Factors Associated with Bone Health in Malaysian Middle-Aged and Elderly Women Assessed via Quantitative Ultrasound
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Curtis, E.; Litwic, A.; Cooper, C.; Dennison, E. Determinants of muscle and bone aging. J. Cell. Physiol. 2015, 230, 2618–2625. [Google Scholar] [CrossRef] [PubMed]
- Khosla, S.; Oursler, M.J.; Monroe, D.G. Estrogen and the skeleton. Trends Endocrinol. Metab. 2012, 23, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Khosla, S. Update on estrogens and the skeleton. J. Clin. Endocrinol. Metab. 2010, 95, 3569–3577. [Google Scholar] [CrossRef] [PubMed]
- Schnatz, P.F.; Marakovits, K.A.; O’Sullivan, D.M. Assessment of postmenopausal women and significant risk factors for osteoporosis. Obstet. Gynecol. Surv. 2010, 65, 591–596. [Google Scholar] [CrossRef] [PubMed]
- ToRo, K.O.R. A study of risk factors and t- score variability in Romanian women with postmenopausal osteoporosis. Iran. J. Public Health 2013, 42, 1387–1397. [Google Scholar]
- World Health Organization. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Report of a World Health Organization Study Group; World Health Organization: Geneva, Switzerland, 1994. [Google Scholar]
- Mithal, A.; Ebeling, P. The Asia-Pacific Regional Audit: Epidemiology, Costs & Burden of Osteoporosis in 2013; International Osteoporosis Foundation: Nyon, Switzerland, 2013. [Google Scholar]
- Chin, K.Y.; Ima-Nirwana, S. Calcaneal quantitative ultrasound as a determinant of bone health status: What properties of bone does it reflect? Int. J. Med. Sci. 2013, 10, 1778–1783. [Google Scholar] [CrossRef] [PubMed]
- Krieg, M.A.; Barkmann, R.; Gonnelli, S.; Stewart, A.; Bauer, D.C.; Del Rio Barquero, L.; Kaufman, J.J.; Lorenc, R.; Miller, P.D.; Olszynski, W.P.; et al. Quantitative ultrasound in the management of osteoporosis: The 2007 iscd official positions. J. Clin. Densitom. 2008, 11, 163–187. [Google Scholar] [CrossRef] [PubMed]
- Moayyeri, A.; Adams, J.; Adler, R.; Krieg, M.A.; Hans, D.; Compston, J.; Lewiecki, E. Quantitative ultrasound of the heel and fracture risk assessment: An updated meta-analysis. Osteoporos. Int. 2012, 23, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.Y.; Nguyen, N.D.; Center, J.R.; Eisman, J.A.; Nguyen, T.V. Quantitative ultrasound and fracture risk prediction in non-osteoporotic men and women as defined by who criteria. Osteoporos. Int. 2013, 24, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.-Y.; Soelaiman, I.-N.; Mohamed, I.N.; Ibrahim, S.; Ngah, W.Z.W. The effects of age, physical activity level, and body anthropometry on calcaneal speed of sound value in men. Arch. Osteoporos. 2012, 7, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.-Y.; Soelaiman, I.-N.; Mohamed, I.N.; Wan Ngah, W.Z. Serum testosterone, sex hormone-binding globulin and total calcium levels predict the calcaneal speed of sound in men. Clinics 2012, 67, 911–916. [Google Scholar] [CrossRef]
- Chin, K.Y.; Soelaiman, I.N.; Mohamed, I.N.; Mohamed, N.; Shuid, A.N.; Muhammad, N.; Wan Ngah, W.Z. Discrepancy between the quantitative ultrasound value of Malaysian men and the manufacturer’s reference and the impact on classification of bone health status. J. Clin. Densitom. 2013, 16, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.J.; Nurul, Z.Z.; Chuah, J.S.; Nabil, M.M.A.; Isa, N.M.; Sabarul, A.M.; Nazrun, A.S. Association between risk factors of osteoporosis and bone mineral density in women of different ethnic groups in a Malaysian hospital. Int. J. Osteoporos. Metab. Disord. 2014, 7, 1–11. [Google Scholar]
- Hasnah, H.; Amin, I.; Suzana, S. Bone health status and lipid profile among post-menopausal malay women in Cheras, Kuala Lumpur. Malays. J. Nutr. 2012, 18, 161–171. [Google Scholar] [PubMed]
- Chin, K.-Y.; Kamaruddin, A.A.A.; Low, N.Y.; Ima-Nirwana, S. Effects of age, sex, and ethnicity on bone health status of the elderly in Kuala Lumpur, Malaysia. Clin. Interv. Aging 2016, 11, 767–773. [Google Scholar] [CrossRef] [PubMed]
- National Health Service. Alcohol Units. Available online: http://www.nhs.uk/Livewell/alcohol/Pages/alcohol-units.aspx (accessed on 6 July 2017).
