The Effects of Taekwondo Training on Peripheral Neuroplasticity-Related Growth Factors, Cerebral Blood Flow Velocity, and Cognitive Functions in Healthy Children: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Intervention (TKD Training) Method
2.4. Blood Collection and Analysis Method
2.5. Blood Flow Velocity Measurements
2.6. Cognitive Function Measurements
2.7. Statistical Analysis
3. Results
3.1. Changes in Anthropometric Characteristics
3.2. Changes in Serum Neuroplasticity-Related Growth Factors
3.3. Changes in Cerebral Blood Flow Velocities
3.4. Changes in Cognitive Functions
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cotman, C.W.; Berchtold, N.C.; Christie, L.A. Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends Neurosci. 2007, 30, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Shetty, A.K.; Turner, D.A. In vitro survival and differentiation of neurons derived from epidermal growth factor-responsive postnatal hippocampal stem cells: Inducing effects of brain-derived neurotrophic factor. J. Neurobiol. 1998, 35, 395–425. [Google Scholar] [CrossRef]
- Yuan, T.F.; Paes, F.; Arias-Carrión, O.; Ferreira Rocha, N.B.; de Sá Filho, A.S.; Machado, S. Neural Mechanisms of Exercise: Anti-Depression, Neurogenesis, and Serotonin Signaling. CNS Neurol. Disord. Drug Targets 2015, 14, 1307–1311. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.N.; da Costa e Silva, B.F.; Soares, J.C.; Carvalho, A.F.; Quevedo, J. Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: A comprehensive review of human studies. J. Affect. Disord. 2016, 197, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, J.D.; Mathur, M.; Johnson, M.H.; Gowthaman, G.; Scoutt, L.M. Advances in transcranial Doppler US: Imaging ahead. RadioGraphics 2013, 33, E1–E14. [Google Scholar] [CrossRef] [PubMed]
- Murrell, C.J.; Cotter, J.D.; Thomas, K.N.; Lucas, S.J.; Williams, M.J.; Ainslie, P.N. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: Effect of age and 12-week exercise training. Age 2013, 35, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Ainslie, P.N.; Cotter, J.D.; George, K.P.; Lucas, S.; Murrell, C.; Shave, R.; Thomas, K.N.; Williams, M.J.; Atkinson, G. Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J. Physiol. 2008, 586, 4005–4010. [Google Scholar] [CrossRef] [PubMed]
- Tugba, B.; Zubeyir, K.; Nevzat, U.; Ali, Y.; Birsen, U.; Tevfik, D. Cerebral blood flow of children with vasovagal syncope. Cardiol. Young 2015, 25, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Sung, R.Y.; Du, Z.D.; Yu, C.W.; Yam, M.C.; Fok, T.F. Cerebral blood flow during vasovagal syncope induced by active standing or head up tilt. Arch. Dis. Child. 2000, 82, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Waalen, J.; Morgan, C.; White, A.R. A profile of Olympic taekwondo competitors. J. Sports Sci. Med. 2006, 5, 114–121. [Google Scholar] [PubMed]
- Lee, B.; Kim, K. Effect of Taekwondo Training on Physical Fitness and Growth Index According to IGF-1 Gene Polymorphism in Children. Korean J. Physiol. Pharmacol. 2015, 19, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Fong, S.S.; Ng, G.Y. Does Taekwondo training improve physical fitness? Phys. Ther. Sport 2011, 12, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Lakes, K.D.; Bryars, T.; Sirisinahal, S.; Salim, N.; Arastoo, S.; Emmerson, N.; Kang, D.; Shim, L.; Wong, D.; Kang, C.J. The Healthy for Life Taekwondo Pilot Study: A Preliminary Evaluation of Effects on Executive Function and BMI, Feasibility, and Acceptability. Ment. Health Phys. Act. 2013, 6, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Cha, E.J.; Kim, S.M.; Kang, K.D.; Han, D.H. The Effects of Taekwondo Training on Brain Connectivity and Body Intelligence. Psychiatry Investig. 2015, 12, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Bartkowska, K.; Turlejski, K.; Djavadian, R.L. Neurotrophins and their receptors in early development of the mammalian nervous system. Acta Neurobiol. Exp. 2010, 70, 454–467. [Google Scholar]
