Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Laboratory Experiments
2.3. Sediment Disturbance through Mechanical Agitation
2.4. Sediment Disturbance through Increased Flow
2.5. Sediment Disturbance Experiments in the Field
2.6. Flow Conditions Necessary for Entrainment and Suspension of Sand in the Apies River
2.6.1. Entrainment
2.6.2. Suspension
2.7. Statistical Analysis
3. Results
3.1. Sediment Disturbance (Mechanical)
3.2. Sediments Disturbance (Increased Flow)
3.3. Field Sediment Disturbance Experiments
3.4. Correlation between E. coli and Turbidity in Sediment Disturbance Experiments
3.5. Estimation of Entrainment and Suspension for the Apies River
4. Discussion
4.1. Laboratory Sediments Disturbance Experiments
4.2. Field Sediment Disturbance Experiments
4.3. Correlation between E. coli and Turbidity during the Resuspension Experiments
4.4. Estimation of Entrainment and Suspension for the Apies River
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jamieson, R.C.; Joy, D.M.; Lee, H.; Kostaschuk, R.; Gordon, R.J. Resuspension of sediment-associated Escherichia coli in a natural stream. J. Environ. Qual. 2005, 34, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Badgley, B.D.; Thomas, F.I.M.; Harwood, V.J. Quantifying environmental reservoirs of fecal indicator bacteria associated with sediment and submerged aquatic vegetation. Environ. Microbiol. 2011, 13, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, L.; Shelton, D.; Pachepsky, Y.; Blaustein, R.; Santin-Duran, M. Persistence of Escherichia coli introduced into streambed sediments with goose, deer and bovine animal waste. Lett. Appl. Microbiol. 2012, 55, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Luna, G.M.; Vignaroli, C.; Rinaldi, C.; Pusceddu, A.; Nicoletti, L.; Gabellini, M.; Danovaro, R.; Biavasco, F. Extraintestinal Escherichia coli carrying virulence genes in coastal marine sediments. Appl. Environ. Microbiol. 2010, 76, 5659–5668. [Google Scholar] [CrossRef] [PubMed]
- Pote, J.; Haller, L.; Kottelat, R.; Sastre, V. Persistence and growth of faecal culturable bacterial indicators in water column and sediments of Vidy Bay, Lake Geneva, Switzerland. J. Environ. Sci. 2009, 21, 62–69. [Google Scholar] [CrossRef]
- Droppo, I.G.; Liss, S.N.; Williams, D.; Nelson, T.; Jaskot, C.; Trapp, B. Dynamic existence of waterborne pathogens within river sediment compartments. Implications for Water Quality Regulatory Affairs. Environ. Sci. Technol. 2009, 43, 1737–1743. [Google Scholar] [CrossRef] [PubMed]
- Droppo, I.G. Rethinking what constitutes suspended sediment. Hydrol. Process. 2001, 15, 1551–1564. [Google Scholar] [CrossRef]
- Drummond, J.D.; Davies-Colley, R.J.; Stott, R.; Sukias, J.P.; Nagels, J.W.; Sharp, A.; Packman, A.I. Retention and remobilization dynamics of fine particles and microorganisms in pastoral streams. Water Res. 2014, 66, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Drummond, J.D.; Aubeneau, A.F.; Packman, A.I. Stochastic modeling of fine particulate organic carbon dynamics in rivers. Water Resour. Res. 2014, 50, 4341–4356. [Google Scholar] [CrossRef]
- Drummond, J.D.; Davies-Colley, R.J.; Stott, R.; Sukias, J.P.; Nagels, J.W.; Sharp, A.; Packman, A.I. Microbial Transport, Retention, and Inactivation in Streams: A Combined Experimental and Stochastic Modeling Approach. Environ. Sci. Technol. 2015, 49, 7825–7833. [Google Scholar] [CrossRef] [PubMed]
- Marshall, K.C. Adsorption of microorganisms to soils and sediments. In Adsorption of Microorganisms to Surfaces; Bitton, G., Marshall, K.C., Eds.; Wiley: New York, NY, USA, 1980; pp. 317–330. [Google Scholar]
- Phadnis, H.S.; Santamarina, J.C. Bacteria in sediments: Pore size effects. Géotech. Lett. 2011, 1, 91–93. [Google Scholar] [CrossRef]