- The International Physical Activity Questionnaire Group. Downloadable IPAQ Questionnaires. Available online: https://sites.google.com/site/theipaq/questionnaire_links (accessed on 6 July 2017).
- Chu, A.H.; Moy, F.M. Reliability and validity of the Malay international physical activity questionnaire (IPAQ-M) among a Malay population in Malaysia. Asia Pac. J. Public Health 2015, 27, NP2381–NP2389. [Google Scholar] [CrossRef] [PubMed]
- Haiat, G.; Padilla, F.; Peyrin, F.; Laugier, P. Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: A 3d model simulation. J. Bone Miner. Res. 2007, 22, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-X.; Lin, W.; Mittra, E.; Xia, Y.; Cheng, J.; Judex, S.; Rubin, C.; Müller, R. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound. Acta Astronaut. 2013, 92, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Yuen, K.W.; Kwok, T.C.; Qin, L.; Leung, J.C.; Chan, D.C.; Kwok, A.W.; Woo, J.; Leung, P.C. Characteristics of age-related changes in bone compared between male and female reference Chinese populations in Hong Kong: A PQCT study. J. Bone Miner. Metab. 2010, 28, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Cauley, J.A. Estrogen and bone health in men and women. Steroids 2015, 99, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Adami, S.; Giannini, S.; Giorgino, R.; Isaia, G.; Maggi, S.; Sinigaglia, L.; Filipponi, P.; Crepaldi, G.; Di Munno, O. The effect of age, weight, and lifestyle factors on calcaneal quantitative ultrasound: The ESOPO study. Osteoporos. Int. 2003, 14, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Chen, Y.; Xu, Y.; Zhou, X.; Xu, Y.; Ma, Z.; Sun, Y. Impact of age, gender, and body composition on bone quality in an adult population from the middle areas of china. J. Clin. Densitom. 2016. [Google Scholar] [CrossRef] [PubMed]
- El Maghraoui, A.; Guerboub, A.A.; Mounach, A.; Ghozlani, I.; Nouijai, A.; Ghazi, M.; Achemlal, L.; Bezza, A.; Tazi, M.A. Body mass index and gynecological factors as determinants of bone mass in healthy Moroccan women. Maturitas 2007, 56, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Brennan, O.; Kuliwaba, J.S.; Lee, T.C.; Parkinson, I.H.; Fazzalari, N.L.; McNamara, L.M.; O’Brien, F.J. Temporal changes in bone composition, architecture, and strength following estrogen deficiency in osteoporosis. Calcif. Tissue Int. 2012, 91, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Assantachai, P.; Sriussadaporn, S.; Thamlikitkul, V.; Sitthichai, K. Body composition: Gender-specific risk factor of reduced quantitative ultrasound measures in older people. Osteoporos. Int. 2006, 17, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Gemalmaz, A.; Discigil, G.; Sensoy, N.; Basak, O. Identifying osteoporosis in a primary care setting with quantitative ultrasound: Relationship to anthropometric and lifestyle factors. J. Bone Miner. Metab. 2007, 25, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Society, M.O. Clinical Guidance on Management of Osteoporosis 2012; Malaysian Osteoporosis Society: Petaling Jaya, Malaysia, 2015. [Google Scholar]
- Mahboub, S.M.; Al-Muammar, M.N.; Elareefy, A.A. Evaluation of the prevalence and correlated factors for decreased bone mass density among pre- and post-menopausal educated working women in Saudi Arabia. J. Health Popul. Nutr. 2014, 32, 513–519. [Google Scholar] [PubMed]
