Work Characteristics Associated with Physical Functioning in Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Assessment
2.3. Outcome Assessment
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Factor Analysis
3.3. Outcome Analysis
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ortman, J.M.; Velkoff, V.A.; Hogan, H. An Aging Nation: The Older Population in the United States; U.S. Department of Commerce: Washington, DC, USA, 2014.
- Blackwell, D.L.; Lucas, J.W.; Clarke, T.C. Summary health statistics for U.S. Adults: National Health Interview Survey, 2012. Vital Health Stat. 2014, 10, 1–161. [Google Scholar]
- Verbrugge, L.M.; Jette, A.M. The disablement process. Soc. Sci. Med. 1994, 38, 1–14. [Google Scholar] [CrossRef]
- Long, J.S.; Pavalko, E.K. The life course of activity limitations: Exploring indicators of functional limitations over time. J. Aging Health 2004, 16, 490–516. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Fried, L.P.; Salive, M.E. Disability as a public health outcome in the aging population. Annu. Rev. Public Health 1996, 17, 25–46. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.; Ochsmann, E.; Kraus, T.; Lang, J.W.B. Psychosocial work stressors as antecedents of musculoskeletal problems: A systematic review and meta-analysis of stability-adjusted longitudinal studies. Soc. Sci. Med. 2012, 75, 1163–1174. [Google Scholar] [CrossRef] [PubMed]
- Karasek, R.A. Job Demands, Job Decision Latitude, and Mental Strain: Implications for Job Redesign. Adm. Sci. Q. 1979, 24, 285–308. [Google Scholar] [CrossRef]
- Siegrist, J. Adverse health effects of high-effort/low-reward conditions. J. Occup. Health Psychol. 1996, 1, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.V.; Hall, E.M. Job strain, work place social support, and cardiovascular disease: A cross-sectional study of a random sample of the Swedish working population. Am. J. Public Health 1988, 78, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Kasl, S.V. Measuring Job Stressors and Studying the Health Impact of the Work Environment: An Epidemiologic Commentary. J. Occup. Health Psychol. 1998, 3, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Karasek, R.; Baker, D.; Marxer, F.; Ahlbom, A.; Theorell, T. Job decision latitude, job demands, and cardiovascular disease: A prospective study of Swedish men. Am. J. Public Health 1981, 71, 694–705. [Google Scholar] [CrossRef] [PubMed]
- Karasek, R.A.; Theorell, T.; Schwartz, J.E.; Schnall, P.L.; Pieper, C.F.; Michela, J.L. Job characteristics in relation to the prevalence of myocardial infarction in the US Health Examination Survey (HES) and the Health and Nutrition Examination Survey (HANES). Am. J. Public Health 1988, 78, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M.G.; Smith, G.D.; Stansfeld, S.; Patel, C.; North, F.; Head, J.; Whtie, I.; Brunner, E.; Feeney, A. Health inequalities among British civil servants: The Whitehall II study. Lancet 1991, 337, 1387–1393. [Google Scholar] [CrossRef]
- Kivimäki, M.; Nyberg, S.T.; Batty, G.D.; Fransson, E.I.; Heikkila, K.; Alfredsson, L.; Bjorner, J.B.; Borritz, M.; Burr, H.; Casini, A.; et al. Job strain as a risk factor for coronary heart disease: A collaborative meta-analysis of individual participant data. Lancet 2012, 380, 1491–1497. [Google Scholar] [CrossRef]
- Babu, G.R.; Jotheeswaran, A.T.; Mahapatra, T.; Mahapatra, S.; Kumar, A.; Detels, R.; Pearce, N. Is hypertension associated with job strain? A meta-analysis of observational studies. Occup. Environ. Med. 2014, 71, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Bonde, J.P.E. Psychosocial factors at work and risk of depression: A systematic review of the epidemiological evidence. Occup. Environ. Med. 2008, 65, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Burton, J. WHO Healthy Workplace Framework and Model: Background and Supporting Literature and Practices; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Burke, R.J. Work Stress and Women’s Health: Occupational Status Effects. J. Bus. Ethics 2002, 37, 91–102. [Google Scholar] [CrossRef]
- MacDonald, M.; Phipps, S.; Lethbridge, L. Taking Its Toll: The Influence of Paid and Unpaid Work on Women’s Well-Being. Fem. Econ. 2005, 11, 63–94. [Google Scholar] [CrossRef]
- Sundin, L.; Hochwälder, J.; Bildt, C.; Lisspers, J. The relationship between different work-related sources of social support and burnout among registered and assistant nurses in Sweden: A questionnaire survey. Int. J. Nurs. Stud. 2007, 44, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Kawachi, I.; Coakley, E.H.; Schwartz, J.; Colditz, G. Association between psychosocial work characteristics and health functioning in American women: Prospective study. Br. Med. J. 2000, 320, 1432–1436. [Google Scholar] [CrossRef]
- Bureau of Labor Statistics. Women in the Labor Force: A Databook; Bureau of Labor Statistics: Washington, DC, USA, 2014; Volume 75.