- Kure, C.E.; Rosenfeldt, F.L.; Scholey, A.B.; Pipingas, A.; Kaye, D.M.; Bergin, P.J.; Croft, K.D.; Wesnes, K.A.; Myers, S.P.; Stough, C. Relationships Among Cognitive Function and Cerebral Blood Flow, Oxidative Stress, and Inflammation in Older Heart Failure Patients. J. Card. Fail. 2016, 22, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Chaddock, L.; Hillman, C.H.; Buck, S.M.; Cohen, N.J. Aerobic fitness and executive control of relational memory in preadolescent children. Med. Sci. Sports Exerc. 2011, 43, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Aaslid, R.; Markwalder, T.M.; Nornes, H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 1982, 57, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Golden, C.J.; Freshwater, S.M.; Zarabeth, G. Stroop Color and Word Test Children’s Version for Ages 5–14: A Manual for Clinical and Experimental Uses; Stoelting: Kiel, WI, USA, 2003. [Google Scholar]
- Shin, M.S.; Park, M.J. Stroop Color and Word Test: A Manual for Clinical and Experimental Uses; Hakjisa: Seoul, Korea, 2007; Volume 91. [Google Scholar]
- Specker, B.; Thiex, N.W.; Sudhagoni, R.G. Does Exercise Influence Pediatric Bone? A Systematic Review. Clin. Orthop. Relat. Res. 2015, 473, 3658–3672. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, L.; Anania, C.; Martino, F.; Poggiogalle, E.; Chiarelli, F.; Arca, M.; Chiesa, C. Management of metabolic syndrome in children and adolescents. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Palacio-Schjetnan, A.; Escobar, M.L. Neurotrophins and synaptic plasticity. Curr. Top. Behav. Neurosci. 2013, 15, 117–136. [Google Scholar] [PubMed]
- Carro, E.; Nuñez, A.; Busiguina, S.; Torres-Aleman, I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 2000, 20, 2926–2933. [Google Scholar] [PubMed]
- Fabel, K.; Fabel, K.; Tam, B.; Kaufer, D.; Baiker, A.; Simmons, N.; Kuo, C.J.; Palmer, T.D. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 2003, 18, 2803–2812. [Google Scholar] [CrossRef] [PubMed]
- Palmer, T.D.; Willhoite, A.R.; Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 2000, 425, 479–494. [Google Scholar] [CrossRef]
- Whiteman, A.S.; Young, D.E.; He, X.; Chen, T.C.; Wagenaar, R.C.; Stern, C.E.; Schon, K. Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behav. Brain Res. 2014, 259, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Lopez, C.; LeRoith, D.; Torres-Aleman, I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc. Natl. Acad. Sci. USA 2004, 101, 9833–9838. [Google Scholar] [CrossRef] [PubMed]
- Kenney, K.; Amyot, F.; Haber, M.; Pronger, A.; Bogoslovsky, T.; Moore, C.; Diaz-Arrastia, R. Cerebral Vascular Injury in Traumatic Brain Injury. Exp. Neurol. 2016, 275, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Yeo, L.L.; Sharma, V.K. Role of transcranial Doppler ultrasonography in cerebrovascular disease. Recent Pat. CNS Drug Discov. 2010, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Feddersen, B.; Neupane, P.; Thanbichler, F.; Hadolt, I.; Sattelmeyer, V.; Pfefferkorn, T.; Waanders, R.; Noachtar, S.; Ausserer, H. Regional differences in the cerebral blood flow velocity response to hypobaric hypoxia at high altitudes. J. Cereb. Blood Flow Metab. 2015, 35, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.A.; Ganio, M.S.; Pearson, J.; Crandall, C.G. Sweat loss during heat stress contributes to subsequent reductions in lower-body negative pressure tolerance. Exp. Physiol. 2013, 98, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Ide, K.; Secher, N.H. Cerebral blood flow and metabolism during exercise. Prog. Neurobiol. 2000, 61, 397–414. [Google Scholar] [CrossRef]
