evaluation of annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal. Environ. Model. Softw. 2006, 21, 961–975. [Google Scholar] [CrossRef]
- Arnold, J.; Allen, P. Estimating hydrologic budgets for three Illinois watersheds. J. Hydrol. 1996, 176, 57–77. [Google Scholar] [CrossRef]
- Bicknell, B.R.; Imhoff, J.C.; Kittle, J.L., Jr.; Donigian, A.S., Jr.; Johanson, R.C. Hydrological Simulation Program–Fortran: User’s Manual for Release 11; Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: Athens, GA, USA, 1996. Available online: http://sdi.odu.edu/mbin/hspf/dos/hspf_v11_entirety.pdf (accessed on 29 October 2017).
- Richards, R.P.; Baker, D.B.; Crumrine, J.P.; Stearns, A.M. Unusually large loads in 2007 from the Maumee and Sandusky Rivers, tributaries to Lake Erie. J. Soil Water Conserv. 2010, 65, 450–462. [Google Scholar] [CrossRef]
- Borah, D.K.; Bera, M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications. Trans. ASAE 2004, 47, 789–803. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Albek, M.; Ogutveren, U.B.; Albek, E. Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF. J. Hydrol. 2004, 285, 260–271. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Li, Y. Review on HSPF model for simulation of hydrology and water quality processes. Environ. Sci. 2012, 33, 2217–2223. [Google Scholar]
- Hayashi, S.; Murakami, S.; Xu, K.Q.; Watanabe, M.; Xu, B.H. Daily runoff simulation by an integrated catchment model in the middle and lower regions of the Changjiang basin, China. J. Hydrol. Eng. 2008, 13, 846–862. [Google Scholar] [CrossRef]
- Diaz-Ramirez, J.N.; Perez-Alegria, L.R.; McAnally, W.H. Hydrology and sediment modeling using BASINS/HSPF in a tropical island watershed. Trans. ASABE 2008, 51, 1555–1565. [Google Scholar] [CrossRef]
- Tzoraki, O.; Nikolaidis, N.P. A generalized framework for modeling the hydrologic and biogeochemical response of a mediterranean temporary river basin. J. Hydrol. 2007, 346, 112–121. [Google Scholar] [CrossRef]
- Alarcon, V.J.; McAnally, W.; Diaz-Ramirez, J.; Martin, J.; Cartwright, J. A hydrological model of the Mobile River watershed, Southeastern USA. Comput. Methods Sci. Eng. 2009, 1148, 641–645. [Google Scholar]
- Kourgialas, N.N.; Karatzas, G.P.; Nikolaidis, N.P. An integrated framework for the hydrologic simulation of a complex geomorphological river basin. J. Hydrol. 2010, 381, 308–321. [Google Scholar] [CrossRef]
- Hsu, S.M.; Chiou, L.B.; Lin, G.F.; Chao, C.H.; Wen, H.Y.; Ku, C.Y. Applications of simulation technique on debris-flow hazard zone delineation: A case study in Hualien County, Taiwan. Nat. Hazard. Earth Syst. 2010, 10, 535–545. [Google Scholar] [CrossRef]
- Diaz-Ramirez, J.N.; McAnally, W.H.; Martin, J.L. Analysis of hydrological processes applying the HSPF model in selected watersheds in Alabama, Mississippi, and Puerto Rico. Appl. Eng. Agric. 2011, 27, 937–954. [Google Scholar] [CrossRef]
- Ribarova, I.; Ninov, P.; Cooper, D. Modeling nutrient pollution during a first flood event using HSPF software: Iskar River case study, Bulgaria. Ecol. Model. 2008, 211, 241–246. [Google Scholar] [CrossRef]
- Chang, C.H.; Wen, C.G.; Huang, C.H.; Chang, S.P.; Lee, C.S. Nonpoint source pollution loading from an undistributed tropic forest area. Environ. Monit. Assess. 2008, 146, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Hunter, H.M.; Walton, R.S. Land-use effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the Great Barrier Reef, Australia. J. Hydrol. 2008, 356, 131–146. [Google Scholar] [CrossRef]
