Wage Differentials between Heat-Exposure Risk and No Heat-Exposure Risk Groups
Abstract
:1. Introduction
2. Theoretical Discussion
2.1. Impacts of Heat-Exposure Risk on Labor
2.2. Compensating Differentials to Risk of Labor
2.3. Wage Inequality of Labor
3. Methods
4. Results
4.1. Descriptive Statistics and Estimation of the Wage Function
4.2. Wage Differential Using the Blinder-Oaxaca Decomposition
4.3. Changes of Wage Differentials Using the Juhn-Murphy-Pierce Decomposition
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Intergovernmental Panels on Climate Change (IPCC). Impacts, Adaptation, and Vulnerability. Part A. Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Harsdorff, M.; Lieuw-Kie-Song, M.; Tsukamoto, M. Towards an ILO Approach to Climate Change Adaptation; Employment Working Paper 104; International Labor Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Jacobs, J.A.; Steinberg, R.J. Compensating differentials and the male-female wage gap: Evidence from the New York State comparable worth study. Soc. Forces 1990, 69, 439–468. [Google Scholar] [CrossRef]
- Polat, S. Wage compensation for risk: The case of Turkey. Saf. Sci. 2014, 70, 153–160. [Google Scholar] [CrossRef]
- Adam-Poupart, A.; Labrèche, F.; Smargiassi, A.; Duguay, P.; Busque, M.A.; Gagné, C.; Kjellstrom, T.; Zayed, J. Climate change and occupational health and safety in a temperate climate: Potential impacts and research priorities in Quebec, Canada. Ind. Health 2013, 51, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Pilcher, J.J.; Nadler, E.; Busch, C. Effects of hot and cold temperature exposure on performance: A meta-analytic review. Ergonomics 2002, 45, 682–698. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, H.; Lim, U. Exploring the spatial distribution of occupations vulnerable to climate change in Korea. Sustainability 2016, 8, 34. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Ingvar, H.; Bruno, L. Workplace heat stress, health and productivity. Glob. Health Action 2009, 2, 1–6. [Google Scholar]
- Bernard, S.M.; Samet, J.M.; Grambsch, A.; Ebi, K.L.; Romieu, I. The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ. Health Perspect. 2001, 109, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Lipscomb, H.J.; Loomis, D.; McDonald, M.A.; Argue, R.A.; Wing, S. A conceptual model of work and health disparities in the United States. Int. J. Health Serv. 2006, 36, 25–50. [Google Scholar] [CrossRef] [PubMed]
- Lang, K.; Majumdar, S. The pricing of job characteristics when markets do not clear: Theory and policy implications. Int. Econ. Rev. 2004, 45, 1111–1128. [Google Scholar] [CrossRef]
- Xiang, J.; Bi, P.; Pisaniello, D.; Hansen, A. Health impacts of workplace heat exposure: An epidemiological review. Ind. Health. 2014, 52, 92–101. [Google Scholar] [CrossRef]
- Bender, K.A.; Mridha, H. The effect of local area unemployment on compensating wage differentials for injury risk. South. Econ. J. 2011, 78, 287–307. [Google Scholar] [CrossRef]
- Weeden, K.A. Why do some occupations pay more than others? Social closure and earnings inequality in the United States. Am. J. Sociol. 2002, 108, 55–101. [Google Scholar] [CrossRef]
- Blinder, A.S. Wage discrimination: Reduced form and structural estimates. J. Hum. Resour. 1973, 8, 436–455. [Google Scholar] [CrossRef]
- Oaxaca, R. Male-female wage differentials in urban labor markets. Int. Econ. Rev. 1973, 14, 693–709. [Google Scholar] [CrossRef]
- Juhn, C.; Murphy, K.M.; Pierce, B. Wage inequality and the rise in returns to skill. J. Polit. Econ. 1993, 101, 410–442. [Google Scholar] [CrossRef]
- Bennett, C.M.; McMichael, A.J. Non-heat related impacts of climate change on working populations. Glob. Health Action 2010, 3, 5640. [Google Scholar] [CrossRef] [PubMed]
- Schulte, P.A.; Chun, H. Climate change and occupational safety and health: Establishing a preliminary framework. J. Occup. Environ. Hyg. 2009, 6, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Kjellstrom, T.; Lemke, B.; Hyatt, O. Increased workplace heat-exposure due to climate change. Asia-Pac. Newsl. Occup. Health Saf. 2011, 18, 6–20. [Google Scholar]
- Sahu, S.; Sett, M.; Kjellstrom, T. Heat-exposure, cardiovascular stress and work productivity in rice harvesters in India: Implications for a climate change future. Ind. Health 2013, 51, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Lecocq, F.; Shalizi, Z. Balancing Expenditures on Mitigation of and Adaptation to Climate Change: An Exploration of Issues Relevant to Developing Countries; Policy Research Working Paper 4299; The World Bank Development Research Group, Sustainable Rural and Urban Development Team: Washington, DC, USA, 2007. [Google Scholar]