- Mosisa, A.; Hippie, S. Trends in labor force participation in the United States. Mon. Labor Rev. 2006, 129, 35–57. [Google Scholar]
- Caplow, T.; Hicks, L.; Wattenburg, B.J. Chapter 2: Work. In The First Measured Century: An Illustrated Guide to Trends in America, 1900–2000; Linger, J., Ed.; AEI Press: Washington, DC, USA, 2001; pp. 24–49. [Google Scholar]
- Stansfeld, S.; Bosma, H.; Hemingway, H.; Marmot, M. Psychosocial work characteristics and social support as predictors of SF-36 health functioning: The Whitehall II study. Psychosom. Med. 1998, 60, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Leino, P.I.; Hänninen, V. Danish National Research Centre for the Working Environment. Norwegian National Institute of Occupational Health Finnish. Institute of Occupational Health. Psychosocial factors at work in relation to back and limb disorders. Scand. J. Work Environ. Health 1995, 21, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Toossi, M. A century of change: The U.S. labor force, 1950–2050. Mon. Labor Rev. 2002, 15–28. [Google Scholar]
- Toossi, M. Labor force projections to 2024: The labor force is growing, but slowly. Mon. Labor Rev. 2015, 1–36. [Google Scholar] [CrossRef]
- Karasek, R.; Brisson, C.; Kawakami, N.; Houtman, I.; Bongers, P.; Amick, B. The Job Content Questionnaire (JCQ): An instrument for internationally comparative assessments of psychosocial job characteristics. J. Occup. Health Psychol. 1998, 3, 322–355. [Google Scholar] [CrossRef] [PubMed]
- Kuh, D.; Ben-Shlomo, Y.; Lynch, J.; Hallqvist, J.; Power, C. Life course epidemiology. J. Epidemiol. Community Health 2003, 57, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Hallqvist, J.; Lynch, J.; Bartley, M.; Lang, T.; Blane, D. Can we disentangle life course processes of accumulation, critical period and social mobility? An analysis of disadvantaged socio-economic positions and myocardial infarction in the Stockholm Heart Epidemiology Program. Soc. Sci. Med. 2004, 58, 1555–1562. [Google Scholar] [CrossRef]
- Ploubidis, G.B.; Benova, L.; Grundy, E.; Laydon, D.; Destavola, B. Lifelong Socio Economic Position and biomarkers of later life health: Testing the contribution of competing hypotheses. Soc. Sci. Med. 2014, 119, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Corna, L.M. A life course perspective on socioeconomic inequalities in health: A critical review of conceptual frameworks. Adv. Life Course Res. 2013, 18, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Wahrendorf, M.; Blane, D.; Bartley, M.; Dragano, N.; Siegrist, J. Working conditions in mid-life and mental health in older ages. Adv. Life Course Res. 2013, 18, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.D.; White, E.; Lewis, C.E.; Kotchen, J.M.; Hendrix, S.L.; Trevisan, M. The women’s health initiative observational study: Baseline characteristics of participants and reliability of baseline measures. Ann. Epidemiol. 2003, 13, S107–S121. [Google Scholar] [CrossRef]
- Women’s Health Initiative Study Group. Design of the Women’s Health Initiative Clinical Trial and Observational Study. Control. Clin. Trials 1998, 19, 61–109. [Google Scholar]
- Hays, J.; Hunt, J.R.; Hubbell, F.A.; Anderson, G.L.; Limacher, M.; Allen, C.; Rossouw, J.E. The Women’s Health Initiative Recruitment Methods and Results. Ann. Epidemiol. 2003, 13, S18–S77. [Google Scholar] [CrossRef]
- Bureau of Labor Statistics. U.S. SOC 2010 User Guide; Bureau of Labor Statistics: Washington, DC, USA, 2010.
