Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Case Definition and Assessment of Confounders
2.3. Laboratory Methods
2.3.1. Exposure Monitoring
2.3.2. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Phthalate Metabolite Levels and Asthma
3.2. The Association of Different Genotypes and Asthma
3.3. The Association of Phthalate Metabolite Levels and Different Genotypes
3.4. The Effect of SOD2 Genotypes with MEHHP on Asthma
4. Discussion
4.1. The Association of Phthalate Metabolite Levels and Oxidative-Stress Related Genes
4.2. Phthalate Metabolite Levels and Asthma
4.3. The Association of Oxidative-Stress Related Genes and Asthma
4.4. The Combined Effect of Phthalate Metabolite Levels and Genotypes on Asthma
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bekö, G.; Weschler, C.J.; Langer, S.; Callesen, M.; Toftum, J.; Clausen, G. Children’s phthalate intakes and resultant cumulative exposures estimated from urine compare with estimates from dust ingestion, inhalation and dermal absorption in their homes and daycare centers. PLoS ONE 2013, 8, e62442. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Han, B.; Qin, L.; Li, B.; You, H.; Yang, J.; Liu, D.; Wei, C.; Nanberg, E.; Bornehag, C.G.; et al. Pulmonary toxicity and adjuvant effect of di-(2-exylhexyl) phthalate in ovalbumin-immunized BALB/c mice. PLoS ONE 2012, 7, e39008. [Google Scholar] [CrossRef] [PubMed]
- Bornehag, C.G.; Sundell, J.; Weschler, C.J.; Sigsgaard, T.; Lundgren, B.; Hasselgren, M.; Hägerhed-Engman, L. The association between asthma and allergic symptoms in children and phthalates in house dust: A nested case-control study. Environ. Health Perspect. 2004, 112, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Kolarik, B.; Naydenov, K.; Larsson, M.; Bornehag, C.G.; Sundell, J. The association between phthalates in dust and allergic diseases among Bulgarian children. Environ. Health Perspect. 2008, 116, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Just, A.C.; Whyatt, R.M.; Miller, R.L.; Rundle, A.G.; Chen, Q.; Calafat, A.M.; Divjan, A.; Rosa, M.J.; Zhang, H.; Perera, F.P.; et al. Children’s urinary phthalate metabolites and fractional exhaled nitric oxide in an urban cohort. Am. J. Respir. Crit. Care Med. 2012, 186, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.T.; Hansen, J.S.; Hansen, E.W.; Clausen, P.A.; Nielsen, G.D. Nielsen airway inflammation and adjuvant effect after repeated airborne exposures to di-(2-ethylhexyl)phthalate and ovalbumin in BALB/c mice. Toxicology 2007, 235, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.T.; Hansen, J.S.; Hammer, M.; Alarie, Y.; Nielsen, G.D. Effects of mono-2-ethylhexyl phthalate on the respiratory tract in BALB/c mice. Hum. Exp. Toxicol. 2004, 23, 537–545. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, E.J. The burden of atopy and asthma in children. Allergy 2004, 59, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.J.; Karmaus, W.J. The effect of phthalate exposure and filaggrin gene variants on atopic dermatitis. Environ. Res. 2015, 136, 213–218. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Chen, S.; Mao, L.; Li, B.; Yuan, Y.; Li, R.; Yang, X. The adjuvant effect induced by di-(2-ethylhexyl) phthalate (DEHP) is mediated through oxidative stress in a mouse model of asthma. Food Chem. Toxicol. 2014, 71, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Lummus, Z.L.; Wisnewski, A.V.; Bernstein, D.I. Pathogenesis and disease mechanisms of occupational asthma. Immunol. Allergy Clin. N. Am. 2011, 31, 699–716. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.T.; Ylostalo, J.; Friedman, M.; Hoyle, G.W. Gene expression profiling in mouse lung following polymeric hexamethylene diisocyanate exposure. Toxicol. Appl. Pharmacol. 2005, 205, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Comhair, S.A.; Erzurum, S.C. Redox control of asthma: Molecular mechanisms and therapeutic opportunities. Antioxid. Redox. Signal. 2010, 12, 93–124. [Google Scholar] [CrossRef] [PubMed]