- Kjellstrom, T.; Crowe, J. Climate change, workplace heat-exposure, and occupational health and productivity in Central America. Int. J. Occup. Environ. Health 2011, 17, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Dunne, J.; Stouffer, R.; John, J. Reductions in labor capacity from heat stress under climate warming. Nat. Clim. Chang. 2013, 3, 563–566. [Google Scholar]
- Dash, D.P.; Mallick, L. Dynamics of urbanization and temperature increase in Middle East: An empirical investigation. Asian Econ. Financ. Rev. 2017, 7, 486–497. [Google Scholar] [CrossRef]
- Alshebani, M.N.; Wedawatta, G. Making the construction industry resilient to extreme weather: Lesson from construction in hot weather conditions. Procedia Econ. Financ. 2014, 18, 635–642. [Google Scholar] [CrossRef]
- Zhander, K.K.; Botzen, W.J.; Oppermann, E.; Kjellstrom, T.; Garnett, S.T. Heat stress causes substantial labour productivity loss in Australia. Nat. Clim. Chang. 2015, 5, 647–651. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Lemke, B.; Otto, M. Mapping occupational heat-exposure and effects in South-East Asia: Ongoing time trends 1980–2009 and future estimates to 2050. Ind. Health 2013, 51, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, J. The Regional Impacts of Climate Change on Labor Work Capacity; KEI Working Paper 2015-04; Korea Environment Institute: Sejong, Korea, 2015. [Google Scholar]
- Luginbuhl, R.; Jackson, L.; Castillo, D.; Loringer, K. Heat-related deaths among crop workers—United States, 1992–2006. J. Am. Med. Assoc. 2008, 300, 1017–1018. [Google Scholar]
- Adger, W.N.; Agrawala, S.; Mirza, M.M.Q.; Conde, C.; O’Brien, K.; Pulhin, J.; Pulwarty, R.; Smit, B.; Takahashi, K. Chapter 17: Assessment of adaptation practices, options, constraints and capacity. In Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; pp. 719–743. [Google Scholar]
- Cordona, O.D.; van Aalst, M.K.; Birkmann, J.; Fordham, M.; McGregor, G.; Perez, R.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.T. Determinants of risk: Exposure and vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 65–108. [Google Scholar]
- Sen, A.K. Development as Freedom; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Banik, D. Legal empowerment as a conceptual and operational tool in poverty eradication. Hague J. Rule Law 2009, 1, 117–131. [Google Scholar] [CrossRef]
- Mearns, R.; Norton, A. Social Dimensions of Climate Change: Equity and Vulnerability in a Warming World. In New Frontiers of Social Policy 52097; The International Bank for Reconstruction and Development and The World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Renton, A. Suffering the Science: Climate Change, People, and Poverty; Oxfam Briefing Paper No. 130; Oxfam International: Oxford, UK, 2009. [Google Scholar]
- Anastario, M.; Shebab, N.; Lawry, L. Increased gender-based violence among women internally displaced in Mississippi 2 years post-Hurricane Katrina. Disaster Med. Public Health Prep. 2009, 3, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Alston, M.; Whittenbury, K. Research, Action and Policy: Addressing the Gendered Impacts of Climate Change; Springer: Berlin, Germany, 2013. [Google Scholar]
- Rahman, M. Climate change, disaster and gender vulnerability: A study on two divisions of Bangladesh. Am. J. Hum. Ecol. 2013, 2, 72–82. [Google Scholar] [CrossRef]
- Shah, K.U.; Dulal, H.B.; Johnson, C.; Baptiste, A. Understanding livelihood vulnerability to climate change: Applying the livelihood vulnerability index in Trinidad and Tobago. Geoforum 2013, 47, 125–137. [Google Scholar] [CrossRef]
- Thaler, R.; Rosen, S. The value of saving a life: Evidence from the labor market. In Household Production and Consumption; Terleckyj, N.E., Ed.; National Bureau of Economic Research: Cambridge, MA, USA, 1976; pp. 265–302. [Google Scholar]
- Rosen, S. The theory of equalizing differences. In The Handbook of Labor Economics; Ashenfelder, O., Card, D., Eds.; Elsevier: Amsterdam, The Netherlands, 1986; Volume 1, pp. 641–692. [Google Scholar]
- Viscusi, W.K. The value of risks to life and health. J. Econ. Lit. 1993, 31, 1912–1946. [Google Scholar]
- Bender, K.A.; Mridha, H.A.; Peoples, J. Risk compensation for hospital workers: Evidence from relative wages of janitors. Ind. Lab. Relat. Rev. 2006, 59, 226–242. [Google Scholar] [CrossRef]
- Natis, S.A.; Michailidis, A.; Mattas, K. Hazardous agrochemicals, smoking, and farmer’s differences in wage-risk tradeoffs. Oper. Res. 2013, 13, 139–152. [Google Scholar]
- Hersh, J.; Viscusi, W. Cigarette smoking, seatbelt use, and differences in wage-risk tradeoffs. J. Hum. Resour. 1990, 25, 202–227. [Google Scholar] [CrossRef]