- Bakker, M.J.; Hofmann, J.; Churches, O.F.; Badcock, N.A.; Kohler, M.; Keage, H.A. Cerebrovascular function and cognition in childhood: A systematic review of transcranial Doppler studies. BMC Neurol. 2014, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Purkayastha, S.; Sorond, F. Transcranial Doppler ultrasound: Technique and application. Semin. Neurol. 2012, 32, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Paulson, O.B.; Strandgaard, S.; Edvinsson, L. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 1990, 2, 161–192. [Google Scholar] [PubMed]
- Ogoh, S.; Ainslie, P.N. Cerebral blood flow during exercise: Mechanisms of regulation. J. Appl. Physiol. 2009, 107, 1370–1380. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.E.; Bell, C. The effects of exercise and training on human cardiovascular reflex control. J. Auton. Nerv. Syst. 2000, 81, 16–24. [Google Scholar] [CrossRef]
- Ivey, F.M.; Ryan, A.S.; Hafer-Macko, C.E.; Macko, R.F. Improved cerebral vasomotor reactivity after exercise training in hemiparetic stroke survivors. Stroke 2011, 42, 1994–2000. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.; Jones, R.; Novak, P.; Zhao, P.; Novak, V. The effects of body mass index on cerebral blood flow velocity. Clin. Auton. Res. 2008, 18, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Lees, C.; Hopkins, J. Effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: A systematic review of randomized control trials. Prev. Chronic Dis. 2013, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Desai, I.K.; Kurpad, A.V.; Chomitz, V.R.; Thomas, T. Aerobic fitness, micronutrient status, and academic achievement in Indian school-aged children. PLoS ONE 2015, 10, e0122487. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y. The effect of regular Taekwondo exercise on Brain-derived neurotrophic factor and Stroop test in undergraduate student. J. Exerc. Nutr. Biochem. 2015, 19, 73–79. [Google Scholar] [CrossRef] [PubMed]
Variables/Group | Control (n = 15) | TKD (n = 15) | p Value * |
---|---|---|---|
Gender (boys/girls) | 9/6 | 9/6 | |
Age (years) | 11.33 ± 0.72 | 11.20 ± 0.77 | 0.630 |
School grades (unit) | 5.33 ± 0.72 | 5.20 ± 0.77 | 0.630 |
Height (cm) | 149.00 ± 7.04 | 148.67 ± 8.19 | 0.906 |
Weight (kg) | 46.40 ± 6.93 | 47.60 ± 8.92 | 0.684 |
BMI (kg/m2) | 20.81 ± 1.98 | 21.58 ± 4.01 | 0.512 |
VO2max (mL/kg/min) | 38.25 ± 6.54 | 37.89 ± 8.23 | 0.895 |
Procedure | Contents | Time (min) | |
---|---|---|---|
Warming up | Stretching | 5 | |
Main Exercise | Basic physical fitness training | Push-up, Sit-up, Shuttle-run, Burpee test, Vertical jump, Jumping over a person | 10 |
Basic movement | Close stance, Parallel stance, Riding stance, Forward stance, Forward inflection stance, Backward inflection stance | 5 | |
Poomsae | Underneath blocking, Trunk inner blocking, Trunk punch, Back-fist face front hitting, Elbow turning hitting, Reversed hand knife outward strike, Hand fingertips erect thrusting, Taegeuk chapters 1–8 | 10 | |
Kicking | Front kick, Side kick, Round house kick, Downward kick, Step (forward, side, backward), Practice mitt kicking | 10 | |
Gymnastic | Gymnastics composed of TKD movements | 15 | |
Cooling down | Stretching | 5 |
Variables/Group | Control (n = 15) | TKD (n = 15) | Time × Group Interaction | |||
---|---|---|---|---|---|---|
Baseline | 16-Week | Baseline | 16-Week | F | p | |
