Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming
Abstract
:1. Introduction
2. Effect of Climate Change on Mycotoxigenic Fungi
3. Effect of Climate Change on Mycotoxins
4. Succession Events Involving Mycotoxigenic Fungi
5. Thermotolerant and Thermophilic Fungi
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alfonso, A.; Botana, L.M. Considerations about international mycotoxin legislation, food security, and climate change. In Climate Change and Mycotoxins; Botana, M.J., Sainz, L.M., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2015. [Google Scholar]
- Hansen, L.; Ruedy, M.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, 4004. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Kumar, L.; Taylor, S.; Lima, N. Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia. Sci. Rep. 2015, 5, 14457. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.Z.; Paterson, R.R.M.; Bhatti, I.A.; Asi, M.R. Comparing aflatoxin contamination in chilies from Punjab, Pakistan produced in summer and winter. Mycotoxin Res. 2011, 27, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Mercury Rising: India Records Its Highest Temperature Ever. Available online: http://edition.cnn.com/2016/05/20/asia/india-record-temperature/ (accessed on 14 February 2017).
- Zhang, H.; van der Lee, T.; Wallwijk, C.; Chen, W.; Xu, J.; Zhang, Y.; Feng, J. Population analysis of the Fusarium graminearum species complex from wheat in China shows a shift to more aggressive isolates. PLoS ONE 2012, 7, e31722. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M.; Lima, N. Climate Change, Fumonsins and Animal Feed. In World Nutrition Form. NutriEconomics: Balancing Global Nutrition & Productivity; Binder, E.M., Ed.; Anytime Publishing: Leicestershire, UK, 2012. [Google Scholar]
- Roos, J.; Hopkins, R.; Kvarnheden, A.; Dixelius, C. The impact of global warming on plant diseases and insect vectors in Sweden. Eur. J. Plant Pathol. 2011, 129, 9–19. [Google Scholar] [CrossRef]
- Pangga, I.B.; Salvacion, A.R.; Joseph, C.; Cumagun, R. Climate change and plant diseases caused by mycotoxigenic fungi: Implications for food security. In Climate Change and Mycotoxins; Botana, M.J., Sainz, L.M., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2015; pp. 1–28. [Google Scholar]
- Miraglia, M.; Marvin, H.J.P.; Kleter, G.A.; Battilani, P.; Brera, C.; Coni, E.; Cubadda, F.; Croci, L.; de Santis, B.; Dekkers, S.; et al. Climate change and food safety: An emerging issue with special focus on Europe. Food Chem. Toxicol. 2009, 47, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M.; Lima, N. Further mycotoxin effects from climate change. Food Res. Int. 2011, 44, 2555–2566. [Google Scholar] [CrossRef] [Green Version]
- Wolinksa, J.; King, K.C. Environment can alter selection in host-parasite interactions. Trends Parasitol. 2009, 25, 236–244. [Google Scholar]
- Venâncio, A.; Paterson, R.R.M. The challenge of mycotoxins. In Food Safety—A Practical and Case Study Approach; McElhatton, A., Marshall, R.J., Eds.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Council for Agricultural Science and Technology. Mycotoxins: Risks in Plant, Animal, and Human Systems Council for Agricultural Science and Technology; Council for Agricultural Science and Technology: Ames, IA, USA, 2003. [Google Scholar]
- Botana, L.M.; Sainz, M.J. Climate Change and Mycotoxins; Walter de Gruyter GmbH: Berlin, Germany, 2015. [Google Scholar]
- Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M.; Lima, N.; Taniwaki, M.H. Coffee, mycotoxins and climate change. Food Res. Int. 2014, 61, 1–15. [Google Scholar] [CrossRef]
- Taniwaki, M.H.; Frisvad, J.C.; Ferranti, L.S.; de Souza Lopes, A.; Larsen, T.O.; Fungaro, M.H.P.; Iamanaka, B.T. Biodiversity of mycobiota throughout the Brazil nut supply chain: From rainforest to consumer. Food Microbiol. 2017, 61, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Wegulo, S.N. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins (Basel) 2012, 4, 1157–1180. [Google Scholar] [CrossRef] [PubMed]
- Sanchis, V.; Magan, N. Environmental condtions affecting mycotoxins. In Mycotoxins in Food: Detection and Control; Magan, N., Olsen, M., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2004. [Google Scholar]
- Moretti, A.; Logrieco, A.F. Climate change effects on the biodiversity of mycotoxigenic fungi and their mycotoxins in preharvest conditions in Europe. In Climate Change and Mycotoxins; Botana, M.J., Sainz, L.M., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2015. [Google Scholar]
- Miller, J.D.; Richardson, S.N. Mycotoxins in Canada: A Perspective for 2013. Available online: http://scabusa.org/pdfs/Mycotoxins-in-Canada_Sept-13.pdf (accessed on 14 February 2017).