- Jacobs, R.; Hartog, J.; Vijverberg, W. Self-selection bias in estimated wage premiums for earnings risk. Empir. Econ. 2009, 37, 271–286. [Google Scholar] [CrossRef]
- Viscusi, W.K.; Aldy, J. The value of a statistical life: A critical review of market estimates throughout the world. J. Risk Uncertain. 2003, 27, 5–76. [Google Scholar] [CrossRef]
- Jones-Lee, M.W.; Loomes, G. Scale and context effects in the valuation of transport safety. J. Risk Uncertain. 1995, 11, 183–203. [Google Scholar] [CrossRef]
- Schelling, T.C. The life you save may be your own. In Problems in Public Expenditure and Analysis; Chase, S.B., Ed.; Brookings Institution: Washington, DC, USA, 1968; pp. 127–162. [Google Scholar]
- Salinas-Jiménez, M.M.; Rahona-López, M.; Murillo-Huertas, I.P. Gender wage differentials and educational mismatch: An application to the Spanish case. Appl. Econ. 2013, 45, 4226–4235. [Google Scholar] [CrossRef]
- Weichselbaumer, D.; Winter-Ebmer, R. A meta-analysis of the international gender wage gap. J. Econ. Surv. 2005, 13, 479–511. [Google Scholar] [CrossRef]
- Depalo, D.; Giordano, R.; Papapetrou, E. Public-private wage differentials in euro-area countries: Evidence from quantile decomposition analysis. Empir. Econ. 2015, 49, 985–1015. [Google Scholar] [CrossRef]
- Gürbüz, A.A.; Polat, S. Public-private wage differentials in Turkey: Public policy or market dynamics? Int. Rev. Appl. Econ. 2016, 30, 326–356. [Google Scholar] [CrossRef]
- Rahona-López, M.; Murillo-Huertas, I.P.; Salinas-Jiménez, M.M. Wage differentials by sector and gender: A quantile analysis for the Spanish case. J. Econ. Policy Reform. 2016, 19, 20–38. [Google Scholar] [CrossRef]
- Piazzalunga, D. Is there a double-negative effect? Gender and ethnic wage differentials in Italy. Labour 2015, 29, 243–269. [Google Scholar] [CrossRef]
- Darity, W.; Guilkey, D.K.; Winfrey, W. Explaining differences in economic performance among racial and ethnic groups in the USA. Am. J. Econ. Sociol. 1996, 55, 411–425. [Google Scholar] [CrossRef]
- Kim, K.S.; Min, S.; Choi, Y.-S. Dynamic decomposition of regional wage differentials in Korea. Soc. Sci. J. 2015, 52, 311–321. [Google Scholar] [CrossRef]
- Pereira, J.; Galego, A. Regional wage differentials in Portugal: Static and dynamic approaches. Pap. Reg. Sci. 2011, 90, 529–548. [Google Scholar] [CrossRef]
- Lee, L. Decomposing wage differentials between migrant workers and urban workers in urban China’s labor market. China Econ. Rev. 2012, 23, 461–470. [Google Scholar] [CrossRef]
- Zhu, R. Wage differentials between urban residents and rural migrants in urban China during 2002–2007: A distributional analysis. China Econ. Rev. 2016, 37, 2–14. [Google Scholar] [CrossRef]
- Antoni, M.; Janser, M.; Lehmer, F. The hidden winners of renewable energy promotion: Insights into sector-specific wage differentials. Energy Policy 2015, 86, 595–613. [Google Scholar] [CrossRef]
- Mincer, J. Schooling, Experience, and Earnings; Columbia University Press: New York, NY, USA, 1974. [Google Scholar]
- Fortin, N.; Lemieux, T.; Firpo, S. Decomposition methods in economics. In Handbook of Labor Economics; Card, D., Ashenfelter, O., Eds.; Elsevier: New York, NY, USA, 2011; pp. 1–102. [Google Scholar]
- Chernozhukov, V.; Fernández–Val, I.; Melly, B. Inference on counterfactual distributions. Econometrica 2013, 81, 2205–2268. [Google Scholar] [CrossRef]
- Shamsuddin, A.F.M. The double-negative effect on the earnings of foreign-born females in Canada. Appl. Econ. 1998, 30, 1187–1201. [Google Scholar] [CrossRef]
- Lemieux, T. The “Mincer equation” thirty years after schooling, experience, and earnings. In Jacob Mincer: A Pioneer of Modern Labor Economics; Grossbard, S., Ed.; Springer: New York, NY, USA, 2006; pp. 127–145. [Google Scholar]
- Jann, B. The Blinder-Oaxaca decomposition for linear regression models. Stata J. 2008, 8, 453–479. [Google Scholar]
- Altonji, J.G.; Blank, R.M. Race and Gender in the Labor Market. In Handbook of Labor Economics; Ashenfelter, O., Card, D., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1999; pp. 3143–3259. [Google Scholar]
- Edin, P.A.; Richardson, K. Swimming with the tide: Solidarity wage policy and the gender earnings gap. Scand. J. Econ. 2002, 104, 49–67. [Google Scholar] [CrossRef]
- Blau, F.D.; Kahn, L.M. Wage structure and gender earnings differentials: An international comparison. Economica 1996, 63, S29–S62. [Google Scholar] [CrossRef]
- Korea Working Condition Survey. Available online: http://www.kosha.or.kr/www/cmsTiles.do?url=/cms/board/board/Board.jsp?communityKey=B1002&menuId=8303 (accessed on 5 June 2017). (In Korean).