- Burstyn, I.; Slutsky, A.; Lee, D.; Singer, A.; An, Y.; Michael, Y.L. Beyond Crosswalks: Reliability of Exposure Assessment Following Automated Coding of Free-Text Job Descriptions for Occupational Epidemiology. Ann. Occup. Hyg. 2014, 58, 482–492. [Google Scholar] [PubMed]
- National Crosswalk Service Center. O*NET Occupations Reference Guide; National Crosswalk Service Center: Des Moines, IA, USA, 2007.
- Hadden, W.C.; Kravets, N.; Muntaner, C. Descriptive dimensions of US occupations with data from the O*NET. Soc. Sci. Res. 2004, 33, 64–78. [Google Scholar] [CrossRef]
- Turner-Bowker, D.M.; DeRosa, M.A.; Ware, J.E., Jr. SF-36® Health Survey. In Encyclopedia of Epidemiology; Boslaugh, S., McNutt, L.-A., Eds.; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2008; pp. 968–973. [Google Scholar]
- Haley, S.M.; McHorney, C.A.; Ware, J.E. Evaluation of the mos SF-36 physical functioning scale (PF-10): I. Unidimensionality and reproducibility of the Rasch Item scale. J. Clin. Epidemiol. 1994, 47, 671–684. [Google Scholar] [CrossRef]
- McHorney, C.A.; Ware, J.E.; Lu, J.F.R.; Sherbourne, C.D. The MOS 36-Item Short-Form Health Survey (SF-36): III. Tests of Data Quality, Scaling Assumptions, and Reliability across Diverse Patient Groups. Med. Care 1994, 32, 40–66. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.S.; Koshman, M.L.; Spreng, S.; Sheldon, R. Statistical issues encountered in the comparison of health-related quality of life in diseased patients to published general population norms: Problems and solutions. J. Clin. Epidemiol. 1999, 52, 405–412. [Google Scholar] [CrossRef]
- Meyer, J.D.; Cifuentes, M.; Warren, N. Association of self-rated physical health and incident hypertension with O*NET factors: Validation using a representative national survey. J. Occup. Environ. Med. 2011, 53, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Zou, G. A Modified Poisson Regression Approach to Prospective Studies with Binary Data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Weitlauf, J.C.; Washington, D.L.; Stefanick, M.L. Who Are the Women Veterans in the Women’s Health Initiative? Gerontologist 2016, 56, S6–S9. [Google Scholar] [CrossRef] [PubMed]
- Landsbergis, P.A.; Schnall, P.L.; Pickering, T.G.; Schwartz, J.E. Validity and Reliability of a Work History Questionnaire Derived From the Job Content Questionnaire. J. Occup. Environ. Med. 2002, 44, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Ha Lee, J. Women’s education and the timing and level of fertility. Int. J. Soc. Econ. 2014, 41, 862–874. [Google Scholar] [CrossRef]
- Kalousova, L.; Mendes de Leon, C. Increase in frailty of older workers and retirees predicted by negative psychosocial working conditions on the job. Soc. Sci. Med. 2015, 124, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Cohidon, C.; Santin, G.; Chastang, J.-F.; Imbernon, E.; Niedhammer, I. Psychosocial Exposures at Work and Mental Health Potential Utility of a Job-Exposure Matrix. J. Occup. Environ. Med. 2012, 54, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Clougherty, J.E.; Souza, K.; Cullen, M. Work and its role in shaping the social gradient in health. Biol. Disadv. 2010, 1186, 102–124. [Google Scholar] [CrossRef] [PubMed]
