Evaluation and Analysis of Eco-Security in Environmentally Sensitive Areas Using an Emergy Ecological Footprint
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Method
2.2.1. Land Use Change Patterns
2.2.2. Ecological Pressure Index (EFI)
2.2.3. Corresponding Ecological Quotiety
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, Y.; Zhang, X.; Qi, S.; Na, X. Comparison of land use/land cover change and landscape patterns in Honghe National Nature Reserve and the surrounding Jiansanjiang Region, China. Ecol. Indic. 2015, 51, 205–214. [Google Scholar]
- Abrantes, P.; Fontes, I.; Gomes, E.; Rocha, J. Compliance of land cover changes with municipal land use planning: Evidence from the Lisbon metropolitan region (1990–2007). Land Use Policy 2016, 51, 120–134. [Google Scholar] [CrossRef]
- Beyene, F. Land use change and determinants of land management: Experience of pastoral and agro-pastoral herders in eastern Ethiopia. J. Arid Environ. 2016, 125, 56–63. [Google Scholar] [CrossRef]
- Fan, Q.; Ding, S. Landscape pattern changes at a county scale: A case study in Fengqiu, Henan Province, China from 1990 to 2013. Catena 2016, 137, 152–160. [Google Scholar] [CrossRef]
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Leman, N.; Ramli, M.F.; Khirotdin, R.P.K. GIS-based integrated evaluation of environmentally sensitive areas (ESAs) for land use planning in Langkawi, Malaysia. Ecol. indic. 2016, 61, 293–308. [Google Scholar] [CrossRef]
- Shao, H.; Sun, X.; Wang, H.; Zhang, X.; Xiang, Z.; Tan, R.; Chen, X.; Xian, W.; Qi, J. A method to the impact assessment of the returning grazing land to grassland project on regional eco-environmental vulnerability. Environ. Impact Assess. Rev. 2016, 56, 155–167. [Google Scholar] [CrossRef]
- Petus, C.; Lewis, M.; White, D. Monitoring temporal dynamics of Great Artesian Basin wetland vegetation, Australia, using MODIS NDVI. Ecol. Indic. 2013, 34, 41–52. [Google Scholar] [CrossRef]
- Julian, J.P.; Wilgruber, N.A.; Beurs, K.M.D.; Mayer, P.M.; Jawarnehd, R.N. Long-term impacts of land cover changes on stream channel loss. Sci. Total Environ. 2015, 537, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Ma, T.; Zhang, X. Responses of soil erosion processes to land cover changes in the Loess Plateau of China: A case study on the Beiluo River basin. Catena 2016, 136, 118–127. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Yang, H.; Zhong, T. Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area—A case study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Su, S.; Zhou, X.; Wan, C.; Li, Y.; Kong, W. Land use changes to cash crop plantations: Crop types, multilevel determinants and policy implications. Land Use Policy 2016, 50, 379–389. [Google Scholar] [CrossRef]
- Tomaz, C.; Alegria, C.; Monteiro, J.M.; Teixira, M.C. Land cover change and afforestation of marginal and abandoned agricultural land: A 10 year analysis in a Mediterranean region. For. Ecol. Manag. 2013, 308, 40–49. [Google Scholar] [CrossRef]
- Trincsi, K.; Pham, T.H.; Turner, S. Mapping mountain diversity: Ethnic minorities and land use land cover change in Vietnam's borderlands. Land Use Policy 2014, 41, 484–497. [Google Scholar] [CrossRef]
- Du, S.; Wang, Q.; Guo, L. Spatially varying relationships between land-cover change and driving factors at multiple sampling scales. J. Environ. Manag. 2014, 137, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Grunwald, S.; Myers, D.B.; Ross, C.W.; Harris, W.G.; Comerford, N.B. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Sci. Total Environ. 2014, 493, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Srinivasanb, S. Urban land use change and regional access: A case study in Beijing, China. Habitat Int. 2016, 51, 103–113. [Google Scholar] [CrossRef]
- Promper, C.; Puissant, A.; Malet, J.; Glade, T. Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Appl. Geogr. 2004, 53, 11–19. [Google Scholar] [CrossRef]
- Grecchi, R.C.; Hugh, Q.; Gwyn, J.; Benie, G.B.; Formaggio, A.R.; Fahl, F.C. Land use and land cover changes in the Brazilian Cerrado: A multidisciplinary approach to assess the impacts of agricultural expansion. Appl. Geogr. 2014, 55, 300–312. [Google Scholar] [CrossRef]