- Wang, Q.; Huang, Q.; Zeng, Y.; Liang, J.J.; Liu, S.Y.; Gu, X.; Liu, J.A. Parity and osteoporotic fracture risk in postmenopausal women: A dose-response meta-analysis of prospective studies. Osteoporos. Int. 2016, 27, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Moller, U.K.; Vieth Streym, S.; Mosekilde, L.; Rejnmark, L. Changes in bone mineral density and body composition during pregnancy and postpartum. A controlled cohort study. Osteoporos. Int. 2012, 23, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Ishii, S.; Greendale, G.A.; Cauley, J.A.; Ruppert, K.; Crandall, C.J.; Karlamangla, A.S. Parity, lactation, bone strength, and 16-year fracture risk in adult women: Findings from the study of women’s health across the nation (swan). Bone 2015, 73, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Looker, A.C.; Melton, L.J., 3rd; Borrud, L.G.; Shepherd, J.A. Lumbar spine bone mineral density in us adults: Demographic patterns and relationship with femur neck skeletal status. Osteoporos. Int. 2012, 23, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Barrett-Connor, E.; Siris, E.S.; Wehren, L.E.; Miller, P.D.; Abbott, T.A.; Berger, M.L.; Santora, A.C.; Sherwood, L.M. Osteoporosis and fracture risk in women of different ethnic groups. J. Bone Miner. Res. 2005, 20, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Conradie, M.; Conradie, M.M.; Kidd, M.; Hough, S. Bone density in black and white South African women: Contribution of ethnicity, body weight and lifestyle. Arch. Osteoporos. 2014, 9, 193. [Google Scholar] [CrossRef] [PubMed]
- Lim, P.; Ong, F.; Adeeb, N.; Seri, S.; Noor-Aini, M.; Shamsuddin, K.; Hapizah, N.; Mohamed, A.; Mokhtar, A.; Wan, H. Bone health in urban midlife malaysian women: Risk factors and prevention. Osteoporos. Int. 2005, 16, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-K.; Khir, A.S.M. The incidence of hip fracture in Malaysians above 50 years of age: Variation in different ethnic groups. APLAR J. Rheumatol. 2007, 10, 300–305. [Google Scholar] [CrossRef]
- Cederholm, T.; Cruz-Jentoft, A.J.; Maggi, S. Sarcopenia and fragility fractures. Eur. J. Phys. Rehabil. Med. 2013, 49, 111–117. [Google Scholar] [PubMed]
- Reid, I.R. Relationships among body mass, its components, and bone. Bone 2002, 31, 547–555. [Google Scholar] [CrossRef]
- Constant, D.; Rosenberg, L.; Zhang, Y.; Cooper, D.; Kalla, A.A.; Micklesfield, L.; Hoffman, M. Quantitative ultrasound in relation to risk factors for low bone mineral density in south African pre-menopausal women. Arch. Osteoporos. 2009, 4, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Gonnelli, S.; Caffarelli, C.; Tanzilli, L.; Merlotti, D.; Gennari, L.; Rossi, S.; Lucani, B.; Campagna, M.S.; Franci, B.; Nuti, R. The association of body composition and sex hormones with quantitative ultrasound parameters at the calcaneus and phalanxes in elderly women. Calcif. Tissue Int. 2011, 89, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Elbassuoni, E. Better association of waist circumference with insulin resistance and some cardiovascular risk factors than body mass index. Endocr. Regul. 