- Mishra, A.; Kar, S.; Singh, V.P. Determination of runoff and sediment yield from a small watershed in sub-humid subtropics using the HSPF model. Hydrol. Process. 2007, 21, 3035–3045. [Google Scholar] [CrossRef]
- Mishra, A.; Kar, S.; Raghuwanshi, N.S. Modeling nonpoint source pollutant losses from a small watershed using HSPF model. J. Environ. Eng.-ASCE 2009, 135, 92–100. [Google Scholar] [CrossRef]
- Lee, S.B.; Yoon, C.G.; Jung, K.W.; Hwang, H.S. Comparative evaluation of runoff and water quality using HSPF and SWMM. Water Sci. Technol. 2010, 62, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Akter, A.; Babel, M.S. Hydrological modeling of the Mun River basin in Thailand. J. Hydrol. 2012, 452, 232–246. [Google Scholar] [CrossRef]
- Hsu, S.M.; Wen, H.Y.; Chen, N.C.; Hsu, S.Y.; Chi, S.Y. Using an integrated method to estimate watershed sediment yield during heavy rain period: A case study in Hualien County, Taiwan. Nat. Hazard. Earth Syst. 2012, 12, 1949–1960. [Google Scholar] [CrossRef]
- Tsai, Z.-X.; You, G.J.Y.; Lee, H.-Y.; Chiu, Y.-J. Modeling the sediment yield from landslides in the Shihmen Reservoir watershed, Taiwan. Earth Surf. Proc. Land. 2013, 38, 661–674. [Google Scholar] [CrossRef]
- Patil, A.; Deng, Z. Temporal scale effect of loading data on instream nitrate-nitrogen load computation. Water Sci. Technol. 2012, 66, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Kwon, H.-G.; Yi, Y.-J.; Yoon, J.-S.; Han, K.-Y.; Cheon, S.-U. Quantitative estimation of nonpoint source load by BASINS/HSPF. J. Environ. Sci. Int. 2012, 21, 965–975. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Luo, C.; Li, Y.; Li, H.; Pan, J.; Jiang, X.; Zhou, Q.; Xiong, Z. Simulation of runoff and nutrient export from a typical small watershed in China using the Hydrological Simulation Program–Fortran. Environ. Sci. Pollut. Res. 2015, 22, 7954–7966. [Google Scholar] [CrossRef] [PubMed]
- Skahill, B.E.; Baggett, J.S.; Frankenstein, S.; Downer, C.W. More efficient pest compatible model independent model calibration. Environ. Model. Softw. 2009, 24, 517–529. [Google Scholar] [CrossRef]
- Yang, Y.S.; Wang, L. A review of modelling tools for implementation of the EU water framework directive in handling diffuse water pollution. Water Resour. Manag. 2010, 24, 1819–1843. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, A.; Botelho, C.; Boaventura, R.A.R.; Vilar, V.J.P. Integrated hydrological and water quality model for river management: A case study on Lena River. Sci. Total Environ. 2014, 485, 474–489. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.; Ames, D.P.; Yang, P.; Botelho, C.; Boaventura, R.; Vilar, V. Watershed model parameter estimation and uncertainty in data-limited environments. Environ. Model. Softw. 2014, 51, 84–93. [Google Scholar] [CrossRef]
- Luo, C.; Li, Z.; Wu, M.; Jiang, K.; Chen, X.; Li, H. Comprehensive study on parameter sensitivity for flow and nutrient modeling in the Hydrological Simulation Program Fortran model. Environ. Sci. Pollut. Res. 2017, 24, 20982–20994. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, W. Water sustainability for China and beyond. Science 2012, 337, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Cai, S.; Li, H.; Yang, G.; Li, Z.; Nie, X. Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China. J. Environ. Manag. 2014, 133, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hoermann, G.; Gao, J.; Fohrer, N. Structural uncertainty assessment in a discharge simulation model. Hydrolog. Sci. J. 2011, 56, 854–869. [Google Scholar] [CrossRef]