- Bowler, R.P. Oxidative stress in the pathogenesis of asthma. Curr. Allergy Asthma Rep. 2004, 4, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.; Biswas, S.K.; Kode, A. Oxidant and antioxidant balance in the airways and airway diseases. Eur. J. Pharmacol. 2006, 533, 222–239. [Google Scholar] [CrossRef] [PubMed]
- Yucesoy, B.; Johnson, V.J.; Lummus, Z.L.; Kissling, G.E.; Fluharty, K.; Gautrin, D.; Malo, J.L.; Cartier, A.; Boulet, L.P.; Sastre, J.; et al. Genetic variants in antioxidant genes are associated with diisocyanate-induced asthma. Toxicol. Sci. 2012, 129, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Nadif, R.; Kleeberger, S.R.; Kauffmann, F. Polymorphisms in manganese superoxide dismutase and catalase genes: Functional study in Hong Kong Chinese asthma patients. Clin. Exp. Allergy 2006, 36, 1104–1105. [Google Scholar] [CrossRef] [PubMed]
- Wenten, M.; Gauderman, W.J.; Berhane, K.; Lin, P.C.; Peters, J.; Gilliland, F.D. Functional variants in the catalase and myeloperoxidase genes, ambient air pollution, and respiratory-related school absences: An example of epistasis in gene-environment interactions. Am. J. Epidemiol. 2009, 170, 1494–1501. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Kim, J.H.; Lim, Y.H.; Bae, S.; Hong, Y.C. Influence of genetic polymorphisms on the association between phthalate exposure and pulmonary function in the elderly. Environ. Res. 2013, 122, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.J.; Lin, T.J. FLG P478S polymorphisms and environmental risk factors for the atopic march in Taiwanese children: A prospective cohort study. Ann. Allergy Asthma Immunol. 2015, 114, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Reddel, H.K.; Bateman, E.D.; Becker, A.; Boulet, L.P.; Cruz, A.A.; Drazen, J.M.; Haahtela, T.; Hurd, S.S.; Inoue, H.; de Jongste, J.C.; et al. A summary of the new GINA strategy: A roadmap to asthma control. Eur. Respir. J. 2015, 46, 622–639. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.; Barr, D.B.; Reidy, J.A.; Malek, N.A.; Hodge, C.C.; Caudill, S.P.; Brock, J.W.; Needham, L.L.; Calafat, A.M. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ. Health Perspect. 2004, 112, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Cayman Chemical Company. Creatinine (Urinary). 2012. Available online: https://www.caymanchem.com/pdfs/500701.pdf (accessed on 27 October 2016).
- Grover, D.; Woodfield, A.S.; Verma, R.; Zandi, P.P.; Levinson, D.F.; Potash, J.B. QuickSNP: An automated web server for selection of tag-SNPs. Nucleic Acids Res. 2007, 35, W115–W120. [Google Scholar] [CrossRef] [PubMed]
- Woodward, J. Bi-allelic SNP genotyping using the TaqMan® assay. Methods Mol. Biol. 2014, 1145, 67–74. [Google Scholar] [PubMed]
- McClelland, G.H.; Judd, C.M. Statistical difficulties of detecting interactions and moderator effects. Psychol. Bull. 1993, 114, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 2001, 360, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sandström, T.; Kelly, F.J. Traffic-related air pollution, genetics and asthma development in children. Thorax 2009, 64, 98–99. [Google Scholar] [CrossRef] [PubMed]