- Rebata-Landa, V.; Santamarina, J.C. Mechanical limits to microbial activity in deep sediments. Geochem. Geophys. Geosyst. 2006, 7, Q11006. [Google Scholar] [CrossRef]
- Goda, L.; Kalocsa, B.; Tamás, E.A. River bed erosion on the Hungarian section of the Danube. J. Environ. Sci. Sustain. Soc. 2007, 1, 47–54. [Google Scholar] [CrossRef]
- Konz, M.; Chiari, M. Sediment transport modelling in a distributed physically based hydrological catchment model. Hydrol. Earth Syst. Sci. Discuss. 2011, 15, 2821–2837. [Google Scholar] [CrossRef]
- Tealdi, S.; Camporeale, C.; Ridolfi, L. Long-term morphological river response to hydrological changes. Adv. Water Resour. 2011, 34, 1643–1655. [Google Scholar] [CrossRef]
- Chang, Y.; Scotti, A. Entrainment and suspension of sediments into a turbulent flow over ripples. J. Turbul. 2003, 4, 37–41. [Google Scholar] [CrossRef]
- Nino, Y.; Lopez, F.; Garcia, M. Threshold for particle entrainment into suspension. Sedimentology 2003, 50, 247–263. [Google Scholar] [CrossRef]
- Bose, S.K.; Dey, S. Entrainment probability and threshold of sediment suspension: Exponential-based approach. J. Hydraul. Eng. 2013, 139, 1099–1106. [Google Scholar] [CrossRef]
- Cervantes, A.A. Resuspension of E. coli under Controlled Flows and Stream Bottom Sediments. Master’s Thesis, IOWA State University, Ames, IA, USA, 2012. [Google Scholar]
- Pachepsky, Y.A.; Shelton, D.R. Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1067–1110. [Google Scholar] [CrossRef]
- Coulliette, A.D.; Noble, R.T. Impacts of rainfall on the water quality of the Newport River Estuary (Eastern North Carolina, USA). J. Water Health 2008, 6, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Mcdaniel, R.L.; Soupir, M.L.; Tuttle, R.B.; Cervantes, A.E. Release, dispersion and resuspension of Escherichia coli from direct fecal deposits under controlled flows. J. Am. Water Resour. Assoc. 2013, 49, 319–327. [Google Scholar] [CrossRef]
- Walters, E.; Schwarzwälder, K.; Rutschmann, P.; Müller, E.; Horn, H. Influence of resuspension on the fate of fecal indicator bacteria in large-scale flumes mimicking an oligotrophic river. Water Res. 2014, 48, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Rivera, I.N.G.; Lipp, E.K.; Gil, A.; Choopun, N.; Huq, A.; Colwell, R.R. Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems. Environ. Microbiol. 2003, 5, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Baffone, W.; Tarsi, R.; Pane, L.; Campana, R.; Repetto, B.; Mariottini, G.L.; Pruzzo, C. Detection of free-living and plankton-bound vibrios in coastal waters of the Adriatic Sea (Italy) and study of their pathogenicity-associated properties. Environ. Microbiol. 2006, 8, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.B.; Epstein, P.R.; Lipp, E.K.; Sherman, B.H.; Bernard, S.M.; Patz, J.A. Climate variability and change in the United States: Potential impacts on water- and foodborne diseases caused by microbiologic agents. Environ. Health Perspect. 2001, 109, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Lipp, E.K.; Huq, A.; Colwell, R.R. Effects of global climate on infectious disease: The cholera model. Clin. Microbiol. Rev. 2002, 15, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.I.; Louis, V.R.; Rivera, I.N.G.; Lipp, E.; Huq, A.; Lanata, C.F.; Taylor, D.N.; Russek-Cohen, E.; Choopun, N.; Sack, R.B.; et al. Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environ. Microbiol. 2004, 6, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Statistics South Africa. Statistical Release P0302; Mid-Year Population Estimates 2014; Statistics South Africa: Pretoria, South Africa, 2014. Available online: https://statssa.gov.za/publications/P0302/P03022014.pdf (accessed on 7 March 2015).