- Shooshtari, S.J.; Gholamalifard, M. Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka Watershed, Iran. Remote Sensing Applications. Soc. Environ. 2015, 1, 1–19. [Google Scholar]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes, capacities to provide ecosystem services: A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Vihervaara, P.; Kumpula, T.; Tanskanen, A.; Burkhard, B. Ecosystem services—A tool for sustainable management of human–environment systems. Case study Finnish Forest Lapland. Ecol. Complex. 2010, 7, 410–420. [Google Scholar] [CrossRef]
- Frank, S.; Fürst, C.; Koschke, L.; Makeschin, F. A contribution towards a transfer of the ecosystem services concept to landscape planning using landscape metrics. Ecol. Indic. 2011, 21, 30–38. [Google Scholar] [CrossRef]
- Zimmermann, M.; Keiler, M. International Frameworks for Disaster Risk Reduction: Useful Guidance for Sustainable Mountain Development? Mt. Res. Dev. 2015, 35, 195–202. [Google Scholar] [CrossRef]
- Lepuschitz, E. Geographic information systems in mountain risk and disaster management. Appl. Geogr. 2015, 63, 212–219. [Google Scholar] [CrossRef]
- Peng, J.; Du, Y.; Liu, Y.; Hu, X. How to assess urban development potential in mountain areas? An approach of ecological carrying capacity in the view of coupled human and natural systems. Ecol. Indic. 2016, 60, 1017–1030. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, H.; Li, Y.; Ma, H.; Yang, S.; Wang, H. Evaluation of Shangri-La County’s tourism resources and ecotourism carrying capacity. Int. J. Sustain. Dev. World Ecol. 2015, 22, 103–109. [Google Scholar] [CrossRef]
- Chen, H.S. The Establishment and Application of Environment Sustainability Evaluation Indicators for Ecotourism Environments. Sustainability 2015, 7, 4727–4746. [Google Scholar] [CrossRef]
- Ye, W.; Xu, X.; Wang, H.; Wang, H.; Yang, H.; Yang, Z. Quantitative assessment of resources and environmental carrying capacity in the northwest temperate continental climate ecotope of China. Environ. Earth Sci. 2016, 75, 868. [Google Scholar] [CrossRef]
- Chen, H.S.; Chen, C.Y.; Chang, C.T.; Hsieh, T. The Construction and Application of a Carrying Capacity Evaluation Model in a National Park. Stoch. Environ. Res. Risk Assess. 2014, 28, 1333–1341. [Google Scholar] [CrossRef]
- Chen, H.S. Establishment and Applied Research on a Wetland Ecosystem Evaluation Model in Taiwan. Sustainability 2015, 7, 15785–15793. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, Y.; Wang, F.; Liu, Z.; Ma, Z.; Yu, X.; Tian, X.; Sun, L.; He, Q.; Zhang, L. Emergy-Ecological Footprint Hybrid Method Analysis of Industrial Parks Using a Geographical and Regional Perspective. Environ. Eng. Sci. 2015, 32, 193–202. [Google Scholar] [CrossRef]
- Wu, X.F.; Yang, Q.; Xia, X.H.; Wu, T.H.; Wu, X.D.; Shao, L.; Hayat, T.; Alsaedi, A.; Chen, G.Q. Sustainability of a typical biogas system in China: Emergy-based ecological footprint assessment. Ecol. Inform. 2015, 26, 78–84. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F. How to calculate and interpret ecological footprint for long periods of time: The case of Austria 1926 to 1995. Ecol. Econ. 2001, 38, 25–45. [Google Scholar] [CrossRef]
- Odum, H.T.; Brown, M.T.; Williams, S.B. Handbook of Energy Evaluations, Folios 1–4; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- Rees, W.E. Getting serious about urban sustainability: Eco–footprints and the vulnerability of 21st century cities. In Canadian Cities in Transition, New Directions in the 21st Century; Oxford University Press: Toronto, ON, Canada, 2011; pp. 70–86. [Google Scholar]
- Moore, J.; Kissinger, M.; Rees, W.E. An urban metabolism and ecological footprint assessment of Metro Vancouver. J. Environ. Manag. 2013, 124, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.; Wei, X.; Lu, L.; Gong, S.; Zhao, Z. Analysis of Ecological Footprints and Research on Sustainable Development of Poyang Lake Area. Res. Agric. Mod. 2006, 27, 206–209. [Google Scholar]