2013, 47, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J. Effects of obesity on bone metabolism. J. Orthop. Surg. Res. 2011, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, C.; Veronese, N.; Berton, L.; Carraro, S.; Bolzetta, F.; De Rui, M.; Miotto, F.; Inelmen, E.M.; Coin, A.; Perissinotto, E.; et al. Factors influencing serum-hydroxivitamin d levels and other bone metabolism parameters in healthy older women. J. Nutr. Health Aging 2017, 21, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Pesarini, J.R.; Oliveira, R.J.; Pessatto, L.R.; Antoniolli-Silva, A.; Felicidade, I.; Nardi, N.B.; Camassola, M.; Mantovani, M.S.; Ribeiro, L.R. Vitamin D: Correlation with biochemical and body composition changes in a southern Brazilian population and induction of cytotoxicity in mesenchymal stem cells derived from human adipose tissue. Biomed. Pharmacother. 2017, 91, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.Y.; Ima-Nirwana, S.; Ibrahim, S.; Mohamed, I.N.; Wan Ngah, W.Z. Vitamin D status in malaysian men and its associated factors. Nutrients 2014, 6, 5419–5433. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-J.; Liu, Y.-J.; Liu, P.-Y.; Hamilton, J.; Recker, R.R.; Deng, H.-W. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.H.; Venners, S.A.; Terwedow, H.A.; Feng, Y.; Niu, T.; Li, Z.; Laird, N.; Brain, J.D.; Cummings, S.R.; Bouxsein, M.L.; et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am. J. Clin. Nutr. 2006, 83, 146–154. [Google Scholar] [PubMed]
- Han, G.; Chen, Y.M.; Huang, H.; Chen, Z.; Jing, L.; Xiao, S.M. Fat mass is positively associated with estimated hip bone strength among Chinese men aged 50 years and above with low levels of lean mass. Int. J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef]
- Wang, J.; Yan, D.; Hou, X.; Chen, P.; Sun, Q.; Bao, Y.; Hu, C.; Zhang, Z.; Jia, W. Association of adiposity indices with bone density and bone turnover in the Chinese population. Osteoporos. Int. 2017. [Google Scholar] [CrossRef] [PubMed]
- Shanb, A.A.; Youssef, E.F. The impact of adding weight-bearing exercise versus nonweight bearing programs to the medical treatment of elderly patients with osteoporosis. J. Fam. Community Med. 2014, 21, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Bielemann, R.M.; Martinez-Mesa, J.; Gigante, D.P. Physical activity during life course and bone mass: A systematic review of methods and findings from cohort studies with young adults. BMC Musculoskelet. Disord. 2013, 14, 77. [Google Scholar] [CrossRef] [PubMed]
- Hapidin, H.; Othman, F.; Soelaiman, I.N.; Shuid, A.N.; Mohamed, N. Effects of nicotine administration and nicotine cessation on bone histomorphometry and bone biomarkers in sprague-dawley male rats. Calcif. Tissue Int. 2011, 88, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Baheiraei, A.; Pocock, N.A.; Eisman, J.A.; Nguyen, N.D.; Nguyen, T.V. Bone mineral density, body mass index and cigarette smoking among Iranian women: Implications for prevention. BMC Musculoskelet. Disord. 2005, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Huitron-Bravo, G.; Denova-Gutierrez, E.; Talavera, J.O.; Moran-Villota, C.; Tamayo, J.; Omana-Covarrubias, A.; Salmeron, J. Levels of serum estradiol and lifestyle factors related with bone mineral density in premenopausal Mexican women: A cross-sectional analysis. BMC Musculoskelet. Disord. 2016, 17, 437. [Google Scholar] [CrossRef] [PubMed]