- Obi, C.L.; Potgieter, N.; Bessong, P.O.; Matsaung, G. Assessment of the microbial quality of river water sources in rural Venda communities in South Africa. Water SA 2002, 28, 287–292. [Google Scholar] [CrossRef]
- Gemmell, M.E.; Schmidt, S. Is the microbiological quality of the Msunduzi River (KwaZulu-Natal, South Africa) suitable for domestic, recreational, and agricultural purposes? Environ. Sci. Pollut. Res. 2013, 20, 6551–6562. [Google Scholar] [CrossRef] [PubMed]
- Jackson, V.A.; Paulse, A.N.; Odendaal, J.P.; Khan, W. Investigation into the metal contamination of the Plankenburg and Diep Rivers, Western Cape, South Africa. Water SA 2009, 35, 289–300. [Google Scholar] [CrossRef]
- Paulse, A.; Jackson, V.; Khan, S.; Khan, W. Isolation and identification of bacterial pollutants from the Berg and Plankenburg Rivers in the Western Cape, South Africa. Water SA 2012, 38, 819–824. [Google Scholar] [CrossRef]
- Teklehaimanot, G.Z.; Coetzee, M.A.A.; Momba, M.N.B. Faecal pollution loads in the wastewater effluents and receiving water bodies: A potential threat to the health of Sedibeng and Soshanguve communities, South Africa. Environ. Sci. Pollut. Res. 2014, 21, 9589–9603. [Google Scholar] [CrossRef] [PubMed]
- Abia, A.L.K.; Ubomba-Jaswa, E.; Momba, M.N.B. Impact of seasonal variation on Escherichia coli concentrations in the riverbed sediments in the Apies River, South Africa. Sci. Total Environ. 2015, 537, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Abia, A.L.K.; Ubomba-Jaswa, E.; Momba, M.N.B. Prevalence of pathogenic microorganisms and their correlation with the abundance of indicator organisms in riverbed sediments. Int. J. Environ. Sci. Technol. 2016, 13, 2905–2916. [Google Scholar] [CrossRef]
- Abia, A.L.K.; Ubomba-Jaswa, E.; Momba, M.N.B. Competitive Survival of Escherichia coli, Vibrio cholerae, Salmonella typhimurium and Shigella dysenteriae in Riverbed Sediments. Microb. Ecol. 2016, 72, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Department of Environmental Affairs South African. Guidelines for recreational use. sumarry. In Water Quality Guidelines for Coastal Marine Waters; Department of Environmental Affairs South African: Pretoria, South African, 2012. [Google Scholar]
- Abia, A.L.K.; Ubomba-Jaswa, E.; du Preez, M.; Momba, M.N.B. Riverbed sediments in the Apies River, South Africa: Recommending the use of both Clostridium perfringens and Escherichia coli as indicators of faecal pollution. J. Soils Sediments 2015, 15, 2412–2424. [Google Scholar] [CrossRef]
- Shelton, D.R.; Pachepsky, Y.A.; Kiefer, L.A.; Blaustein, R.A.; McCarty, G.W.; Dao, T.H. Response of coliform populations in streambed sediment and water column to changes in nutrient concentrations in water. Water Res. 2014, 59, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Abia, L.K.A.; Ubomba-Jaswa, E.; Ssemakalu, C.C.; Momba, M.N.B. Development of a rapid approach for the enumeration of Escherichia coli in riverbed sediment: Case study, the Apies River, South Africa. J. Soils Sediments 2015, 15, 2425–2432. [Google Scholar] [CrossRef]
- IDEXX Laboratories Inc. Colilert Test Kit Product Insert/Most Probable Number (MPN) Table; Westbrook: Maine, ME, USA, 2013. [Google Scholar]
- Orear, R.W.; Dalman, N.E. The persistence of riverbed bacterial stores and their disruption by human recreation. In Proceedings of the 2011 Georgia Water Resources Conference, Athens, GA, USA, 11–13 April 2011.