Variable | Definition | Measure |
---|---|---|
Ln_wage | Hourly wages | Reflects the official inflation rate by Statistics Korea (100 in 2010, 104 in 2011, and 109.04 in 2014), units: KRW 10,000 (USD 8.93), paid to workers only. |
Edu | Number of years of schooling | No schooling or below elementary school = 3 years, elementary school graduates = 6 years, middle school graduates = 9 years, high school graduates = 12 years, junior college graduates = 14 years, four-year college graduates = 16 years, graduate school degrees = 18 years. |
Exp | Number of years at work | Number of years employed at the current worksite. |
Exp2 | Square of the number of years at work | Square of the number of years employed at the current worksite. |
Capital | Regional type | 1 = capital regions, 0 = non-capital regions. Capital regions refer to Seoul, Gyeonggi, and the Incheon area. Non-capital regions refer to all other areas. |
Regular | Type of employment | 1 = regular employee, 0 = non-regular employee. Regular employees are workers whose employment contract is over a year. Irregular employees are temporary workers (1 month to 1 year) or daily laborers (under one month). |
Private | Form of business | 1 = private sector, 0 = public sector. |
Large | Number of employees at the current worksite | 1 = company with over 100 employees, 0 = company with under 100 employees. |
Men | Gender | 1 = men, 0 = women. |
Age | Age | Exact age from birth. |
Heat_risk | Heat-exposure risk | 1 = exposure, 0 = non-exposure. Working conditions that expose workers to heat over 25% of the work hours (heat-exposure is defined by temperatures hot enough to make workers sweat even during their breaks). |
Occ1–Occ9 | Occupation dummies | Korean Standard Classification of Occupations: Occ1 = managers, Occ2 = professionals and related workers, Occ3 = clerks, Occ4 = service workers, Occ5 = sale workers, Occ6 = skilled agricultural, forestry, and fishery workers, Occ7 = craft and related trades workers, Occ8 = plant, machine operators and assemblers, Occ9 = elementary occupations (benchmark = armed forces). |
Ind1–Ind20 | Industry dummies | Korean Standard Industrial Classification: Ind1 = agriculture, forestry and fishing, Ind2 = mining and quarrying, Ind3 = manufacturing, Ind4 = electricity, gas, steam, and water supply, Ind5 = sewerage, waste management, materials recovery, and remediation activities, Ind6 = construction, Ind7 = wholesale and retail trade, Ind8 = transportation, Ind9 = accommodation and food service activities, Ind10 = information and communications, Ind11 = financial and insurance activities, Ind12 = real estate activities and renting and leasing, Ind13 = professional, scientific, and technical activities, Ind14 = business facilities management and business support services, Ind15 = public administration and defense or compulsory social security, Ind16 = education, Ind17 = human health and social work, Ind18 = arts, sports, and recreation related services, Ind19 = membership organizations, repair, and other personal services, Ind20 = activities of households as employers, undifferentiated goods- and services-producing activities of households for personal use (benchmark = activities of foreign organizations and bodies) |