- Zhao, G.J.; Hoermann, G.; Fohrer, N.; Li, H.P.; Gao, J.F.; Tian, K. Development and application of a nitrogen simulation model in a data scarce catchment in South China. Agric. Water Manag. 2011, 98, 619–631. [Google Scholar] [CrossRef]
- Zhou, F.; Xu, Y.; Chen, Y.; Xu, C.Y.; Gao, Y.; Du, J. Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. J. Hydrol. 2013, 485, 113–125. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Q.; Li, H.; Viney, N.R.; Xu, J.; Liu, J. Modeling of surface runoff in Xitiaoxi catchment, China. Water Resour. Manag. 2007, 21, 1313–1323. [Google Scholar] [CrossRef]
- Zhang, X.; Hoermann, G.; Fohrer, N.; Gao, J. Estimating the impacts and uncertainty of changing spatial input data resolutions on streamflow simulations in two basins. J. Hydroinform. 2012, 14, 902–917. [Google Scholar] [CrossRef]
- Bicknell, B.R.; Imhoff, J.C.; Kittle, J.L., Jr.; Jobes, T.H.; Donigian, A.S., Jr.; Johanson, R.C. Hydrological Simulation Program–Fortran: HSPF Version 12.2 User’s Manual; Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Athens, GA, USA, 2005.
- Yan, C.; Zhang, W.; Zhang, Z. Hydrological modeling of the Jiaoyi watershed (China) using HSPF model. Sci. World J. 2014, 2014, 672360. [Google Scholar] [CrossRef] [PubMed]
- Doherty, J. PEST: Model-Independent Parameter Estimation, User Manual, 5th ed.; Watermark Numerical Computing: Brisbane, Australia, 2004. [Google Scholar]
- Diaz-Ramirez, J.N.; McAnally, W.H.; Martin, J.L. Sensitivity of simulating hydrologic processes to gauge and radar rainfall data in subtropical coastal catchments. Water Resour. Manag. 2012, 26, 3515–3538. [Google Scholar] [CrossRef]
- Al-Abed, N.; Al-Sharif, M. Hydrological modeling of Zarqa River Basin–Jordan using the Hydrological Simulation Program–FORTRAN (HSPF) model. Water Resour. Manag. 2008, 22, 1203–1220. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Nash, J.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Van Liew, M.; Arnold, J.; Garbrecht, J. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 2003, 46, 1539–1551. [Google Scholar] [CrossRef]
- Licciardello, F.; Zema, D.; Zimbone, S.; Bingner, R. Runoff and soil erosion evaluation by the AnnAGNPS model in a small Mediterranean watershed. Trans. ASABE 2007, 50, 1585–1593. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Nelson, N.O.; Frees, L.D.; Mankin, K.R. Comparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas. Hydrol. Process. 2009, 23, 748–763. [Google Scholar] [CrossRef]
- Gallagher, M.; Doherty, J. Parameter estimation and uncertainty analysis for a watershed model. Environ. Model. Softw. 2007, 22, 1000–1020. [Google Scholar] [CrossRef]
- Alarcon, V.J.; O’Hara, C.G. Scale-dependency and sensitivity of hydrological estimations to land use and topography for a coastal watershed in Mississippi. In Proceedings of the Computational Science and Its Applications—ICCSA 2010, Fukuoka, Japan, 23–26 March 2010; pp. 491–500. [Google Scholar]
- Diaz-Ramirez, J.N.; Alarcon, V.J.; Duan, Z.; Tagert, M.L.; McAnally, W.H.; Martin, J.L.; O’Hara, C.G. Impacts of land use characterization in modeling hydrology and sediments for the Luxapallila Creek watershed, Alabama and Mississippi. Trans. ASABE 2008, 51, 139–151. [Google Scholar] [CrossRef]