Height (cm) | 149.00 ± 7.04 | 150.00 ± 6.90 | 148.67 ± 8.19 | 150.00 ± 7.63 | 0.515 | 0.479 |
CV | 0.05 | 0.05 | 0.06 | 0.05 | ||
Weight (kg) | 46.40 ± 6.93 | 47.47 ± 7.11 | 47.60 ± 8.92 | 47.93 ± 8.02 | 1.251 | 0.273 |
CV | 0.15 | 0.15 | 0.19 | 0.17 | ||
BMI (kg/m2) | 20.81 ± 1.98 | 21.00 ± 1.94 | 21.58 ± 4.01 | 21.35 ± 3.65 | 2.934 | 0.098 |
CV | 0.09 | 0.09 | 0.19 | 0.17 | ||
VO2max (mL/kg/min) | 38.25 ± 6.54 | 38.17 ± 6.18 | 37.89 ± 8.23 | 38.86 ± 7.74 # | 7.371 | 0.011 * |
CV | 0.17 | 0.16 | 0.22 | 0.20 |
Variables/Group | Control (n = 15) | TKD (n = 15) | Time × Group Interaction | |||
---|---|---|---|---|---|---|
Baseline | 16-Week | Baseline | 16-Week | F | p | |
BDNF (ng/mL) | 24.00 ± 7.24 | 24.45 ± 7.18 | 24.03 ± 6.16 | 27.62 ± 7.58 # | 9.142 | 0.005 ** |
CV | 0.30 | 0.29 | 0.26 | 0.27 | ||
VEGF (pg/mL) | 179.40 ± 38.63 | 184.17 ± 31.61 | 177.54 ± 34.63 | 193.08 ± 26.19 # | 4.664 | 0.040 * |
CV | 0.22 | 0.17 | 0.20 | 0.14 | ||
IGF-1 (ng/mL) | 377.27 ± 60.77 | 387.60 ± 60.28 | 373.96 ± 48.10 | 402.67 ± 48.48 # | 4.376 | 0.046 * |
CV | 0.16 | 0.16 | 0.13 | 0.12 |
Variables/Group | Control (n = 15) | TKD (n = 15) | Time × Group Interaction | |||
---|---|---|---|---|---|---|
Baseline | 16-Week | Baseline | 16-Week | F | p | |
MCAs (cm/s) | 85.20 ± 17.46 | 86.87 ± 17.27 | 84.33 ± 21.97 | 84.20 ± 20.75 | 1.239 | 0.275 |
CV | 0.20 | 0.20 | 0.26 | 0.25 | ||
MCAd (cm/s) | 45.87 ± 13.11 | 45.80 ± 12.39 | 42.00 ± 14.24 | 42.80 ± 12.30 | 0.303 | 0.587 |
CV | 0.29 | 0.27 | 0.34 | 0.29 | ||
MCAm (cm/s) | 57.87 ± 14.27 | 59.33 ± 13.00 | 55.87 ± 15.28 | 54.73 ± 13.93 | 1.063 | 0.311 |
CV | 0.25 | 0.22 | 0.27 | 0.25 | ||
PI (unit) | 0.70 ± 0.13 | 0.70 ± 0.12 | 0.77 ± 0.10 | 0.76 ± 0.09 | 1.362 | 0.253 |
CV | 0.19 | 0.17 | 0.13 | 0.11 |
Variables/Group | Control (n = 15) | TKD (n = 15) | Time × Group Interaction | |||
---|---|---|---|---|---|---|
Baseline | 16-Week | Baseline | 16-Week | F | p | |
Word test (score) | 44.67 ± 10.89 | 45.33 ± 9.06 | 45.87 ± 8.62 | 47.60 ± 7.73 | 1.029 | 0.319 |
CV | 0.24 | 0.20 | 0.19 | 0.16 | ||
Color test (score) | 44.73 ± 8.73 | 45.27 ± 8.18 | 46.20 ± 7.40 | 47.87 ± 6.44 | 2.429 | 0.130 |
CV | 0.20 | 0.18 | 0.16 | 0.13 | ||
Color-Word test (score) | 49.07 ± 7.84 | 48.87 ± 8.07 | 50.33 ± 6.63 | 52.40 ± 6.23 # | 13.952 | 0.001 ** |
CV | 0.16 | 0.17 | 0.13 | 0.12 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.-Y.; So, W.-Y.; Roh, H.-T. The Effects of Taekwondo Training on Peripheral Neuroplasticity-Related Growth Factors, Cerebral Blood Flow Velocity, and Cognitive Functions in Healthy Children: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2017, 14, 454. https://doi.org/10.3390/ijerph14050454
Cho S-Y, So W-Y, Roh H-T. The Effects of Taekwondo Training on Peripheral Neuroplasticity-Related Growth Factors, Cerebral Blood Flow Velocity, and Cognitive Functions in Healthy Children: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2017; 14(5):454. https://doi.org/10.3390/ijerph14050454
Chicago/Turabian StyleCho, Su-Youn, Wi-Young So, and Hee-Tae Roh. 2017. "The Effects of Taekwondo Training on Peripheral Neuroplasticity-Related Growth Factors, Cerebral Blood Flow Velocity, and Cognitive Functions in Healthy Children: A Randomized Controlled Trial" International Journal of Environmental Research and Public Health 14, no. 5: 454. https://doi.org/10.3390/ijerph14050454
APA StyleCho, S.-Y., So, W.-Y., & Roh, H.-T. (2017). The Effects of Taekwondo Training on Peripheral Neuroplasticity-Related Growth Factors, Cerebral Blood Flow Velocity, and Cognitive Functions in Healthy Children: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 14(5), 454. https://doi.org/10.3390/ijerph14050454