- Ugurlu, U.; Nayki, U.; Nayki, C.; Ulug, P.; Kulhan, M.; Yildirim, Y. Assessment of smoking for low bone mineral density in postmenopausal Turkish women. Wien. Klin. Wochenschr. 2016, 128, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Hallstrom, H.; Byberg, L.; Glynn, A.; Lemming, E.W.; Wolk, A.; Michaelsson, K. Long-term coffee consumption in relation to fracture risk and bone mineral density in women. Am. J. Epidemiol. 2013, 178, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Choi, K.H.; Park, S.M.; Shin, D.; Joh, H.K.; Cho, E. The benefit of bone health by drinking coffee among Korean postmenopausal women: A cross-sectional analysis of the fourth & fifth Korea national health and nutrition examination surveys. PLoS ONE 2016, 11, e0147762. [Google Scholar]
- Hirata, H.; Kitamura, K.; Saito, T.; Kobayashi, R.; Iwasaki, M.; Yoshihara, A.; Watanabe, Y.; Oshiki, R.; Nishiwaki, T.; Nakamura, K. Association between dietary intake and bone mineral density in Japanese postmenopausal women: The Yokogoshi cohort study. Tohoku J. Exp. Med. 2016, 239, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Kitts, D.D. Studies on the estrogenic activity of a coffee extract. J. Toxicol. Environ. Health 1987, 20, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, B.L.; Carlsen, M.H.; Phillips, K.M.; Bohn, S.K.; Holte, K.; Jacobs, D.R., Jr.; Blomhoff, R. Content of redox-active compounds (ie, antioxidants) in foods consumed in the united states. Am. J. Clin. Nutr. 2006, 84, 95–135. [Google Scholar] [PubMed]
- Kim, J.Y.; Kim, D.H.; Jeong, H.G. Inhibitory effect of the coffee diterpene kahweol on carrageenan-induced inflammation in rats. Biofactors 2006, 26, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Moy, F.M.; Hoe, V.C.; Hairi, N.N.; Vethakkan, S.R.; Bulgiba, A. Vitamin D deficiency and depression among women from an urban community in a tropical country. Public Health Nutr. 2016, 1–7. [Google Scholar] [CrossRef] [PubMed]
Variable of Interest | n | Mean | Standard Deviation | Notes | |
---|---|---|---|---|---|
Age (years) | 344 | 61.8 | 7.6 | ||
Age of menarche (years) | 335 | 13.3 | 1.7 | 9 could not recall the age of menarche | |
Age of menopause (years) | 327 | 49.9 | 5.8 | 17 had not reached menopause | |
Years since menopause (years) | 327 | 11.9 | 9.4 | ||
Weight (kg) | 344 | 60.5 | 11.3 | ||
Height (cm) | 344 | 153.7 | 5.7 | ||
BMI (kg/m2) | 344 | 25.7 | 4.7 | ||
Body fat percentage (%) | 344 | 36.2 | 7.0 | ||
Speed of sound (m/s) | 344 | 1536.0 | 28.6 | ||
Broadband attenuation of sound (dB/MHz) | 344 | 112.4 | 11.7 | ||
Stiffness index | 344 | 84.8 | 14.5 | ||
T-score | 344 | −0.7 | 1.4 | ||
Total MET | 344 | 2922.0 | 2046.8 | ||
Number of children (n) | 344 | 2.9 | 1.8 | ||
n | % | ||||
Ethnicity | Chinese | 119 | 34.6 | ||
Malay | 197 | 57.3 | |||
Indian | 28 | 8.1 | |||
Menopause status | Natural menopause | 274 | 79.7 | ||
Menopause due to surgery | 41 | 11.9 | |||
Menopause due to drugs | 12 | 3.5 | |||
Perimenopausal | 17 | 5 | |||
Education level | No formal education | 17 | 4.9 | ||
Primary school | 60 | 17.4 | |||
Secondary school | 168 | 48.8 | |||
Certificate | 31 | 9 | |||
Diploma | 37 | 10.8 | |||