- Medina, A.; Rodriguez, A.; Magan, N. Climate change and mycotoxigenic fungi: Impacts on mycotoxin production. Curr. Opin. Food Sci. 2015, 5, 99–104. [Google Scholar] [CrossRef]
- Ward, T.; Clear, R.M.; Rooney, A.P.; O’Donnell, K.; Gaba, D.; Patrick, S. An adaptive evolutionary shift in fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 2008, 45, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Paris, M.P.K.; Liu, Y.J.; Nahrer, K.; Binder, E.M. Climate change impacts on mycotoxin production. In Climate Change and Mycotoxins; Botana, M.J., Sainz, L.M., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2015. [Google Scholar]
- European Food Safety Authority. Modelling, predicting and mapping the emergence of aflatoxins in cereals in the EU due to climate change. Romania 2011, 1, 3. [Google Scholar]
- Van Egmond, H. Mycotoxins: Risks, regulations and European cooperation. J. Nat. Sci. 2013, 125, 7–20. [Google Scholar]
- Tirado, M.; Clarke, R.; Jaykus, L.A.; McQuatters-Gollop, A.; Frank, J.M. Climate change and food safety: A review. Food Res. Int. 2010, 43, 1745–1765. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Kozakiewicz, Z. Penicillium and Aspergillus mycotoxins—Diagnostic characters and quantitative data from commodities and cultures. Cereal Res. Commun. 1997, 25, 271–275. [Google Scholar]
- O’Brian, G.R.; Georgianna, D.R.; Wilkinson, J.R.; Yu, J.; Abbas, H.K.; Bhatnagar, D.; Clevland, T.E.; Nierman, W.; Payne, G.A. The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia 2007, 99, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Salvacion, A.R.; Ortiz, B.V.; Scully, B.T.; Wilson, D.M.; Hoogenboom, G.; Lee, R.D. Effect of rainfall and maximum temperature on corn aflatoxin contamination in the Southeast U.S. Clim. Inf. Manag. Risks 2011, 88, 41–50. [Google Scholar]
- European Food Safety Authority. Opinion of the scientific panel on contaminants in the food chain on a request from the Commission related to aflatoxin B1 as undesirable substance in animal feed. EFSA J. 2004, 39, 1–27. [Google Scholar]
- Food and Agriculture Organization. Climate Change: Implications for Food Safety. Available online: http://www.fao.org/docrep/010/i0195e/i0195e00.HTM (accessed on 14 February 2017).