- Wahrendorf, M.; Sembajwe, G.; Zins, M.; Berkman, L.; Goldberg, M.; Siegrist, J. Long-term effects of psychosocial work stress in midlife on health functioning after labor market exit--results from the GAZEL study. J. Gerontol. B Psychol. Sci. Soc. Sci. 2012, 67, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Mirowsky, J.; Ross, C.E. Creative work and health. J. Health Soc. Behav. 2007, 48, 385–403. [Google Scholar] [CrossRef] [PubMed]
- Seeman, T.; Epel, E.; Gruenewald, T.; Karlamangla, A.; McEwen, B.S. Socio-economic differentials in peripheral biology: Cumulative allostatic load. Ann. N. Y. Acad. Sci. 2010, 1186, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.D.; Mutambudzi, M. Construction of life-course occupational trajectories: Evidence for work as a mediator of racial disparities in hypertension. J. Occup. Environ. Med. 2012, 54, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.D.; Mutambudzi, M. Association of occupational trajectories with alcohol use disorders in a longitudinal national survey. J. Occup. Environ. Med. 2014, 56, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.D.; Feuerstein, M.; WJ, K.; Schor, K.; Arroyo, F. Individual and Combined Impacts of Biomechanical and Work Organization Factors in Work Related Musculoskeletal Symptoms. Am. J. Ind. Med. 2003, 43, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Kerr, M.S.; Frank, J.W.; Shannon, H.S.; Norman, R.W.K.; Wells, R.P.; Neumann, W.P.; Bombardier, C.; Ontario Univ Back Pain Study, G. Biomechanical and psychosocial risk factors for low back pain at work. Am. J. Public Health 2001, 91, 1069–1075. [Google Scholar] [PubMed]
- Sabbath, E.L.; Glymour, M.M.; Descatha, A.; Leclerc, A.; Zins, M.; Goldberg, M.; Berkman, L.F. Biomechanical and psychosocial occupational exposures: Joint predictors of post-retirement functional health in the French GAZEL cohort. Adv. Life Course Res. 2013, 18, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Hammar, N.; Alfredsson, L.; Johnson, J.V. Job strain, social support at work, and incidence of myocardial infarction. Occup. Environ. Med. 1998, 55, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Niedhammer, I.; Goldberg, M.; Leclerc, A.; Bugel, I.; David, S. Psychosocial factors at work and subsequent depressive symptoms in the Gazel cohort. Scand. J. Work Environ. Health 1998, 24, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Matthews, R.A.; Bulger, C.A.; Barnes-Farrell, J.L. Work social supports, role stressors, and work–family conflict: The moderating effect of age. J. Vocat. Behav. 2010, 76, 78–90. [Google Scholar] [CrossRef]
- Pienta, A. Early childbearing patterns and women’s labor force behavior in later life. J. Women Aging 1999, 11, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Hank, K. Effects of early life family events on women’s late life labour market behaviour: An analysis of the relationship between childbearing and retirement in Western Germany. Eur. Sociol. Rev. 2004, 20, 189–198. [Google Scholar] [CrossRef]
- Alon, S.; Donahoe, D.; Tienda, M. The effects of early work experience on young women’s labor force attachment. Soc. Forces 2001, 79, 1005–1034. [Google Scholar] [CrossRef]
- Montez, J.K. The socioeconomic origins of physical functioning among older U.S. adults. Adv. Life Course Res. 2013, 18, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Hemingway, H.; Nicholson, A.; Stafford, M.; Roberts, R.; Marmot, M. The impact of socioeconomic status on health functioning as assessed by the SF-36 questionnaire: The Whitehall II Study. Am. J. Public Health 1997, 87, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Adler, N.E.; Newman, K. Socioeconomic disparities in health: Pathways and policies. Health Aff. 2002, 21, 60–76. [Google Scholar] [CrossRef]