Variable | Heat-Exposure (Years 2–4) | No Heat-Exposure (Years 2–4) | Heat-Exposure (Year 3) | No Heat-Exposure (Year 3) | Heat-Exposure (Year 4) | No Heat-Exposure (Year 4) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Ln_wage | −0.45 | 0.570 | −0.33 | 0.560 | −0.42 | 0.550 | −0.32 | 0.540 | −0.46 | 0.580 | −0.34 | 0.570 |
Edu | 12.06 | 2.815 | 13.60 | 2.673 | 12.18 | 2.659 | 13.68 | 2.565 | 11.97 | 2.942 | 13.57 | 2.743 |
Exp | 8.60 | 8.155 | 7.29 | 6.989 | 8.22 | 7.822 | 6.86 | 6.710 | 9.18 | 8.556 | 7.91 | 7.284 |
Exp2 | 140.45 | 266.566 | 101.94 | 198.031 | 128.76 | 247.736 | 92.12 | 188.898 | 157.55 | 291.177 | 115.66 | 208.663 |
Capital | 0.32 | 0.467 | 0.40 | 0.490 | 0.31 | 0.463 | 0.39 | 0.488 | 0.32 | 0.465 | 0.42 | 0.493 |
Regular | 0.73 | 0.446 | 0.84 | 0.365 | 0.76 | 0.426 | 0.87 | 0.339 | 0.68 | 0.467 | 0.80 | 0.400 |
Private | 0.89 | 0.309 | 0.84 | 0.364 | 0.91 | 0.279 | 0.85 | 0.360 | 0.88 | 0.331 | 0.84 | 0.364 |
Large | 0.16 | 0.365 | 0.17 | 0.373 | 0.16 | 0.371 | 0.16 | 0.364 | 0.15 | 0.359 | 0.17 | 0.379 |
Men | 0.68 | 0.465 | 0.53 | 0.499 | 0.73 | 0.444 | 0.57 | 0.494 | 0.63 | 0.483 | 0.47 | 0.499 |
Age | 46.04 | 12.098 | 42.00 | 11.391 | 44.86 | 11.311 | 41.03 | 10.842 | 47.61 | 12.874 | 43.28 | 12.071 |
Occ1 | 0.02 | 0.124 | 0.02 | 0.132 | 0.02 | 0.148 | 0.02 | 0.143 | 0.00 | 0.065 | 0.01 | 0.096 |
Occ2 | 0.08 | 0.265 | 0.21 | 0.406 | 0.07 | 0.247 | 0.21 | 0.405 | 0.09 | 0.280 | 0.21 | 0.408 |
Occ3 | 0.08 | 0.264 | 0.28 | 0.448 | 0.08 | 0.266 | 0.28 | 0.449 | 0.08 | 0.267 | 0.28 | 0.451 |
Occ4 | 0.11 | 0.318 | 0.09 | 0.282 | 0.10 | 0.303 | 0.09 | 0.279 | 0.12 | 0.330 | 0.09 | 0.290 |
Occ5 | 0.06 | 0.245 | 0.14 | 0.345 | 0.06 | 0.232 | 0.13 | 0.341 | 0.08 | 0.268 | 0.14 | 0.351 |
Occ6 | 0.02 | 0.124 | 0.00 | 0.060 | 0.01 | 0.109 | 0.00 | 0.057 | 0.02 | 0.136 | 0.00 | 0.063 |
Occ7 | 0.21 | 0.411 | 0.06 | 0.243 | 0.24 | 0.428 | 0.07 | 0.256 | 0.19 | 0.389 | 0.05 | 0.221 |
Occ8 | 0.20 | 0.403 | 0.09 | 0.283 | 0.23 | 0.418 | 0.09 | 0.288 | 0.19 | 0.391 | 0.08 | 0.278 |
Occ9 | 0.22 | 0.412 | 0.11 | 0.317 | 0.20 | 0.397 | 0.11 | 0.308 | 0.23 | 0.422 | 0.12 | 0.321 |
Ind1 | 0.02 | 0.137 | 0.01 | 0.071 | 0.01 | 0.120 | 0.00 | 0.068 | 0.02 | 0.151 | 0.01 | 0.071 |
Ind2 | 0.00 | 0.046 | 0.00 | 0.023 | 0.00 | 0.049 | 0.00 | 0.023 | 0.00 | 0.022 | 0.00 | 0.023 |
Ind3 | 0.30 | 0.460 | 0.20 | 0.396 | 0.34 | 0.475 | 0.19 | 0.396 | 0.27 | 0.443 | 0.20 | 0.401 |
Ind4 | 0.01 | 0.078 | 0.01 | 0.083 | 0.01 | 0.088 | 0.01 | 0.093 | 0.00 | 0.062 | 0.00 | 0.063 |
Ind5 | 0.00 | 0.061 | 0.00 | 0.045 | 0.00 | 0.057 | 0.00 | 0.045 | 0.00 | 0.062 | 0.00 | 0.041 |
Ind6 | 0.14 | 0.343 | 0.05 | 0.219 | 0.12 | 0.328 | 0.05 | 0.217 | 0.14 | 0.350 | 0.05 | 0.216 |
Ind7 | 0.09 | 0.285 | 0.16 | 0.369 | 0.09 | 0.285 | 0.17 | 0.373 | 0.10 | 0.296 | 0.16 | 0.367 |
Ind8 | 0.04 | 0.204 | 0.04 | 0.199 | 0.05 | 0.211 | 0.04 | 0.205 | 0.04 | 0.195 | 0.04 | 0.188 |
Ind9 | 0.10 | 0.299 | 0.06 | 0.233 | 0.09 | 0.286 | 0.06 | 0.229 | 0.11 | 0.311 | 0.06 | 0.241 |
Ind10 | 0.01 | 0.103 | 0.03 | 0.161 | 0.01 | 0.111 | 0.03 | 0.166 | 0.01 | 0.088 | 0.02 | 0.152 |
Ind11 | 0.01 | 0.112 | 0.06 | 0.242 | 0.01 | 0.097 | 0.06 | 0.236 | 0.02 | 0.127 | 0.06 | 0.244 |