- Vats, P.; Sagar, N.; Singh, T.P.; Banerjee, M. Association of superoxide dismutases (SOD1 and SOD2) and glutathione peroxidase 1 (GPx1) gene polymorphisms with type 2 diabetes mellitus. Free Radic. Res. 2015, 49, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Mankidy, R.; Wiseman, S.; Ma, H.; Giesy, J.P. Biological impact of phthalates. Toxicol. Lett. 2013, 217, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Craig, Z.R.; Basavarajappa, M.S.; Gupta, R.K.; Flaws, J.A. Di-(2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway. Toxicol. Appl. Pharmacol. 2012, 258, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.P.; Tian, S.; Qi, L.; Hao, C.J.; Xia, H.F.; Ma, X. Abnormality of maternal-to-embryonic transition contributes to MEHP-induced mouse 2-cell block. J. Cell Physiol. 2013, 228, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.J.; Park, S.B.; Han, M. Di-(2-ethylhexyl)-phthalate induces oxidative stress in human endometrial stromal cells in vitro. Mol. Cell Endocrinol. 2015, 407, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shao, X.; Zhang, Z.; Zou, Y.; Wu, X.; Yang, L. Oxidative stress and immune related gene expression following exposure to di-n-butyl phthalate and diethylphthalate in zebrafish embryos. Ecotoxicol. Environ. Saf. 2013, 93, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Wittassek, M.; Angerer, J. Phthalates: Metabolism and exposure. Int. J. Androl. 2008, 31, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Skakkebaek, N.E.; Andersson, A.M. Metabolism of phthalates in humans. Mol. Nutr. Food Res. 2007, 51, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Göen, T.; Seiwert, M.; Conrad, A.; Pick-Fuss, H.; Müller, J.; Wittassek, M.; Schulz, C.; Kolossa-Gehring, M. GerES IV: Phthalate metabolites and bisphenol A in urine of German children. Int. J. Hyg. Environ. Health 2009, 212, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.; Slakman, A.R.; Reidy, J.A.; Preau, J.L.; Herbert, A.R.; Samandar, E.; Needham, L.L.; Calafat, A.M. Analysis of human urine for fifteen phthalate metabolites using automated solid-phase extraction. J. Chromatogr. 2004, 805, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.S.; Moon, H.B. The role of oxidative stress in the pathogenesis of asthma. Allergy Asthma Immunol. Res. 2010, 2, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Kuo Chou, T.N.; Li, Y.S.; Lue, K.H.; Liao, C.F.; Lin, C.Y.; Tzeng, P.R.; Wong, R.H. Genetic polymorphism of manganese superoxide dismutaseis associated with childhood asthma. J. Asthma 2010, 47, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.C.; Park, E.Y.; Park, M.S.; Ko, J.A.; Oh, S.Y.; Kim, H.; Lee, K.H.; Leem, J.H.; Ha, E.H. Community level exposure to chemicals and oxidative stress in adult population. Toxicol. Lett. 2009, 184, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Seagrave, J.; Campen, M.J.; McDonald, J.D.; Mauderly, J.L.; Rohr, A.C. Oxidative stress, inflammation, and pulmonary function assessment in rats exposed to laboratory-generated pollutant mixtures. J. Toxicol. Environ. Health 2008, 71, 1352–1362. [Google Scholar] [CrossRef] [PubMed]
- Hauser, R.; Meeker, J.D.; Park, S.; Silva, M.J.; Calafat, A.M. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ. Health Perspect. 2004, 112, 1734–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fromme, H.; Bolte, G.; Koch, H.M.; Angerer, J.; Boehmer, S.; Drexler, H.; Mayer, R.; Liebl, B. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int. J. Hyg. Environ. Health 2007, 210, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Wittassek, M.; Heger, W.; Koch, H.M.; Becker, K.; Angerer, J.; Kolossa-Gehring, M. Daily intake of di-(2-ethylhexyl)phthalate (DEHP) by German children—A comparison of two estimation models based on urinary DEHP metabolite levels. Int. J. Hyg. Environ. Health 2007, 210, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Gutleb, A.C. HENVINET Policy Brief: Expert Elicitation on Health Implications of Phthalates. 2010. Available online: http://www.biomedcentral.com/content/supplementary/1476-069 X-11-S1-S6-S4.pdf (accessed on 10 December 2016).