- Fujishiro, K.; Xu, J.; Gong, F. What does “occupation” represent as an indicator of socioeconomic status?: Exploring occupational prestige and health. Soc. Sci. Med. 2010, 71, 2100–2107. [Google Scholar] [CrossRef] [PubMed]
- Slopen, N.; Glynn, R.J.; Buring, J.E.; Lewis, T.T.; Williams, D.R.; Albert, M.A. Job strain, job insecurity, and incident cardiovascular disease in the Women’s Health Study: Results from a 10-year prospective study. PLoS ONE 2012, 7, e40512. [Google Scholar] [CrossRef] [PubMed]
- Fujishiro, K.; Diez Roux, A.V.; Landsbergis, P.; Baron, S.; Barr, R.G.; Kaufman, J.D.; Polak, J.F.; Stukovsky, K.H. Associations of occupation, job control and job demands with intima-media thickness: The Multi-Ethnic Study of Atherosclerosis (MESA). Occup. Environ. Med. 2011, 68, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.V.; Stewart, W.F. Measuring work organization exposure over the life course with a job-exposure matrix. Scand. J. Work. Environ. Heal. 1993, 19, 21–28. [Google Scholar] [CrossRef]
- Messing, K.; Dumais, L.; Courville, J.; Seifert, A.M.; Boucher, M. Evaluation of exposure data from men and women with the same job title. J. Occup. Med. 1994, 36, 913–917. [Google Scholar] [PubMed]
- Bond, M.A.; Punnett, L.; Pyle, J.L.; Cazeca, D.; Cooperman, M. Gendered work conditions, health, and work outcomes. J. Occup. Health Psychol. 2004, 9, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Kohn, M.L.; Schooler, C. Occupational Experience and Psychological Functioning: An Assessment of Reciprocal Effects. Am. Sociol. Rev. 1973, 38, 97–118. [Google Scholar] [CrossRef]
- Meyer, J.D.; Warren, N.; Reisine, S. Job control, substantive complexity, and risk for low birth weight and preterm delivery: An analysis from a state birth registry. Am. J. Ind. Med. 2007, 50, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Berney, L.R.; Blane, D.B. Collecting retrospective data: Accuracy of recall after 50 years judged against historical records. Soc. Sci. Med. 1997, 45, 1519–1525. [Google Scholar] [CrossRef]
- Schiller, J.S.; Lucas, J.W.; Ward, B.W.; Peregoy, J.A. Summary Health Statistics for U.S. Adults: National Health Interview Survey, 2010. Vital Health Stat. 2012, 252, 1–207. [Google Scholar]
- Courville, J.; Vézina, N.; Messing, K. Comparison of the work activity of two mechanics: A woman and a man. Int. J. Ind. Ergon. 1991, 7, 163–174. [Google Scholar] [CrossRef]
- Islam, S.S.; Velilla, A.M.; Doyle, E.J.; Ducatman, A.M. Gender differences in work-related injury/illness: Analysis of workers compensation claims. Am. J. Ind. Med. 2001, 39, 84–91. [Google Scholar] [CrossRef]
Factor | Attribute | Variable Loading Value |
---|---|---|
Substantive Complexity | ||
Complex problem solving | 0.95 | |
Active learning | 0.94 | |
Judgment and decision making | 0.93 | |
Deductive reasoning | 0.93 | |
Analyzing data or information | 0.93 | |
Critical thinking | 0.93 | |
Inductive reasoning | 0.92 | |
Interpreting the meaning of information for others | 0.92 | |
Systems analysis | 0.91 | |
Systems evaluation | 0.90 | |
Making decisions and solving problems | 0.88 | |
Monitoring | 0.88 | |
Learning strategies | 0.87 | |
Reading comprehension | 0.86 | |
Information ordering | 0.86 | |
Writing | 0.86 | |
Category flexibility | 0.85 | |
Updating and using relevant knowledge | 0.84 | |