- Giorni, P.; Battilani, P.; Magan, N. Effect of solute and matric potential on in vitro growth and sporulation of strains from a new population of Aspergillus flavus isolated in Italy. Fungal Ecol. 2008, 1, 102–106. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the Commission related to the potential increase of consumer health risk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived products. EFSA J. 2007, 446, 1–127. [Google Scholar]
- Magan, N.; Medina, A.; Aldred, D. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol. 2011, 60, 150–163. [Google Scholar] [CrossRef]
- Giorni, P.; Magan, N.; Pietri, A.; Bertuzzi, T.; Battilani, P. Studies on Aspergillus section Flavi isolated from maize in northern Italy. Int. J. Food Microbiol. 2007, 113, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Rodriguez, A.; Magan, N. Changes in environmental factors driven by climate change: Effects on the ecophysiology of mycotoxigenic fungi. In Climate Change and Mycotoxins; Botana, M.J., Sainz, L.M., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2015. [Google Scholar]
- Kos, J.; Mastilović, J.; Hajnal, E.J.; Saric, B. Natural occurrence of aflatoxins in maize harvested in Serbia during 2009–2012. Food Control. 2013, 34, 31–34. [Google Scholar] [CrossRef]
- Dobolyi, C.; Sebők, F.; Varga, J.; Kocsubé, S.; Szigeti, G.; Baranyi, N.; Szécsi, Á.; Tóth, B.; Varga, M.; Kriszt, B.; et al. Occurrence of aflatoxin producing Aspergillus flavus isolates in maize kernel in Hungary. Acta Aliment. Hung. 2013, 42, 451–459. [Google Scholar] [CrossRef]
- RASFF Portal. Available online: https://webgate.ec.europa.eu/rasff-window/portal/ (accessed on 14 February 2017).
- Baranyi, N.; Kocsubé, S.; Varga, J. Aflatoxins: Climate change and biodegradation. Curr. Opin. Food Sci. 2015, 5, 60–66. [Google Scholar] [CrossRef]
- Waalwijk, C.; van der Lee, T.; de Vries, I.; Hesselink, T.; Arts, J.; Kema, G.H.J. Synteny in toxigenic Fusarium species: The fumonisin gene cluster and the mating type region as examples. Eur. J. Plant Pathol. 2004, 110, 533–544. [Google Scholar] [CrossRef]
- Edwards, S.G. Fusarium mycotoxin content of UK organic and conventional oats. Food Addit. Contam. A 2009, 26, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Miedaner, T.; Cumagun, C.J.R.; Chakraborty, S. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. J. Phytopathol. 2008, 156, 129–139. [Google Scholar] [CrossRef]
- Logrieco, A.F.; Moretti, A. Between emerging and historical problems: An overview of the main toxigenic fungi and mycotoxin concerns in Europe. In Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade; Leslie, J.F., Bandyopadhyay, R., Visconti, A., Eds.; CABI: Wallingford, UK, 2008. [Google Scholar]
- Stępień, L.; Chelkowski, J. Fusarium head blight of wheat: Pathogenic species and their mycotoxins. World Mycotox J. 2008, 156, 129–139. [Google Scholar] [CrossRef]
- De Oliveira, T.B.; Gomes, E.; Rodrigues, A. Thermophilic fungi in the new age of fungal taxonomy. Extremophiles 2015, 19, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, K.; Nakayama, M.; Tomiyama, D.; Matsuzawa, T.; Imanishi, Y.; Ueda, S.; Yaguchi, T. Risk analysis and rapid detection of the genus Thermoascus, food spoilage fungi. Food Control 2014, 41, 7–12. [Google Scholar] [CrossRef]