Characteristic | Total | Cases | Controls | p-Value |
---|---|---|---|---|
Total number | 453 | 126 | 327 | |
Mother | ||||
Maternal age (years old) | ||||
Mean ± SD | 29.39 ± 4.35 | 29.61 ± 4.08 | 29.31 ± 4.45 | 0.559 |
Maternal education (%) | ||||
High school and below | 268 (59.2) | 72 (57.1) | 196 (59.9) | 0.764 |
College and above | 120 (26.5) | 34 (27.0) | 86 (26.3) | |
Maternal history of atopy (%) | ||||
Yes | 126 (27.8) | 46 (36.5) | 80 (24.5) | 0.002 * |
Children | ||||
Male (%) | 261 (57.6) | 76 (60.3) | 185 (56.6) | 0.470 |
Birth weight (gm) | ||||
Mean ± SD | 3119.33 ± 442.07 | 3075.94 (381.79) | 3135.01 (461.56) | 0.255 |
Premature birth (%) | ||||
<37 weeks | 35 (7.7) | 9 (7.1) | 26 (8.0) | 0.993 |
Environmental factors | ||||
Breast feeding (%) | ||||
Yes | 292 (64.5) | 75 (59.5) | 217 (66.4) | 0.419 |
Older siblings (%) | ||||
≥2 | 67 (14.8) | 16 (12.7) | 51 (15.6) | 0.638 |
Pet raising (%) | ||||
Yes | 70 (15.5) | 21 (16.7) | 49 (15.0) | 0.514 |
ETS exposure (%) | ||||
Yes | 186 (41.1) | 59 (46.8) | 127 (38.8) | 0.025 * |
Family income per year (U.S. dollars) (%) | ||||
<20,000 | 110 (31.3) | 25 (29.4) | 85 (32.0) | 0.808 |
20,000–50,000 | 213 (60.7) | 52 (61.2) | 161 (60.5) | |
>50,000 | 28 (8.0) | 8 (9.4) | 20 (7.5) |
Asthma | Phthalate Metabolite Levels | p-Value | Bonferroni |
---|---|---|---|
Asthma Adjusted OR (95% CI) a | LnMEP | 0.803 | 1.000 |
1.02 (0.85–1.24) | |||
Asthma Adjusted OR (95% CI) a | LnMBP | 0.678 | 1.000 |
1.04 (0.87–1.25) | |||
Asthma Adjusted OR (95% CI) a | LnMBzP | 0.744 | 1.000 |
1.04 (0.81–1.33) | |||
Asthma Adjusted OR (95% CI) a | LnMEHHP | 0.002 * | 0.008 * |
1.33 (1.11–1.60) |
Genes (SNP) | Cases n (%) | Control n (%) | OR (95% CI) | Adjusted OR (95% CI) a | Overall p-Value | Bonferroni p-Value | FDR |
---|---|---|---|---|---|---|---|
GSTM1 (n = 453) | 126 | 327 | 0.115 | 1.000 | 0.302 | ||
Present | 68 (54.0) | 203 (62.1) | 0.72 (0.47–1.09) | 0.77 (0.47–1.25) | |||
Null | 58 (46.0) | 124 (37.9) | 1 (reference) | 1 (reference) | |||
GSTP1 (rs1695) (n = 452) | 126 | 326 | 0.057 | 0.513 | 0.257 | ||
AA | 87 (69.0) | 205 (62.9) | 2.61 (1.13–6.02) * | 3.00 (1.23–7.33) * | |||
AG | 32 (25.4) | 78 (23.9) | 2.52 (1.03–6.19) * | 2.93 (1.13–7.59) * | |||
GG | 7 (5.6) | 43 (13.2) | 1 (reference) | 1 (reference) | |||
SOD2 (rs5746136) (n = 453) | 126 | 327 | 0.001 * | 0.009 * | 0.009 * | ||
TT | 30 (23.8) | 45 (13.8) | 2.70 (1.50–4.87) * | 2.78 (1.54–5.02) * | |||
TC | 60 (47.6) | 136 (41.6) | 1.80 (1.12–2.90) * | 1.79 (1.12–2.89) * | |||
CC | 36 (28.6) | 146 (44.6) | 1 (reference) | 1 (reference) | |||
SOD2 (rs4880) (n = 451) | 126 | 325 | 0.235 | 1.000 | 0.302 | ||