Instructing | 0.84 | |
Written comprehension | 0.84 | |
Memorization | 0.83 | |
Developing objectives and strategies | 0.83 | |
Fluency of ideas | 0.83 | |
Processing information | 0.83 | |
Written expression | 0.83 | |
Getting information | 0.81 | |
Identifying objects, actions, and events | 0.80 | |
Originality | 0.80 | |
Physical Demand | ||
Rate control | 0.99 | |
Response orientation | 0.99 | |
Reaction time | 0.98 | |
Controlling machine and processes | 0.97 | |
Operation and control | 0.97 | |
Repairing and maintaining mechanical equipment | 0.96 | |
Equipment maintenance | 0.91 | |
Multilimb coordination | 0.90 | |
Repairing | 0.88 | |
Operating vehicles, mechanized devices, or equipment | 0.88 | |
Wrist-finger speed | 0.87 | |
Control precision | 0.87 | |
Sound localization | 0.85 | |
Exposed to hazardous equipment | 0.82 | |
Performing general physical activities | 0.80 | |
Handling and moving objects | 0.80 | |
Social Collaboration | ||
Self control | 0.96 | |
Concern for others | 0.94 | |
Social orientation | 0.92 | |
Cooperation | 0.82 | |
Co-workers, social service, and moral values | 0.80 |
Overall | Factor 1: Substantive Complexity (≥0.48) | Factor 2: Physical Demand (≥0.18) | Factor 3: Social Collaboration (≥0.75) | |
---|---|---|---|---|
Characteristic (n (col %)) | ||||
Age (mean ± SD) | 63.4 ± 7.3 | 62.9 ± 7.3 | 63.5 ± 7.4 | 63.3 ± 7.3 |
Race/Ethnicity (n = 78,955) | * | * | * | |
American Indian or Alaskan Native | 284 (0.4) | 108 (0.3) | 177 (0.5) | 128 (0.3) |
Asian or Pacific Islander | 2208 (2.8) | 1165 (3.0) | 1098 (2.8) | 1092 (2.8) |
Black | 5611 (7.1) | 2753 (7.0) | 3094 (7.8) | 3092 (7.9) |
Hispanic/Latino | 2310 (2.9) | 902 (2.3) | 1330 (3.4) | 1100 (2.8) |
White | 67,711 (85.8) | 34,255 (86.6) | 33,402 (84.5) | 33,585 (85.4) |
Other | 831 (1.1) | 369 (0.9) | 445 (1.1) | 354 (0.9) |
Marital Status (n = 78,828) | * | * | * | |
Never married | 4032 (5.1) | 2636 (6.7) | 1832 (4.6) | 2288 (5.8) |
Divorced or separated | 12,394 (15.7) | 6440 (16.3) | 6222 (15.8) | 5809 (14.8) |
Widowed | 13,098 (16.6) | 5810 (14.7) | 6996 (17.7) | 6130 (15.6) |
Married at baseline | 47,978 (60.9) | 23,895 (60.5) | 23,730 (60.1) | 24,448 (62.2) |
Marriage-like relationship | 726 (1.7) | 726 (1.8) | 686 (1.7) | 614 (1.6) |
Birth Region (n = 78,649) | * | * | * | |
Northeast | 22,266 (28.3) | 11,517 (29.2) | 10,774 (27.4) | 11,355 (29.0) |
Midwest | 23,787 (30.2) | 11,996 (30.4) | 12,060 (30.7) | 12,037 (30.7) |
South | 16,669 (21.2) | 7965 (20.2) | 8312 (21.1) | 8184 (20.9) |
West | 10,796 (13.7) | 5377 (13.6) | 5399 (13.7) | 5179 (13.2) |
Not born in US | 5131 (6.5) | 2579 (6.5) | 2801 (7.1) | 2415 (6.2) |
Education (n = 78,573) | * | * | * | |
Less than high school | 3127 (4.0) | 544 (1.4) | 2457 (6.2) | 969 (2.5) |
High school graduate | 40,731 (51.8) | 13,572 (34.5) | 22,651 (57.6) | 15,796 (40.3) |
College degree or higher | 34,715 (44.2) | 25,244 (64.1) | 14,241 (36.2) | 22,410 (57.2) |
Body Mass Index Category (n = 78,241) | * | * | * | |
Underweight (<18.5) | 932 (1.2) | 521 (1.3) | 431 (1.1) | 473 (1.2) |
Normal (18.5–24.9) | 31,593 (40.4) | 16,901 (43.1) | 14,960 (38.2) | 16,258 (41.7) |
Overweight (25.0–29.9) | 26,484 (33.9) | 13,014 (33.2) | 13,251 (33.8) | 13,218 (33.9) |
Obese (30.0+) | 19,232 (24.6) | 8744 (22.3) | 10,546 (26.9) | 9024 (23.2) |
Income (n = 75,994) | * | * | * | |
Less than $20 K | 10,833 (14.3) | 3400 (8.9) | 6896 (18.1) | 4389 (11.6) |