- Diaz-Ramirez, J.; Duan, Z.Y.; MeAnally, W.; Martin, J. Sensitivity of the HSPF model to land use/land cover datasets. J. Coast. Res. 2008, 89–94. [Google Scholar] [CrossRef]
- Duan, Z. A HSPF Model Sensitivity Study: Impacts of Watershed Topographic Characteristics on Hydrological and Water Quality Modeling. In Proceedings of the TMDL 2010: Watershed Management to Improve Water Quality, Baltimore, MD, USA, 14–17 November 2010. [Google Scholar]
- Lee, S.; Ni-Mesister, W.; Toll, D.; Nigro, J.; Gutierrez-Magness, A.L.; Engman, T. Assessing the hydrologic performance of the EPA’S nonpoint source water quality assessment decision support tool using North American Land Data Assimilation System (NLDAS) products. J. Hydrol. 2010, 387, 212–220. [Google Scholar] [CrossRef]
- Nigro, J.; Toll, D.; Partington, E.; Ni-Meister, W.; Lee, S.; Gutierrez-Magness, A.; Engman, T.; Arsenault, K. Nasa-modified precipitation products to improve USEPA nonpoint source water quality modeling for the Chesapeake Bay. J. Environ. Qual. 2010, 39, 1388–1401. [Google Scholar] [PubMed]
- Iskra, I.; Droste, R. Parameter uncertainty of a watershed model. Can. Water Resour. 2008, 33, 5–22. [Google Scholar] [CrossRef]
- Patil, A.; Deng, Z.Q. Analysis of uncertainty propagation through model parameters and structure. Water Sci. Technol. 2010, 62, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Ramirez, J.; Martin, J.L.; William, H.M. Modelling phosphorus export from humid subtropical agricultural fields: A case study using the HSPF model in the Mississippi Alluvial Plain. J. Earth Sci. Clim. Chang. 2013. [Google Scholar] [CrossRef]
- Obiero, J.P.O.; Hassan, M.A.; Gumbe, L.O.M. Modelling of streamflow of a catchment in Kenya. J. Water Resour. Prot. 2011, 3, 667–677. [Google Scholar] [CrossRef]
- Liu, Z.J.; Kingery, W.L.; Huddleston, D.H.; Hossain, F.; Hashim, N.B.; Kieffer, J.M. Application and evaluation of two nutrient algorithms of Hydrological Simulation Program Fortran in Wolf River watershed. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2008, 43, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Bai, S. Evaluation of the advection scheme in the HSPF model. J. Hydrol. Eng. 2010, 15, 191–199. [Google Scholar] [CrossRef]
- Xu, Z.; Godrej, A.N.; Grizzard, T.J. The hydrological calibration and validation of a complexly-linked watershed—Reservoir model for the Occoquan watershed, Virginia. J. Hydrol. 2007, 345, 167–183. [Google Scholar] [CrossRef]
- Liu, Z.J.; Hashim, N.B.; Kingery, W.L.; Huddleston, D.H.; Xia, M. Hydrodynamic modeling of St. Louis Bay estuary and watershed using EFDC and HSPF. J. Coast. Res. 2008, 107–116. [Google Scholar] [CrossRef]
- Liu, Z.J.; Kingery, W.L.; Huddleston, D.H.; Hossain, F.; Chen, W.; Hashim, N.B.; Kieffer, J.M. Modeling nutrient dynamics under critical flow conditions in three tributaries of St. Louis Bay. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2008, 43, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.-H.; Lim, K.J.; Yoon, C.G.; Engel, B.A. Multiple segmented reaches per subwatershed modeling approach for improving HSPF-Paddy water quality simulation. Paddy Water Environ. 2011, 9, 193–205. [Google Scholar] [CrossRef]
Category | Parameter | Explanation | Unit | Original Value | Calibrated Value |
---|---|---|---|---|---|