- Xu, Z.Y.; He, J.L.; Liu, W.B. Assessment of Coordinated Development Competency to Ecological-Economic System in Hunan Province: An Empirical Analysis Based on Ecological Footprint and Ecological Coordination Degree. Res. Agric. Mod. 2007, 28, 735–738. [Google Scholar]
- Wang, S.X. Analysis of Sustainable Development of Linyi City Based on the Ecological Footprint Model. J. Shandong Adm. Inst. Shandong Econ. Manag. Pers. Inst. 2009, 5, 60–63. [Google Scholar]
- Yang, Q.; Lu, C.-P.; Zhou, F.; Geng, Y.; Jing, H.-S.; Ren, W.-X.; Xue, B. An emergy-ecological footprint model based evaluation of ecological security at the old industrial area in Northeast China: A case study of Liaoning Province. Chin. J. Appl. Ecol. 2016, 27, 1594–1602. [Google Scholar]
- Deng, J.L. Grey System Fundamental Method; Huazhong University of Science and Technology: Wuhan, China, 1982. [Google Scholar]
- Pai, T.Y.; Chiou, R.J.; Wen, H.H. Evaluating impact level of different factors in environmental impact assessment for incinerator plants using GM (1, N) model. Waste Manag. 2008, 28, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, S.; Hooshmand, R.A.; Parastegari, M. Short term electric load forecasting by wavelet transform and grey model improved by PSO (particle swarm optimization) algorithm. Energy 2014, 72, 434–442. [Google Scholar] [CrossRef]
- Pai, T.Y.; Lo, H.M.; Wan, T.J.; Chen, L.; Hung, P.S.; Lo, H.H.; Lai, W.J.; Lee, H.Y. Predicting air pollutant emissions from a medical incinerator using grey model and neural network. Appl. Math. Model. 2015, 39, 1513–1525. [Google Scholar] [CrossRef]
- Lee, Y.J.; Tung, C.M.; Lee, P.R.; Lin, S.C. Personal Water Footprint in Taiwan: A Case Study of Yunlin County. Sustainability 2016, 8, 1112. [Google Scholar] [CrossRef]
- Lee, Y.J.; Peng, L.P. Taiwan’s ecological footprint (1994–2011). Sustainability 2014, 6, 6170–6187. [Google Scholar] [CrossRef]
- Lee, Y.J. Land, carbon and water footprints in Taiwan. Environ. Impact Assess. Rev. 2015, 54, 1–8. [Google Scholar] [CrossRef]
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
---|---|---|---|---|---|---|---|
EFI | 1.08 | 1.34 | 1.36 | 1.43 | 1.80 | 1.97 | 2.14 |
DS | 1.92 | 1.76 | 1.68 | 1.52 | 1.47 | 1.25 | 1.13 |
ES level | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
ES evaluation | Safe | Safe | Safe | Safe | Safe | Safe | Safe |
Year | Per Capita ECC | Per Capita EEF | Ecological Deficit/Surplus | EFI | ES Early Warning State | |||
---|---|---|---|---|---|---|---|---|
Index | Grade | Safety Status | Level | Status | ||||
2015 | 3.92 | 9.24 | −5.32 | 2.36 | 2 | Safe | 1 | Mild |
2016 | 3.95 | 10.40 | −6.45 | 2.63 | 2 | Safe | 1 | Mild |
2017 | 3.99 | 11.71 | −7.72 | 2.93 | 2 | Safe | 1 | Mild |
2018 | 4.03 | 13.18 | −9.15 | 3.27 | 2 | Safe | 1 | Mild |
2019 | 4.07 | 14.83 | −10.76 | 3.64 | 2 | Safe | 1 | Mild |
2020 | 4.02 | 16.70 | −12.68 | 4.15 | 2 | Safe | 1 | Mild |
2021 | 3.96 | 18.79 | −14.83 | 4.74 | 2 | Safe | 1 | Mild |
2022 | 3.93 | 21.15 | −17.22 | 5.38 | 2 | Safe | 2 | Inter-mediate |
2023 | 3.87 | 23.80 | −19.93 | 6.15 | 2 | Safe | 2 | Inter-mediate |
2024 | 3.76 | 26.79 | −23.03 | 7.13 | 2 | Safe | 2 | Inter-mediate |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-S. Evaluation and Analysis of Eco-Security in Environmentally Sensitive Areas Using an Emergy Ecological Footprint. Int. J. Environ. Res. Public Health 2017, 14, 136. https://doi.org/10.3390/ijerph14020136
Chen H-S. Evaluation and Analysis of Eco-Security in Environmentally Sensitive Areas Using an Emergy Ecological Footprint. International Journal of Environmental Research and Public Health. 2017; 14(2):136. https://doi.org/10.3390/ijerph14020136
Chicago/Turabian StyleChen, Han-Shen. 2017. "Evaluation and Analysis of Eco-Security in Environmentally Sensitive Areas Using an Emergy Ecological Footprint" International Journal of Environmental Research and Public Health 14, no. 2: 136. https://doi.org/10.3390/ijerph14020136
APA StyleChen, H.-S. (2017). Evaluation and Analysis of Eco-Security in Environmentally Sensitive Areas Using an Emergy Ecological Footprint. International Journal of Environmental Research and Public Health, 14(2), 136. https://doi.org/10.3390/ijerph14020136