$20,000–34,999 | 16,969 (22.3) | 7108 (18.6) | 9004 (23.6) | 7807 (20.6) |
$35,000–49,999 | 15,056 (19.8) | 7678 (20.1) | 7388 (19.4) | 7715 (20.4) |
$50,000–74,999 | 15,363 (20.2) | 8982 (23.6) | 6886 (18.1) | 8397 (22.2) |
$75 K+ | 15,688 (20.6) | 10,100 (26.5) | 6766 (17.8) | 8530 (22.5) |
Don’t know | 2085 (2.7) | 870 (2.3) | 1158 (3.0) | 1023 (2.7) |
Number of live births | * | * | * | |
0 | 11,307 (14.3) | 6787 (17.2) | 5130 (12.9) | 5994 (15.2) |
1 | 7175 (9.1) | 3701 (9.4) | 3555 (8.9 ) | 3416 (8.9) |
2–4 | 51,263 (64.8) | 25,038 (64.0) | 25,688 (64.6) | 25,504 (64.8) |
5+ | 9403 (11.9) | 3754 (9.5) | 5395 (13.6) | 4453 (11.3) |
Smoking status (n = 78,329) | * | * | * | |
Never smoked | 39,389 (50.3) | 19,782 (50.4) | 19,611 (50.0) | 20,194 (51.7) |
Past smoker | 34,084 (43.5) | 17,320 (44.1) | 16,965 (43.3) | 16,650 (42.7) |
Current smoker | 4856 (6.2) | 2143 (5.5) | 2634 (6.7) | 2182 (5.6) |
Alcohol intake (n = 78,802) | * | * | * | |
Non-drinker | 8147 (10.3) | 3564 (9.0) | 4399 (11.2) | 4122 (10.5) |
Past drinker | 14,421 (18.3) | 6321 (16.0) | 7900 (20.0) | 6795 (17.3) |
<1 drink/month | 9272 (11.8) | 4391 (11.1) | 4871 (12.4) | 4534 (11.6) |
<1 drink/week | 15,929 (20.2) | 8234 (20.9) | 7829 (19.9) | 8151 (20.8) |
1 to <7 drinks/week | 20,703 (26.3) | 11,287 (28.6) | 9680 (24.5) | 10,557 (26.9) |
7+ drinks/week | 10,330 (13.1) | 5683 (14.4) | 4770 (12.1) | 5102 (13.0) |
Hard exercise at age 18 (n = 76,844) | 34,277 (44.6) | 17,329 (44.8) | 17,442 (45.5) * | 17,279 (45.0) * |
Hard exercise at age 35 (n = 77,106) | 34,341 (44.5) | 16,968 (43.7) * | 17,539 (45.6) * | 17,055 (44.3) |
Hard exercise at age 50 (n = 77,654) | 30,718 (39.6) | 15,694 (40.2) * | 15,360 (39.6) | 15,574 (40.2) * |
Depressive symptoms (shortened CES-D † ≥ 0.06) (n = 77,647) | 8446 (10.9) | 3691 (9.5) * | 4545 (11.7) * | 3838 (9.9) * |
Presence of Social support (n = 77,521) | 41,919 (54.1) | 21,514 (55.3) * | 20,460 (52.8) * | 21,698 (56.1) * |
Presence of Social strain (n = 77,941) | 44,522 (57.1) | 21,778 (55.7) * | 22,679 (58.2) * | 21,815 (56.1) * |
Presence of comorbidities a | 63,686 (80.5) | 31,585 (79.7) * | 32,181 (81.2) * | 31,619 (80.2) * |
Physical limitations § | 18,718 (23.7) | 7998 (20.2) * | 10,330 (26.1) * | 8708 (22.1) * |
Overall | Factor 1: Substantive Complexity (≥0.48) | Factor 2: Physical Demand (≥0.18) | Factor 3: Social Collaboration (≥0.75) | |
---|---|---|---|---|
Characteristic (n (col %)) | ||||
Years worked (mean ± SD) | 22.7 ± 10.9 | 23.9 ± 10.4 | 22.5 ± 11.1 | 23.5 ± 10.9 |
Number of jobs listed | * | * | * | |
1 | 11,926 (15.1) | 6352 (16.0) | 5253 (13.3) | 6767 (17.2) |
2 | 15,910 (20.1) | 7734 (19.5) | 7929 (20.0) | 8029 (20.4) |
3 | 25,680 (64.8) | 25,562 (64.5) | 26,457 (66.7) | 24,641 (62.5) |
Critical periods of work (not mutually exclusive, shown as n (%)) | ||||
Before children | 38,894 (49.1) | 20,613 (53.0) * | 18,376 (46.4) * | 20,730 (52.6) * |
With young children | 45,916 (58.0) | 22,778 (57.5) * | 23,288 (58.8) * | 23,777 (60.3) * |
With older children | 58,123 (73.4) | 29,056 (73.3) | 29,442 (74.3) * | 28,948 (73.4) |
After children are adults | 54,333 (68.7) | 26,681 (67.3) * | 27,702 (69.9) * | 26,354 (66.8) * |
Work status | * | * | * | |
Actively working at baseline | 33,779 (42.7) | 17,675 (44.6) | 17,126 (43.2) | 16,520 (41.9) |
Recently retired (<10 years) | 26,528 (33.5) | 13,551 (34.2) | 13,063 (33.0) | 13,367 (33.9) |
Retired 10+ years | 18,840 (23.8) | 8422 (21.2) | 9450 (23.8) | 9550 (24.2) |