Ind12 | 0.02 | 0.152 | 0.03 | 0.164 | 0.02 | 0.144 | 0.03 | 0.163 | 0.03 | 0.164 | 0.03 | 0.168 |
Ind13 | 0.01 | 0.096 | 0.03 | 0.179 | 0.01 | 0.093 | 0.03 | 0.179 | 0.01 | 0.095 | 0.03 | 0.179 |
Ind14 | 0.06 | 0.240 | 0.04 | 0.201 | 0.06 | 0.242 | 0.04 | 0.184 | 0.06 | 0.246 | 0.05 | 0.216 |
Ind15 | 0.04 | 0.206 | 0.05 | 0.224 | 0.03 | 0.176 | 0.05 | 0.220 | 0.06 | 0.232 | 0.05 | 0.222 |
Ind16 | 0.04 | 0.196 | 0.10 | 0.300 | 0.04 | 0.188 | 0.11 | 0.311 | 0.04 | 0.197 | 0.09 | 0.282 |
Ind17 | 0.03 | 0.164 | 0.07 | 0.259 | 0.02 | 0.151 | 0.07 | 0.249 | 0.03 | 0.180 | 0.08 | 0.279 |
Ind18 | 0.01 | 0.091 | 0.01 | 0.100 | 0.01 | 0.087 | 0.01 | 0.106 | 0.01 | 0.084 | 0.01 | 0.087 |
Ind19 | 0.06 | 0.229 | 0.05 | 0.209 | 0.06 | 0.243 | 0.05 | 0.218 | 0.04 | 0.207 | 0.04 | 0.198 |
Ind20 | 0.00 | 0.053 | 0.00 | 0.070 | 0.00 | 0.049 | 0.00 | 0.054 | 0.00 | 0.058 | 0.01 | 0.089 |
N | 9610 | 36,962 | 4563 | 19,594 | 4184 | 13,766 |
Variable | Pooled | No Heat-Exposure Risk Group | Heat-Exposure Risk Group | |||
---|---|---|---|---|---|---|
Constant | −1.2235 | (0.1986) *** | −1.2543 | (0.2250) *** | −0.9251 | (0.4208) * |
Edu | 0.0619 | (0.0010) *** | 0.0634 | (0.0011) *** | 0.0539 | (0.0021) *** |
Exp | 0.0341 | (0.0007) *** | 0.0336 | (0.0008) *** | 0.0320 | (0.0015) *** |
Exp2 | −0.0006 | (0.0000) *** | −0.0005 | (0.0000)*** | −0.0006 | (0.0000) *** |
Capital | 0.0703 | (0.0038) *** | 0.0821 | (0.0041) *** | 0.0184 | (0.0092) ** |
Regular | 0.1662 | (0.0053) *** | 0.1751 | (0.0061) *** | 0.1538 | (0.0111) *** |
Private | −0.0180 | (0.0069) *** | −0.0167 | (0.0073) ** | −0.0176 | (0.0197) |
Large | 0.1261 | (0.0053) *** | 0.1193 | (0.0058) *** | 0.1456 | (0.0127) *** |
Men | 0.2086 | (0.0042) *** | 0.2064 | (0.0045) *** | 0.2041 | (0.0111) *** |
Age | 0.0007 | (0.0002) *** | 0.0011 | (0.0002) *** | −0.0012 | (0.0005) *** |
Occ1 | 0.2350 | (0.0389) *** | 0.2244 | (0.0453) *** | 0.1801 | (0.0787) ** |
Occ2 | 0.1022 | (0.0367) *** | 0.0750 | (0.0430) * | 0.1230 | (0.0727) * |
Occ3 | 0.0383 | (0.0363) | 0.0133 | (0.0426) | 0.0299 | (0.0718) |
Occ4 | −0.0885 | (0.0369) ** | −0.0979 | (0.0434) ** | −0.0938 | (0.0720) |
Occ5 | −0.0278 | (0.0370) | −0.0467 | (0.0433) | −0.0482 | (0.0740) |
Occ6 | −0.1748 | (0.0459) *** | −0.1635 | (0.0579) ** | −0.1797 | (0.0823) * |
Occ7 | 0.0133 | (0.0369) | −0.0174 | (0.0435) | 0.0431 | (0.0717) |
Occ8 | −0.0418 | (0.0368) | −0.0816 | (0.0433) * | 0.0114 | (0.0719) |
Occ9 | −0.2378 | (0.0368) *** | −0.2695 | (0.0433) *** | −0.2051 | (0.0715) *** |
Ind1 | −0.5972 | (0.1960) *** | −0.5554 | (0.2226) ** | −0.7305 | (0.4141) * |
Ind2 | −0.2884 | (0.2041) | −0.2809 | (0.2368) | −0.3763 | (0.4223) |
Ind3 | −0.4120 | (0.1945) ** | −0.4026 | (0.2202) * | −0.5093 | (0.4121) |
Ind4 | −0.3729 | (0.1956) * | −0.3665 | (0.2213) * | −0.4640 | (0.4156) |
Ind5 | −0.3289 | (0.1979) * | −0.2967 | (0.2245) | −0.4605 | (0.4177) |
Ind6 | −0.4061 | (0.1946) ** | −0.4152 | (0.2203) * | −0.4504 | (0.4123) |
Ind7 | −0.4699 | (0.1945) ** | −0.4640 | (0.2203) ** | −0.5571 | (0.4124) |
Ind8 | −0.4845 | (0.1946) ** | −0.4875 | (0.2203) ** | −0.5120 | (0.4125) |
Ind9 | −0.4653 | (0.1947) ** | −0.4751 | (0.2204) ** | −0.5194 | (0.4126) |