Degree | 23 | 6.7 | |||
Postgraduate | 8 | 2.3 | |||
Cigarette smoking status | Non-smoker | 335 | 97.4 | ||
Current smoker | 8 | 2.3 | |||
Ex-smoker | 1 | 0.3 | |||
Alcohol drinking | Non-drinker | 336 | 97.7 | ||
Current drinker | 7 | 2.0 | |||
Ex-drinker | 1 | 0.3 | |||
Milk drinking | Non-drinker | 173 | 50.3 | ||
Drinker | 171 | 49.7 | |||
Coffee drinking | Non-drinker | 146 | 42.4 | ||
Current drinker | 197 | 57.3 | |||
Ex-drinker | 1 | 0.3 | |||
Physical activity status | Inactive | 15 | 4.4 | ||
Minimally active | 193 | 56.1 | |||
HEPA active | 136 | 39.5 |
Variable | SOS (m/s) * | BUA (dB/MHz) *,# | SI * | T-Score * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | p-Value | Mean | SE | p-Value | Mean | SE | p-Value | Mean | SE | p-Value | ||
Ethnicity | Malay | 1531.228 | 2.595 | 0.083 | 111.09 | 1.037 | 0.171 | 82.735 | 1.294 | 0.083 | −0.88 | 0.128 | 0.104 |
Chinese | 1538.602 | 1.998 | 113.435 | 0.798 | 86.354 | 0.997 | −0.524 | 0.099 | |||||
Indian/Punjabi | 1538.204 | 5.149 | 110.744 | 2.058 | 83.106 | 2.568 | −0.655 | 0.254 | |||||
BMI | Underweight (<18.5 kg/m2) | 1528.125 | 11.24 | 0.747 | 99.009 | 4.491 | <0.001 | 73.879 | 5.617 | 0.053 | −1.789 | 0.555 | 0.042 |
Normal (18.5–24.9 kg/m2) | 1534.8 | 2.193 | 111.005 | 0.876 | a | 83.512 | 1.096 | −0.782 | 0.108 | ||||
Overweight (25–29.9 kg/m2) | 1537.188 | 2.431 | 113.168 | 0.971 | a | 85.961 | 1.215 | −0.573 | 0.12 | ||||
Obese (≥30 kg/m2) | 1537.637 | 3.7 | 116.07 | 1.478 | a,b | 87.2 | 1.849 | −0.38 | 0.183 | ||||
Menopause status | Natural menopause | 1535.652 | 1.654 | 0.544 | 112.213 | 0.659 | 0.465 | 84.782 | 0.823 | 0.315 | −0.675 | 0.082 | 0.529 |
Menopause due to surgery | 1536.483 | 4.285 | 112.895 | 1.708 | 84.529 | 2.133 | −0.622 | 0.211 | |||||
Menopause due to medications | 1530.755 | 7.923 | 110.026 | 3.158 | 80.255 | 3.944 | −0.968 | 0.391 | |||||
Perimenopausal | 1544.531 | 6.675 | 115.986 | 2.66 | 89.71 | 3.322 | −0.255 | 0.329 | |||||
Education level | No formal education | 1535.082 | 6.948 | 0.987 | 110.603 | 2.759 | 0.611 | 81.202 | 3.455 | 0.746 | −0.818 | 0.342 | 0.878 |
Primary | 1533.733 | 3.651 | 110.948 | 1.45 | 83.646 | 1.815 | −0.787 | 0.18 | |||||
Secondary | 1536.355 | 2.124 | 112.31 | 0.843 | 84.838 | 1.056 | −0.661 | 0.105 | |||||
Certificate | 1537.337 | 4.964 | 114.226 | 1.971 | 86.609 | 2.468 | −0.51 | 0.244 | |||||
Diploma | 1535.834 | 4.561 | 112.415 | 1.811 | 84.944 | 2.268 | −0.673 | 0.225 | |||||
Degree or above | 1538.034 | 5.004 | 114.893 | 1.987 | 87.241 | 2.488 | −0.434 | 0.246 | |||||
Number of lifetime pregnancies | nulliparous | 1540.789 | 4.228 | 0.458 | 114.611 | 1.668 | 0.01 | 87.73 | 2.099 | 0.097 | −0.388 | 0.208 | 0.114 |
1–3 | 1535.809 | 2.016 | 113.44 | 0.795 | 85.449 | 1.001 | −0.597 | 0.099 | |||||
>3 | 1534.638 | 2.553 | 109.975 | 1.007 | a,b | 82.833 | 1.268 | −0.851 | 0.125 | ||||
Physical activity status | Inactive | 1529.842 | 7.108 | 0.373 | 109.179 | 2.837 | 0.468 | 81.164 | 3.549 | 0.512 | −1.058 | 0.351 | 0.446 |
Minimally active | 1537.672 | 1.965 | 112.552 | 0.784 | 85.298 | 0.981 | −0.608 | 0.097 | |||||
HEPA active | 1534.354 | 2.347 | 112.55 | 0.937 | 84.59 | 1.172 | −0.684 | 0.116 | |||||
Smoking status | Non-smoker | 1536.054 | 1.493 | 0.884 | 112.45 | 0.595 | 0.583 | 84.875 | 0.745 | 0.760 | −0.653 | 0.074 | 0.710 |