- Cole, R.J.; Schweikert, M.A. Handbook of Secondary Fungal Metabolites; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Richardson, M.D.; Richardson, R. Aspergillus and Aspergillosis. In Molecualr Biology of Food and Water Borne Mycotoxigenic and Mycotic Fungi; Paterson, R.R.M., Lima, N., Eds.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Bouakline, A.; Lacroix, C.; Roux, N.; Gangneux, J.P.; Derouin, F. Fungal contamination of food in hematology units. J. Clin. Microbiol. 2000, 38, 4272–4273. [Google Scholar] [PubMed]
- Ariza-Heredia, E.J.; Kontoyiannis, D.P. Our recommendations for avoiding exposure to fungi outside the hospital for patients with haematological cancers. Mycoses 2014, 57, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Chilaka, C.A.; de Kock, S.; Phoku, J.Z.; Mwanza, M.; Egbuta, M.A.; Dutton, M.F. Fungal and mycotoxin contamination of South African commercial maize. J. Food Agric. Environ. 2012, 10, 296–303. [Google Scholar]
- El-Maghraby, M.A.; Abdel-Sater, O.M. Mycoflora and natural occurrence of mycotoxins in tobacco from cigarettes in Egypt. Zentralbl. Mikrobiol. 1993, 148, 253–264. [Google Scholar] [PubMed]
- Abdel-Hafez, S.M.; Saber, A.I. Mycoflora and mycotoxin of hazelnut (Corylus avellana L.) and walnut (Juglans regia L.) seeds in Egypt. Zentralbl. Mikrobiol. 1993, 148, 137–147. [Google Scholar] [CrossRef]
- Maheshwari, R.; Bharadwaj, G.; Bhat, M.K. Thermophilic fungi: Their physiology and enzymes. Microbiol. Mol. Biol. Rev. 2000, 64, 461–488. [Google Scholar] [CrossRef] [PubMed]
- Salar, R.K.; Aneja, K.R. Thermophilic fungi: Taxonomy and biogeography. J. Agric. Technol. 2007, 3, 77–107. [Google Scholar]
- Mouchacca, J. Thermophilic fungi: Biodiversity and taxonomic status. Cryptogam. Mycol. 1997, 18, 19–69. [Google Scholar]
- Zhang, X.; Guo, Y.; Ma, Y.; Chai, Y.; Li, Y. Biodegradation of patulin by a Byssochlamys nivea strain. Food Control. 2016, 64, 142–150. [Google Scholar] [CrossRef]
- Samson, R.A.; Houbraken, J.; Varga, J.; Frisvad, J.C. Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Persoonia Mol. Phylogeny Evol. Fungi 2009, 22, 14–27. [Google Scholar] [CrossRef] [PubMed]
Fungus | Synonyms | Temperature Opt °C | Temperature Max °C | Mycotoxin/Secondary Mycotoxins or Potential Mycotoxins | Comment |
---|---|---|---|---|---|
Aspergillus flavus | 35 | 42 | Aflatoxins | Common on many crops and foods | |
A. fumigatus | 37 | 65 | Gliotoxin, fumigatins, fumigaclavines, fumiquinazolines, fumitremorgins, verruculogens, helvolic acids | ||
Byssochlamys verrucosa | 20–53 | Contains patulin gene but compound not detected [49] | |||
B. nivea | 46 at least [60] | Patulin | Well known patulin producer | ||
Canariomyces thermophile | 45 | ||||
Chaetomium mesopotamicum | 45 | 52 | |||
C. thermophile | C. thermophilum, C. thermophilium | 45–55 | 58–61 | Decomposing wheat straw, mushroom compost, vegetable detritus | |
Coonemeria aegyptiaca | Thermoascus aegyptiacus, Paecilomyces aegyptiaca | 40 | 55 | ||
Co. crustacea | Thermoascus crustaceus, Dactylomyces crustaceus, Paecilomyces crustaceus | 40 | 60 | Bagasse | |
Co. verrucosa | Thermoascus crustaceus | 30–40 | 55 | ||
Dactylomyces thermophilus | Thermoascus thermophilus, Thermoascus aurantiacus (misapplied name) 40–45 | 40–45 | Birds‘ nest, wood and bark of Pinus, plant debris | ||
Malbranchea cinnamomea | Trichothecium cinnamomeum, Thermoidium sulfureum, Malbranchea pulchella var. sulfurea | 45 | 57 | Composting heaps, wheat straw compost, stacked tobacco leaves, peanut kernels, hen-house litter, silage | |
Melanocarpus albomyces | Myriococcum albomyces, Thielavia albomyces | 45 | 57 | Mushroom compost. decomposing wheat straw, grass compost. | |