Ind10 | −0.4305 | (0.1948) ** | −0.4266 | (0.2205) * | −0.5169 | (0.4140) |
Ind11 | −0.2161 | (0.1946) | −0.2215 | (0.2203) | −0.1889 | (0.4138) |
Ind12 | −0.6755 | (0.1948) *** | −0.6666 | (0.2205) *** | −0.7696 | (0.4130) * |
Ind13 | −0.3922 | (0.1947) ** | −0.3916 | (0.2204) * | −0.4348 | (0.4144) |
Ind14 | −0.5754 | (0.1947) *** | −0.5938 | (0.2204) *** | -0.5908 | (0.4125) |
Ind15 | −0.4939 | (0.1945) ** | −0.4795 | (0.2202) ** | −0.6378 | (0.4130) |
Ind16 | −0.4252 | (0.1945) ** | −0.4156 | (0.2202) * | −0.5523 | (0.4130) |
Ind17 | −0.5242 | (0.1946) *** | −0.5177 | (0.2203) ** | −0.6267 | (0.4130) |
Ind18 | −0.4997 | (0.1953) ** | −0.5078 | (0.2210) ** | −0.5291 | (0.4148) |
Ind19 | −0.4696 | (0.1947) ** | −0.4719 | (0.2204) ** | −0.5408 | (0.4126) |
Ind20 | −0.4751 | (0.1964) ** | −0.4793 | (0.2221) ** | −0.4602 | (0.4198) |
Heat_risk | 0.0105 | (0.0048) ** | — | — | ||
Adj. R-sq | 0.5247 | 0.5382 | 0.4720 | |||
F | 1319.34 | 1134.78 | 227.07 | |||
N | 46,572 | 36,962 | 9610 |
Classification | Coefficient | |
---|---|---|
No heat-exposure risk group | −0.3342 | (0.0029) *** |
Heat-exposure risk group | −0.4474 | (0.0058) *** |
Wage differentials | 0.1132 | (0.0065) *** |
Endowment effect | 0.1237 | (0.0051) *** |
Price effect | −0.0105 | (0.0051) ** |
Variable | Endowment Effect | Price Effect | ||
---|---|---|---|---|
Constant | — | −0.3292 | (0.1171) *** | |
Edu | 0.0955 | (0.0026) *** | 0.1172 | (0.0333) *** |
Exp | −0.0448 | (0.0033) *** | 0.0141 | (0.0173) |
Exp2 | 0.0234 | (0.0021) *** | 0.0113 | (0.0090) |
Capital | 0.0054 | (0.0005) *** | 0.0214 | (0.0035) *** |
Regular | 0.0192 | (0.0011) *** | 0.0165 | (0.0110) |
Private | 0.0009 | (0.0004) ** | 0.0008 | (0.0196) |
Large | 0.0011 | (0.0005) ** | −0.0042 | (0.0020) ** |
Men | −0.0316 | (0.0013) *** | 0.0019 | (0.0081) |
Age | −0.0028 | (0.0010) *** | 0.1079 | (0.0284) *** |
Occ1 | 0.0005 | (0.0003) | 0.0007 | (0.0012) |
Occ2 | 0.0135 | (0.0037) *** | −0.0072 | (0.0073) |
Occ3 | 0.0078 | (0.0055) | −0.0063 | (0.0084) |
Occ4 | 0.0023 | (0.0008) *** | −0.0002 | (0.0068) |
Occ5 | −0.0021 | (0.0021) | −0.0013 | (0.0056) |
Occ6 | 0.0021 | (0.0006) *** | 0.0001 | (0.0011) |
Occ7 | −0.0020 | (0.0042) | −0.0083 | (0.0112) |
Occ8 | 0.0048 | (0.0032) | −0.0143 | (0.0111) |
Occ9 | 0.0247 | (0.0031) *** | −0.0107 | (0.0121) |
Ind1 | 0.0085 | (0.0013) *** | 0.0028 | (0.0016) * |
Ind2 | 0.0005 | (0.0002) ** | 0.0002 | (0.0002) |
Ind3 | 0.0447 | (0.0070) *** | 0.0314 | (0.0222) |
Ind4 | −0.0003 | (0.0003) | 0.0006 | (0.0006) |
Ind5 | 0.0006 | (0.0003) ** | 0.0006 | (0.0004) |
Ind6 | 0.0347 | (0.0055) *** | 0.0056 | (0.0095) |
Ind7 | −0.0343 | (0.0048) *** | 0.0088 | (0.0085) |
Ind8 | 0.0011 | (0.0011) | 0.0011 | (0.0035) |
Ind9 | 0.0194 | (0.0030) *** | 0.0048 | (0.0074) |
Ind10 | −0.0068 | (0.0011) *** | 0.0010 | (0.0012) |
Ind11 | −0.0107 | (0.0031) *** | −0.0007 | (0.0020) |
Ind12 | −0.0025 | (0.0012) ** | 0.0025 | (0.0021) |
Ind13 | −0.0094 | (0.0016) *** | 0.0004 | (0.0012) |
Ind14 | 0.0110 | (0.0019) *** | 0.0002 | (0.0047) |
Ind15 | −0.0042 | (0.0013) *** | 0.0072 | (0.0039) * |
Ind16 | −0.0256 | (0.0039) *** | 0.0060 | (0.0044) |
Ind17 | −0.0235 | (0.0030) *** | 0.0033 | (0.0031) |