GG | 5 (4.0) | 22 (6.8) | 0.55 (0.20–1.50) | 0.72 (0.19–2.66) | |||
AG | 28 (22.2) | 78 (24.0) | 0.88 (0.54–1.44) | 0.71 (0.38–1.32) | |||
AA | 93 (73.8) | 225 (69.2) | 1 (reference) | 1 (reference) | |||
CAT (rs769218) (n = 450) | 126 | 324 | 0.218 | 1.000 | 0.302 | ||
AA | 22 (17.5) | 73 (22.5) | 0.68 (0.37–1.24) | 0.97 (0.47–1.98) | |||
AG | 61 (48.4) | 154 (47.5) | 0.90 (0.56–1.43) | 1.06 (0.59–1.89) | |||
GG | 43 (34.1) | 97 (29.9) | 1 (reference) | 1 (reference) | |||
MPO (rs2071409) (n = 446) | 125 | 321 | 0.962 | 1.000 | 0.962 | ||
GG | 6 (4.8) | 11 (3.4) | 1.37 (0.49–3.80) | 0.71 (0.14–3.54) | |||
GT | 20 (16.0) | 61 (19.0) | 0.82 (0.47–1.43) | 0.61 (0.29–1.27) | |||
TT | 99 (79.2) | 249 (77.6) | 1 (reference) | 1 (reference) | |||
EPHX1 (rs1051740) (n = 453) | 126 | 327 | 0.321 | 1.000 | 0.361 | ||
CC | 23 (18.3) | 79 (24.2) | 0.71 (0.39–1.29) | 0.54 (0.26–1.13) | |||
TC | 64 (50.8) | 152 (46.5) | 1.03 (0.64–1.65) | 0.82 (0.45–1.47) | |||
TT | 39 (31.0) | 96 (29.4) | 1 (reference) | 1 (reference) | |||
EPHX1 (rs2740171) (n = 445) | 126 | 319 | 0.179 | 1.000 | 0.302 | ||
AA | 15 (11.9) | 19 (6.0) | 2.07 (1.01–4.25) * | 2.07 (1.00–4.24) * | |||
AC | 18 (14.3) | 56 (17.6) | 0.84 (0.47–1.51) | 0.84 (0.47–1.51) | |||
CC | 93 (73.8) | 244 (76.5) | 1 (reference) | 1 (reference) |
Genes (SNP) | n (%) | GM (s.e.) MEP | GM (s.e.) MBP | GM (s.e.) MBzP | GM (s.e.) MEHHP |
---|---|---|---|---|---|
GSTM1 (n = 453) | |||||
Present | 271 (59.8) | 15.57 (4.02) | 4.48 (3.68) | 0.60 (2.70) | 5.37 (3.21) |
Null | 182 (40.2) | 13.69 (3.69) | 4.24 (3.53) | 0.61 (2.65) | 6.35 (2.86) |
GSTP1 (rs1695) (n = 452) | 0.011 a | ||||
AA | 292 (64.6) | 13.81 (3.78) | 4.44 (3.74) | 0.64 (2.64) | 6.95 (3.12) * |
AG | 110 (24.3) | 15.00 (3.43) | 4.40 (3.31) | 0.62 (2.75) | 5.07 (2.66) |
GG | 50 (11.1) | 17.52 (5.02) | 3.70 (3.38) | 0.50 (2.24) | 3.35 (2.81) * |
SOD2 (rs5746136) (n = 453) | 0.002 a | ||||
TT | 75 (16.6) | 13.07 (3.43) | 4.96 (3.99) | 0.66 (3.21) | 7.76 (3.67) * |
TC | 196 (43.3) | 15.46 (3.85) | 4.37 (3.64) | 0.62 (2.48) | 6.19 (2.94) |
CC | 182 (40.2) | 13.92 (3.97) | 4.06 (3.38) | 0.58 (2.65) | 5.08 (2.76) * |
SOD2 (rs4880) (n = 451) | |||||
GG | 27 (6.0) | 14.20 (2.71) | 4.30 (3.96) | 0.48 (1.81) | 4.04 (2.91) |
AG | 106 (23.5) | 14.67 (3.53) | 4.74 (3.77) | 0.63 (2.86) | 7.01 (3.02) |
AA | 318 (70.5) | 14.29 (4.03) | 4.19 (3.51) | 0.61 (2.68) | 5.76 (3.00) |
CAT (rs769218) (n = 450) | |||||
AA | 95 (21.1) | 17.52 (4.99) | 4.60 (3.65) | 0.52 (2.79) | 5.37 (2.82) |
AG | 215 (47.8) | 16.62 (4.06) | 4.40 (3.46) | 0.62 (2.74) | 5.82 (2.90) |
GG | 140 (31.1) | 12.14 (3.15) | 4.07 (3.77) | 0.66 (2.48) | 6.60 (3.30) |
MPO (rs2071409) (n = 446) | |||||