M. thermophiles | Thielavia minuta var. thermophila | 35 | 50 | ||
Myceliophthora fergusii [48] | Thielavia thermophila, Myceliophthora fergusii, Chrysosporium fergusii | 50 | 60 | Composts | |
Myc. Hinnulea | 40–45 | 50 | |||
Myc. thermophila | Sporotrichum thermophilum/thermophile, Chrysosporium thermophilum, Myceliophthora indica, Corynascus heterothallicus | 45–50 | 55 | Estatin A and B | Wood pulp |
Myriococcum thermophilum | 45 | 53 | Horse manure-wheat straw compost | ||
Paecilomyces saturatus | 50 | 55 | Patulin | This species forms a component of the P. variotii complex [61]. Ubiquitous contaminants of foods and raw materials. | |
Rasamsonia byssochlamydioides [48] | Paecilomyces byssochlamydioides | 40–45 | 50 | ||
R. emersonii [48] | Geosmithia emersonii; Talaromyces duponti and Penicillium duponti (misapplied names) | 40–45 | 55 | Compost, piles of wood chips, peat, sugarcane bagasse, palm oil kernels, | |
Rhizomucor miehei | Mucor miehei | 35–45 | 57 | Hay, stored barley, compost. | |
Rh. pusillus | Mucor pusillus | 35–45 | 55 | Mainly on composting and fermenting substrates like compost, wheat straw, hay, seeds of cacao, barley, oat, maize and wheat, groundnuts, pecans, | |
Scytalidium thermophilum | Torula thermophila, Humicola grisea var. thermoidea, Humicola insolens | 40 | 58 | Mushroom compost, wood chips. | |
Stilbella thermophila | 35–50 | 55 | Mushroom compost, | ||
Talaromyces duponti [48] | Penicillium duponti | 45–50 | 60 | 1. Talathermophilins: 2. Thermolides | Guayule shrub, fermented straw, compost, |
Thermoascus aurantiacus | 49–52 | 61 | Contains patulin gene but compound not detected in two growth media [49]. | Agricultural products, including maize stored in sub-Sahara Africa and olive and olive cake in Morocco and in food-related environments spoilage in various processed tea and fruit juice. Heated hay, peat, cacao husks, mushroom compost, stored grains, self-heated wood chips, chaff, tobacco, sawdust. | |
Thermomyces ibadanensis | 42–47 | 61 | Oil palm kernel stacks Compost | ||
Thermomyces lanuginosus | Humicola lanuginosa | 45–50 | 60 | Thermolides, bacterial-like hybrid macrolactones | Compost. moist oats, cereal grains, mushroom compost, hay, leaf mold peat, garden compost, various plant substances. |
Thermomyces stellatus | Humicola stellata | 40 | 50 | Moldy hay and soil | |
Thielavia australiensis | 35–40 | 50 | |||
Thielavia pingtungia | 40 | 50 | Sugarcane field | ||
Thielavia terrestris | Allescheria terrestris, Acremonium alabamensis (anamorph) | 40–45 | 52 | Needles of Pïnus taeda. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paterson, R.R.M.; Lima, N. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming. Int. J. Environ. Res. Public Health 2017, 14, 199. https://doi.org/10.3390/ijerph14020199
Paterson RRM, Lima N. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming. International Journal of Environmental Research and Public Health. 2017; 14(2):199. https://doi.org/10.3390/ijerph14020199
Chicago/Turabian StylePaterson, Robert Russell M., and Nelson Lima. 2017. "Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming" International Journal of Environmental Research and Public Health 14, no. 2: 199. https://doi.org/10.3390/ijerph14020199
APA StylePaterson, R. R. M., & Lima, N. (2017). Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming. International Journal of Environmental Research and Public Health, 14(2), 199. https://doi.org/10.3390/ijerph14020199