Ever-smoker | 1534.699 | 9.167 | 110.699 | 3.655 | 83.459 | 4.572 | −0.824 | 0.452 | |||||
Alcohol drinking | Non-drinker | 1536.034 | 1.491 | 0.946 | 112.338 | 0.594 | 0.454 | 84.793 | 0.744 | 0.696 | −0.662 | 0.074 | 0.729 |
Ever-drinker | 1535.367 | 9.712 | 115.19 | 3.87 | 86.712 | 4.843 | −0.494 | 0.479 | |||||
Milk drinking | Non-drinker | 1534.362 | 2.082 | 0.262 | 112.227 | 0.832 | 0.748 | 84.167 | 1.039 | 0.362 | −0.711 | 0.103 | 0.464 |
Drinker | 1537.695 | 2.094 | 112.584 | 0.837 | 85.517 | 1.045 | −0.604 | 0.103 | |||||
Coffee drinking | Non-drinker | 1535.348 | 2.254 | 0.695 | 110.938 | 0.893 | 0.014 | 83.555 | 1.121 | 0.132 | −0.776 | 0.111 | 0.160 |
Ever-drinker | 1536.519 | 1.947 | 113.499 | 0.771 | a | 85.795 | 0.968 | −0.57 | 0.096 |
Dependent Variable | Independent Variable | R2 Model | ||||
---|---|---|---|---|---|---|
Unstandardized Coefficients | Standardized Coefficients | p-Value | ||||
B | Standard Error | Beta | ||||
Speed of sound (m/s) (n = 344) | Constant for model | 1606.007 | 12.288 | <0.001 | 0.090 | |
Age (years) | −1.131 | 0.197 | −0.299 | <0.001 | ||
Broadband ultrasound attenuation (square-root transformed) (dB/MHz) (n = 320) | Constant for model | 8.502 | 0.518 | <0.001 | 0.176 | |
Years since menopause (years) | −0.018 | 0.003 | −0.306 | <0.001 | ||
BMI (log-transformed) (kg/m2) | 1.711 | 0.370 | 0.242 | <0.001 | ||
Number of lifetime pregnancies (n) | −0.040 | 0.016 | −0.133 | 0.011 | ||
Stiffness index (n = 319) | Constant for model | 52.746 | 13.581 | <0.001 | 0.174 | |
Years since menopause (years) | −0.562 | 0.081 | −0.358 | <0.001 | ||
BMI (log-transformed) (kg/m2) | 28.992 | 9.692 | 0.157 | 0.003 | ||
Number of of lifetime pregnancy (n) | −0.888 | 0.414 | −0.112 | 0.033 | ||
T-score (n = 318) | Constant for model | 1.858 | 0.680 | 0.007 | 0.158 | |
Years since menopause (years) | −0.054 | 0.008 | −0.356 | <0.001 | ||
Percentage of body fat (%) | −0.030 | 0.011 | −0.148 | 0.004 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chin, K.-Y.; Low, N.Y.; Dewiputri, W.I.; Ima-Nirwanaa, S. Factors Associated with Bone Health in Malaysian Middle-Aged and Elderly Women Assessed via Quantitative Ultrasound. Int. J. Environ. Res. Public Health 2017, 14, 736. https://doi.org/10.3390/ijerph14070736
Chin K-Y, Low NY, Dewiputri WI, Ima-Nirwanaa S. Factors Associated with Bone Health in Malaysian Middle-Aged and Elderly Women Assessed via Quantitative Ultrasound. International Journal of Environmental Research and Public Health. 2017; 14(7):736. https://doi.org/10.3390/ijerph14070736
Chicago/Turabian StyleChin, Kok-Yong, Nie Yen Low, Wan Ilma Dewiputri, and Soelaiman Ima-Nirwanaa. 2017. "Factors Associated with Bone Health in Malaysian Middle-Aged and Elderly Women Assessed via Quantitative Ultrasound" International Journal of Environmental Research and Public Health 14, no. 7: 736. https://doi.org/10.3390/ijerph14070736
APA StyleChin, K. -Y., Low, N. Y., Dewiputri, W. I., & Ima-Nirwanaa, S. (2017). Factors Associated with Bone Health in Malaysian Middle-Aged and Elderly Women Assessed via Quantitative Ultrasound. International Journal of Environmental Research and Public Health, 14(7), 736. https://doi.org/10.3390/ijerph14070736