Ind18 | −0.0008 | (0.0005) | 0.0002 | (0.0009) |
Ind19 | 0.0045 | (0.0013) *** | 0.0038 | (0.0043) |
Ind20 | −0.0010 | (0.0003) *** | −0.0001 | (0.0005) |
Year | Wage Differentials in Log | Observed Effect | Unobserved Effect |
---|---|---|---|
2011 | 0.0961 | 0.1139 | −0.0178 |
2014 | 0.1226 | 0.1431 | −0.0205 |
Difference | 0.0265 | 0.0292 | −0.0027 |
Change in the Observed Effect | Observed X’s Effect | Observed Price Effect | Interaction |
0.0292 | 0.0262 | −0.0018 | 0.0048 |
Change in the unobserved effect | Gap effect | Unobserved price effect | Interaction |
−0.0027 | −0.0018 | −0.0002 | −0.0007 |
Variable | Change in the Observed Effect | Observed X’s Effect (Q) | Observed Price Effect (P) | Interaction Q × P |
---|---|---|---|---|
Edu | 0.0022 | 0.0066 | −0.0041 | −0.0003 |
Exp | 0.0092 | 0.0030 | 0.0065 | −0.0004 |
Exp2 | −0.0038 | 0.0033 | −0.0061 | −0.0009 |
Capital | 0.0021 | 0.0021 | −0.0000 | −0.0000 |
Regular | 0.0084 | 0.0024 | 0.0052 | 0.0008 |
Private | −0.0044 | −0.0017 | −0.0057 | 0.0030 |
Large | 0.0038 | 0.0032 | −0.0002 | 0.0009 |
Men | −0.0000 | −0.0016 | 0.0015 | 0.0001 |
Age | 0.0000 | −0.0007 | 0.0006 | 0.0001 |
Occ1 | 0.0018 | 0.0012 | −0.0002 | 0.0009 |
Occ2 | −0.0052 | −0.0012 | −0.0045 | 0.0005 |
Occ3 | −0.0017 | 0.0000 | −0.0017 | −0.0000 |
Occ4 | 0.0023 | 0.0016 | 0.0003 | 0.0003 |
Occ5 | −0.0010 | 0.0006 | −0.0019 | 0.0003 |
Occ6 | 0.0005 | 0.0012 | −0.0004 | −0.0003 |
Occ7 | 0.0049 | −0.0004 | 0.0068 | −0.0015 |
Occ8 | −0.0011 | −0.0024 | 0.0017 | −0.0004 |
Occ9 | 0.0117 | 0.0070 | 0.0036 | 0.0011 |
Ind1 | 0.0082 | 0.0024 | 0.0032 | 0.0026 |
Ind2 | −0.0000 | 0.0000 | 0.0005 | −0.0005 |
Ind3 | 0.0030 | −0.0141 | 0.0377 | −0.0207 |
Ind4 | 0.0001 | 0.0001 | −0.0002 | 0.0001 |
Ind5 | 0.0007 | 0.0001 | 0.0004 | 0.0003 |
Ind6 | 0.0272 | 0.0038 | 0.0183 | 0.0052 |
Ind7 | −0.0141 | 0.0032 | −0.0212 | 0.0039 |
Ind8 | 0.0009 | 0.0001 | 0.0008 | 0.0001 |
Ind9 | 0.0154 | 0.0028 | 0.0092 | 0.0033 |
Ind10 | −0.0044 | 0.0000 | −0.0045 | 0.0000 |
Ind11 | −0.0119 | −0.0000 | −0.0125 | 0.0006 |
Ind12 | 0.0018 | 0.0021 | −0.0013 | 0.0010 |
Ind13 | −0.0073 | 0.0001 | −0.0075 | 0.0001 |
Ind14 | −0.0022 | −0.0048 | 0.0045 | −0.0020 |
Ind15 | 0.0073 | 0.0062 | −0.0042 | 0.0054 |
Ind16 | −0.0059 | 0.0049 | −0.0167 | 0.0059 |
Ind17 | −0.0172 | −0.0023 | −0.0125 | −0.0024 |
Ind18 | 0.0009 | 0.0010 | −0.0004 | 0.0003 |
Ind19 | −0.0011 | −0.0021 | 0.0032 | −0.0023 |
Ind20 | −0.0019 | −0.0015 | −0.0000 | −0.0003 |
Total | 0.0292 | 0.0262 | −0.0018 | 0.0048 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Lim, U. Wage Differentials between Heat-Exposure Risk and No Heat-Exposure Risk Groups. Int. J. Environ. Res. Public Health 2017, 14, 685. https://doi.org/10.3390/ijerph14070685
Kim D, Lim U. Wage Differentials between Heat-Exposure Risk and No Heat-Exposure Risk Groups. International Journal of Environmental Research and Public Health. 2017; 14(7):685. https://doi.org/10.3390/ijerph14070685
Chicago/Turabian StyleKim, Donghyun, and Up Lim. 2017. "Wage Differentials between Heat-Exposure Risk and No Heat-Exposure Risk Groups" International Journal of Environmental Research and Public Health 14, no. 7: 685. https://doi.org/10.3390/ijerph14070685