Job type † | * | * | * | |
Male-dominated, manual | 7990 (10.1) | 1142 (2.9) | 7463 (18.8) | 1170 (3.0) |
Female-dominated, high SES § | 8673 (11.0) | 4561 (11.5) | 7863 (19.8) | 7429 (18.8) |
Female-dominated, low SES | 1917 (2.4) | 109 (0.3) | 1692 (4.3) | 381 (1.0) |
Other | 60,567 (76.5) | 33,836 (85.3) | 22,621 (57.1) | 30,457 (77.2) |
Homemakers (n = 75,861) | 19,345 (25.5) | 7602 (19.9) * | 10,627 (28.0) * | 9,251 (24.4) * |
Veterans (n = 74,524) | 1978 (2.7) | 1102 (2.9) * | 1115 (2.9) * | 1093 (3.0) * |
Risk Ratio (95% Confidence Interval) | ||||
---|---|---|---|---|
Model | Model Fit (QICu) | Substantive Complexity | Physical Demand | Social Collaboration |
1: Crude 1 | 118913 | 0.78 (0.76–0.80) * | 1.14 (1.11–1.17) * | 0.95 (0.93–0.98) * |
2: Crude + confounders 2 | 110170 | 0.81 (0.79–0.84) * | 1.12 (1.10–1.15) * | 0.94 (0.92–0.97) * |
3: Model 2 + education | 109219 | 0.94 (0.91–0.96) * | 1.09 (1.06–1.12) * | 1.01 (0.98–1.03) |
4: Model 3 + income | 104786 | 0.96 (0.93–0.98) * | 1.08 (1.05–1.11) * | 1.00 (0.98–1.03) |
5: Model 4 + mediators 3 | 95959 | 0.97 (0.95–1.00) | 1.04 (1.01–1.06) * | 1.00 (0.98–1.03) |
Working at baseline 4 | 37004 | 0.93 (0.88–0.98) * | 1.10 (1.05–1.15) * | 1.01 (0.96–1.06) |
Homemakers 5 | 29907 | 0.96 (0.91–1.01) | 1.07 (1.01–1.12) * | 0.98 (0.93–1.03) |
Risk Ratio (95% Confidence Interval) | ||||
---|---|---|---|---|
Critical Periods | ||||
Model | Before Children | With Young Children | With Older Children | After Children |
1: Crude 1 | 0.89 (0.86–0.91) * | 1.00 (0.97–1.03) | 0.90 (0.87–0.94) * | 0.92 (0.89–0.95) * |
2: Crude + confounders 2 | 0.88 (0.86–0.91) * | 1.00 (0.97–1.03) | 1.02 (0.98–1.06) | 0.86 (0.83–0.89) * |
3: Model 2 + education | 0.92 (0.89–0.94) * | 1.01 (0.98–1.04) | 1.03 (0.99–1.07) | 0.87 (0.84–0.90) * |
4: Model 3 + income | 0.93 (0.90–0.95) * | 1.01 (0.99–1.04) | 1.01 (0.98–1.05) | 0.87 (0.84–0.90) * |
5: Model 4 + mediators 3 | 1.00 (0.97–1.03) | 0.98 (0.95–1.00) | 1.01 (0.97–1.05) | 0.99 (0.95–1.03) |
Working at baseline 4 | 0.91 (0.86–0.96) * | 1.07 (1.02–1.13) * | 0.96 (0.89–1.03) | 0.93 (0.86–1.01) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palumbo, A.J.; De Roos, A.J.; Cannuscio, C.; Robinson, L.; Mossey, J.; Weitlauf, J.; Garcia, L.; Wallace, R.; Michael, Y. Work Characteristics Associated with Physical Functioning in Women. Int. J. Environ. Res. Public Health 2017, 14, 424. https://doi.org/10.3390/ijerph14040424
Palumbo AJ, De Roos AJ, Cannuscio C, Robinson L, Mossey J, Weitlauf J, Garcia L, Wallace R, Michael Y. Work Characteristics Associated with Physical Functioning in Women. International Journal of Environmental Research and Public Health. 2017; 14(4):424. https://doi.org/10.3390/ijerph14040424
Chicago/Turabian StylePalumbo, Aimee J., Anneclaire J. De Roos, Carolyn Cannuscio, Lucy Robinson, Jana Mossey, Julie Weitlauf, Lorena Garcia, Robert Wallace, and Yvonne Michael. 2017. "Work Characteristics Associated with Physical Functioning in Women" International Journal of Environmental Research and Public Health 14, no. 4: 424. https://doi.org/10.3390/ijerph14040424
APA StylePalumbo, A. J., De Roos, A. J., Cannuscio, C., Robinson, L., Mossey, J., Weitlauf, J., Garcia, L., Wallace, R., & Michael, Y. (2017). Work Characteristics Associated with Physical Functioning in Women. International Journal of Environmental Research and Public Health, 14(4), 424. https://doi.org/10.3390/ijerph14040424