GG | 17 (3.8) | 16.36 (3.52) | 3.86 (5.56) | 0.71 (3.21) | 7.34 (4.70) |
GT | 81 (18.2) | 16.40 (4.39) | 5.20 (3.95) | 0.66 (2.41) | 6.17 (3.21) |
TT | 348 (78.0) | 14.08 (3.69) | 4.24 (3.44) | 0.60 (2.72) | 5.87 (2.91) |
EPHX1 (rs1051740) (n = 453) | |||||
CC | 102 (22.5) | 15.56 (4.10) | 4.77 (3.92) | 0.65 (2.85) | 6.11 (3.02) |
TC | 216 (47.7) | 12.45 (3.39) | 4.22 (3.49) | 0.58 (2.48) | 5.81 (2.96) |
TT | 135 (29.8) | 17.21 (4.25) | 4.21 (3.52) | 0.62 (2.82) | 6.02 (3.09) |
EPHX1 (rs2740171) (n = 445) | |||||
AA | 34 (7.6) | 15.98 (3.17) | 3.90 (4.63) | 0.50 (1.98) | 6.07 (2.95) |
AC | 74 (16.6) | 13.46 (3.39) | 5.17 (4.40) | 0.65 (2.83) | 6.16 (3.31) |
CC | 337 (75.7) | 14.49 (4.02) | 4.26 (3.36) | 0.61 (2.71) | 5.96 (2.96) |
SOD2 and MEHHP | Cases n (%) | Controls n (%) | OR (95% CI) | Adjusted OR (95% CI) a |
---|---|---|---|---|
Model 1 (stratification) MEHHP (n = 453) | 126 | 327 | ||
MEHHP ≤ 4.14 b ng/mL (n = 310) | 81 | 229 | ||
SOD2 (%) | ||||
TT | 14 (17.3) | 30 (13.1) | 1.77 (0.83–3.77) | 1.77 (0.80–3.91) |
TC | 38 (46.9) | 89 (38.9) | 1.62 (0.93–2.83) | 1.42 (0.77–2.62) |
CC | 29 (35.8) | 110 (48.0) | 1 | 1 |
MEHHP > 4.14 ng/mL (n = 143) | 45 | 98 | ||
SOD2 (%) | ||||
TT | 16 (35.6) | 15 (15.3) | 5.49 (1.88–16.04) * | 8.08 (2.03–32.14) * |
TC | 22 (48.9) | 47 (48.0) | 2.41 (0.93–6.26) | 2.40 (0.69–8.40) |
CC | 7 (15.5) | 36 (36.7) | 1 | 1 |
Model 2 (interaction) | Genotype | β c | OR (95% CI) | p-Value |
SOD2 (rs5746136) | TT | 1.112 | 3.04 (1.61–5.73) | 0.001 * |
TC | 0.721 | 2.06 (1.22–3.48) | 0.007 * | |
CC | 1 | |||
Residuals of MEHHP | −0.047 | 0.95 (0.91–1.00) | 0.062 | |
SOD2 (rs5746136) × Residuals of MEHHP | TT | 0.055 | 1.06 (1.01–1.11) | 0.035 * |
TC | 0.057 | 1.06 (1.01–1.12) | 0.031 * | |
CC | 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, I.-J.; Karmaus, W.J.J. Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma. Int. J. Environ. Res. Public Health 2017, 14, 162. https://doi.org/10.3390/ijerph14020162
Wang I-J, Karmaus WJJ. Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma. International Journal of Environmental Research and Public Health. 2017; 14(2):162. https://doi.org/10.3390/ijerph14020162
Chicago/Turabian StyleWang, I-Jen, and Wilfried J. J. Karmaus. 2017. "Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma" International Journal of Environmental Research and Public Health 14, no. 2: 162. https://doi.org/10.3390/ijerph14020162
APA StyleWang, I.-J., & Karmaus, W. J. J. (2017). Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma. International Journal of Environmental Research and Public Health, 14(2), 162. https://doi.org/10.3390/ijerph14020162