- Wu, F.-C.; Chou, Y.-J. Rolling and lifting probabilities for sediment entrainment. J. Hydraul. Eng. 2003, 129, 110–119. [Google Scholar] [CrossRef]
- Vanoni, V. Sedimentation Engineering, Manual of Practice No. 54; Vanini, V., Ed.; American Society of Civil Engineers: New York, NY, USA, 1975. [Google Scholar]
- Bagnold, R.A. An Approach to the Sediment Transport Problem from General Physics; US Government Printing Office: Washington, DC, USA, 1966; p. 422. Available online: https://books.google.co.za/books?hl=en&lr=&id=G096igXqR74C&oi=fnd&pg=PA19&dq=An+Approach+to+the+Sediment+Transport+Problem+from+General+Physics&ots=C6EcJwVB-m&sig=3ULGyz5XQQxcoz8sVoOvNtM3m2M (accessed on 13 August 2015).
- Van Rijn, L.C. Sediment transport, part II: Suspended load transport. J. Hydraul. Eng. 1984, 110, 1613–1641. [Google Scholar] [CrossRef]
- Graf, W.H. Hydraulics of Sediment Transport; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
- Shah, A.H.; Abdelzaher, A.; Phillips, M.; Hernandez, R.; Solo-Gabriele, H.M.; Kish, J.; Scorzetti, G.; Fell, J.W.; Diaz, M.R.; Scott, T.M.; et al. Indicator microbes correlate with pathogenic bacteria, yeasts and helminthes in sand at a subtropical recreational beach site. J. Appl. Microbiol. 2011, 110, 1571–1583. [Google Scholar] [CrossRef] [PubMed]
- Beversdorf, L.J.; Bornstein-Forst, S.M.; McLellan, S.L. The potential for beach sand to serve as a reservoir for Escherichia coli and the physical influences on cell die-off. J. Appl. Microbiol. 2007, 102, 1372–1381. [Google Scholar] [CrossRef] [PubMed]
- Heaney, C.D.; Sams, E.; Wing, S.; Marshall, S.; Brenner, K.; Dufour, A.P.; Wade, T.J. Contact with beach sand among beachgoers and risk of illness. Am. J. Epidemiol. 2009, 170, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Sabino, R.; Rodrigues, R.; Costa, I.; Carneiro, C.; Cunha, M.; Duarte, A.; Faria, N.; Ferreira, F.C.; Gargaté, M.J.; Júlio, C.; et al. Routine screening of harmful microorganisms in beach sands: Implications to public health. Sci. Total Environ. 2014, 472, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.; Figueira, C.; Aguiar, N.; Vasconcelos, R.; Vasconcelos, S.; Calado, G.; Brandão, J.; Prada, S. Microbiological and mycological beach sand quality in a volcanic environment: Madeira archipelago, Portugal. Sci. Total Environ. 2013, 461–462, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Searcy, K.E.; Packman, A.I.; Atwill, E.R.; Harter, T. Association of Cryptosporidium parvum with suspended particles: Impact on oocyst sedimentation. Appl. Environ. Microbiol. 2005, 71, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Characklis, G.W.; Dilts, M.J.; Simmons, O.D.; Likirdopulos, C.A.; Krometis, L.-A.H.; Sobsey, M.D. Microbial partitioning to settleable particles in stormwater. Water Res. 2005, 39, 1773–1782. [Google Scholar] [CrossRef] [PubMed]
- Droppo, I. Structural controls on floc strength and transport. Can. J. Civ. Eng. 2004, 31, 569–578. [Google Scholar] [CrossRef]