Hydrological | LZSN | Lower zone nominal soil moisture storage | in | 6 | 0.584–2.39 |
INFILT | Index to infiltration capacity | in·h−1 | 0.16 | 0.30–10.90 | |
AGWRC | Base groundwater recession | day−1 | 0.98 | 0.949 | |
DEEPFR | Fraction of GW * inflow to deep recharge | - | 0.1 | 0.35 | |
UZSN | Upper zone nominal soil moisture storage | in | 1.128 | 0.22–2.56 | |
LZETP | Lower zone ET ^ parameter | - | 0.1 | 0.50 | |
BASETP | Fraction of potential ET from baseflow | - | 0.02 | 0.27 | |
CEPS | Initial interception storage | in | 0.01 | 0.14 | |
UZS | Initial upper zone storage | in | 0.3 | 3.62 | |
Ammonia | MON-SQOLIM | Monthly values limiting storage of QUALOF ※ | lb/ac | 0.004–0.069 | 0.002–0.051 |
MON-IFLW-CONC | Monthly concentration of QUAL # in interflow | qty/ft3 | 0.03–0.2 | 0.03–0.144 | |
MON-GRND-CONC | Monthly concentration of QUAL in active groundwater | qty/ft3 | 0.025–0.1 | 0.250–4.30 | |
KATM20 | Unit oxidation rate of total ammonia at 20 °C | h−1 | 0.014 | 0.015 | |
MALGR | Maximal unit algal growth rate for phytoplankton | L·h−1 | 0.085 | 0.102 | |
Nitrate | MON-SQOLIM | Monthly values limiting storage of QUALOF | lb/ac | 0.09–3.16 | 0.09–3.16 |
MON-IFLW-CONC | Monthly concentration of QUAL in interflow | qty/ft3 | 0.4–19 | 0.192–5.0 | |
MON-GRND-CONC | Monthly concentration of QUAL in active groundwater | qty/ft3 | 0.3–12 | 0.052–3.780 | |
Phosphorus | MON-ACCUM | Monthly values of accumulation rate of QUALOF | lb/ac·day | 0.003–0.012 | 0.003–0.050 |
MON-IFLW-CONC | Monthly concentration of QUAL in interflow | qty/ft3 | 0.009–0.1 | 0.0009–0.15 | |
MON-GRND-CONC | Monthly concentration of QUAL in active groundwater | qty/ft3 | 0.005–0.05 | 0.0001–0.32 | |
MALGR | Maximal unit algal growth rate for phytoplankton | L·h−1 | 0.085 | 0.102 |
Item | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|
R2 | Ens | Ens’ | PBIAS (%) | R2 | Ens | Ens’ | PBIAS (%) | |
Annual flow | 0.87 | 0.82 | 0.56 | −2.1 | 0.94 | −19.65 | −4.35 | −15.3 |
Monthly flow | 0.77 | 0.76 | 0.60 | −2.1 | 0.94 | 0.87 | 0.65 | −15.3 |
Daily flow | 0.63 | 0.65 | 0.48 | −2.1 | 0.86 | 0.80 | 0.54 | −15.3 |
Items | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|
R2 | Ens | Ens’ | PBIAS (%) | R2 | Ens | Ens’ | PBIAS (%) | |
NO3-N | 0.73 | 0.67 | 0.45 | −4.00 | 0.71 | 0.66 | 0.42 | 5.37 |
NH4-N | 0.82 | 0.74 | 0.53 | 14.81 | 0.58 | 0.53 | 0.29 | −2.28 |
PO4-P | 0.92 | 0.86 | 0.61 | −11.38 | 0.76 | 0.67 | 0.49 | 18.31 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Luo, C.; Jiang, K.; Wan, R.; Li, H. Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China. Int. J. Environ. Res. Public Health 2017, 14, 1599. https://doi.org/10.3390/ijerph14121599
Li Z, Luo C, Jiang K, Wan R, Li H. Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China. International Journal of Environmental Research and Public Health. 2017; 14(12):1599. https://doi.org/10.3390/ijerph14121599
Chicago/Turabian StyleLi, Zhaofu, Chuan Luo, Kaixia Jiang, Rongrong Wan, and Hengpeng Li. 2017. "Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China" International Journal of Environmental Research and Public Health 14, no. 12: 1599. https://doi.org/10.3390/ijerph14121599
APA StyleLi, Z., Luo, C., Jiang, K., Wan, R., & Li, H. (2017). Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China. International Journal of Environmental Research and Public Health, 14(12), 1599. https://doi.org/10.3390/ijerph14121599