- Sengupta, M.E.; Andersen, T.J.; Dalsgaard, A.; Olsen, A.; Thamsborg, S.M. Resuspension and settling of helminth eggs in water: Interactions with cohesive sediments. Water Res. 2012, 46, 3903–3912. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.; Emelko, M.B.; Droppo, I.G.; Silins, U. Biostabilization and erodibility of cohesive sediment deposits in wildfire-affected streams. Water Res. 2010, 45, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Garzio-Hadzick, A.; Shelton, D.R.; Hill, R.L.; Pachepsky, Y.A.; Guber, A.K.; Rowland, R. Survival of manure-borne E. coli in streambed sediment: Effects of temperature and sediment properties. Water Res. 2010, 44, 2753–2762. [Google Scholar] [CrossRef] [PubMed]
- Foppen, J.W.A.; Schijven, J.F. Evaluation of data from the literature on the transport and survival of Escherichia coli and thermotolerant coliforms in aquifers under saturated conditions. Water Res. 2006, 40, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Pachepsky, Y.A.; Kim, J.H.; Guber, A.K.; Shelton, D.R.; Rowland, R. Release of Escherichia coli from the bottom sediment in a first-order creek: Experiment and reach-specific modeling. J. Hydrol. 2010, 391, 322–332. [Google Scholar] [CrossRef]
- Devane, M.L.; Moriarty, E.M.; Wood, D.; Webster-Brown, J.; Gilpin, B.J. The impact of major earthquakes and subsequent sewage discharges on the microbial quality of water and sediments in an urban river. Sci. Total Environ. 2014, 485–486, 666–680. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.K.; Gottschall, N.; Wilkes, G.; Grégoire, D.S.; Topp, E.; Pintar, K.D.M.; Sunohara, M.; Marti, R.; Lapen, D.R. Rainfall-induced runoff from exposed streambed sediments: An important source of water pollution. J. Environ. Qual. 2015, 44, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Steets, B.; Holden, P. A mechanistic model of runoff-associated fecal coliform fate and transport through a coastal lagoon. Water Res. 2003, 37, 589–608. [Google Scholar] [CrossRef]
- Dunne, W.M. Bacterial adhesion: Seen any good biofilms lately? Clin. Microbiol. Rev. 2002, 15, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Tuson, H.H.; Weibel, D.B. Bacteria–surface interactions. Soft Matter 2013, 9, 4368. [Google Scholar] [CrossRef] [PubMed]
- Craig, D.L.; Fallowfield, H.J.; Cromar, N.J. Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. J. Appl. Microbiol. 2004, 96, 922–930. [Google Scholar] [CrossRef] [PubMed]
- An, Y.-J.; Kampbell, D.H.; Peter Breidenbach, G. Escherichia coli and total coliforms in water and sediments at lake marinas. Environ. Pollut. 2002, 120, 771–778. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Nagels, J.W.; Smith, R.A.; Young, R.G.; Phillips, C.J. Water quality impact of a dairy cow herd crossing a stream. N. Z. J. Mar. Freshw. Res. 2004, 38, 569–576. [Google Scholar] [CrossRef]
- McDaniel, R.L.; Soupir, M.L. Relationships between manure particle and E. coli transport from direct fecal deposits under steady-state flows. Water Air Soil Pollut. 2013, 224, 1444. [Google Scholar] [CrossRef]
- Barringer, E. Impact of Storm Events on Water Quality of a Karst Stream and Implications for Public Health Protection at a Historic Landmark. Honors College Capstone Experience/Thesis Projects. 2013. Available online: http://digitalcommons.wku.edu/stu_hon_theses/416 (accessed on 3 December 2015).
- Huey, G.M.; Meyer, M.L. Turbidity as an indicator of water quality in diverse watersheds of the upper Pecos River Basin. Water 2010, 2, 273–284. [Google Scholar] [CrossRef]
- Muirhead, R.W.; Davies-Colley, R.J.; Donnison, A.M.; Nagels, J.W. Faecal bacteria yields in artificial flood events: Quantifying in-stream stores. Water Res. 2004, 38, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- George, I.; Anzil, A.; Servais, P. Quantification of fecal coliform inputs to aquatic systems through soil leaching. Water Res. 2004, 38, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Tornevi, A.; Bergstedt, O.; Forsberg, B. Precipitation effects on microbial pollution in a river: Lag structures and seasonal effect modification. PLoS ONE 2014, 9, e98546. [Google Scholar] [CrossRef] [PubMed]
- Kuusisto, E. Hydrological measurements. In Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes; Bartram, J., Balance, R., Eds.; UNEP/WHO Publication: New York, NY, USA, 1996; pp. 291–300. [Google Scholar]
Experiment | AP5 (High Clay) | AP6 (High Silt) | AP7 (High Sand) | ||||||
---|---|---|---|---|---|---|---|---|---|
Lab Manual | R1 | R2 | R3 | R1 | R2 | R3 | R1 | R2 | R3 |
R2 | 0.867 | 0.840 | 0.694 | 0.894 | 0.885 | 0.888 | 0.995 | 0.956 | 0.994 |
p-value | 0.022 * | 0.029 * | 0.080 | 0.015 * | 0.017 * | 0.017 * | 0.000 * | 0.004 * | 0.000 * |
Lab Flow | R1 | R2 | R1 | R2 | R1 | R2 | |||
R2 | 0.748 | 0.256 | 0.793 | 0.942 | 0.893 | 0.922 | |||
p-value | 0.058 | 0.385 | 0.043 * | 0.006 * | 0.015 * | 0.009 * | |||
Field | AP6 | AP9 | |||||||
R2 | 0.383 | 0.673 | |||||||
p-value | 0.102 | 0.013 * |
Site | Median Sand Size (mm) | Channel Gradient | Width (m) | Depth (m) | Bed Shear Stress (N/m2) | Near-Bed Flow Velocity (m/s) * |
---|---|---|---|---|---|---|
AP1 | 0.46 | 0.0040 | 12.0 | 0.45 | 18 | 0.60 |
AP2 | 0.43 | 0.0040 | 11.5 | 0.45 | 18 | 0.20 |
AP6 | 0.18 | 0.0030 | 14.4 | 0.78 | 23 | 0.30 |
AP7 | 0.5 | 0.0020 | 23.5 | 0.28 | 5.5 | 0.40 |
AP8 | 0.52 | 0.0020 | 11.7 | 0.27 | 5.3 | 0.60 |
AP9 | 0.25 | 0.0020 | 14.5 | 0.25 | 4.9 | 0.30 |
Site | Mobilisation | Suspension | ||||||
---|---|---|---|---|---|---|---|---|
Depth (m) | Velocity (m/s) | Bed Shear Stress (N/m2) | Discharge (m3/s) | Depth (m) | Velocity (m/s) | Bed Shear Stress (N/m2) | Discharge (m3/s) | |
AP1 | 0.006 | 0.11 | 0.25 | 0.008 | 0.15 | 0.90 | 5.96 | 1.64 |
AP2 | 0.006 | 0.10 | 0.24 | 0.007 | 0.15 | 0.90 | 5.96 | 1.57 |
AP6 | 0.006 | 0.09 | 0.17 | 0.008 | 0.02 | 0.18 | 0.50 | 0.04 |
AP7 | 0.013 | 0.12 | 0.26 | 0.004 | 0.30 | 1.01 | 5.96 | 7.23 |
AP8 | 0.014 | 0.13 | 0.27 | 0.021 | 0.30 | 1.01 | 5.96 | 3.60 |
AP9 | 0.009 | 0.10 | 0.18 | 0.013 | 0.30 | 1.01 | 5.96 | 4.46 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abia, A.L.K.; James, C.; Ubomba-Jaswa, E.; Benteke Momba, M.N. Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries. Int. J. Environ. Res. Public Health 2017, 14, 306. https://doi.org/10.3390/ijerph14030306
Abia ALK, James C, Ubomba-Jaswa E, Benteke Momba MN. Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries. International Journal of Environmental Research and Public Health. 2017; 14(3):306. https://doi.org/10.3390/ijerph14030306
Chicago/Turabian StyleAbia, Akebe Luther King, Chris James, Eunice Ubomba-Jaswa, and Maggy Ndombo Benteke Momba. 2017. "Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries" International Journal of Environmental Research and Public Health 14, no. 3: 306. https://doi.org/10.3390/ijerph14030306
APA StyleAbia, A. L. K., James, C., Ubomba-Jaswa, E., & Benteke Momba, M. N. (2017). Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries. International Journal of Environmental Research and Public Health, 14(3), 306. https://doi.org/10.3390/ijerph14030306