Occupational Class Differences in Trajectories of Working Conditions in Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Variables
2.2.1. Occupational Class
2.2.2. Physical Workload
2.2.3. Job Demands and Control
2.2.4. Effect of Time: Birth Cohort, Age Group, Actual Age, and Period
2.3. Statistical Analysis
3. Results
3.1. Physical Workload
3.2. Job Demands
3.3. Job Control
4. Discussion
Strengths and Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Questionnaire Items for the Outcome Variables
Instructions |
---|
Next, there will be listed some factors related to work and the working environment. Do they occur in your work and to what extent are they harmful to you? (Check one option on each line.) |
Options: |
□ Does not occur |
□ Occurs, but is not harmful at all |
□ Occurs and is somewhat harmful |
□ Occurs and is very harmful |
Items: |
|
Instructions: |
---|
Next you will be presented some statements about your work. Answer on each whether you completely agree, agree, disagree, or completely disagree with the statement. (Check one option on each line) |
Options: |
□ Completely agree |
□ Agree |
□ Neither agree nor disagree |
□ Disagree |
□ Completely disagree |
Items: |
|
Instructions: |
---|
How well do the next statements describe your job? (Check one option on every line.) |
Options: |
□ Completely agree |
□ Agree |
□ Neither agree nor disagree |
□ Disagree |
□ Completely disagree |
Items: |
|
Appendix B. Time-Variant Occupational Class
Occupational Class | Phase 1 (2000–2002) | Phase 2 (2007) | Phase 3 (2012) | |
---|---|---|---|---|
Managers and professionals | 705 (27.8%) | 701 (29.0%) | 725 (29.5%) | |
Semi-professionals | 590 (23.2%) | 626 (25.9%) | 660 (26.8%) | |
Routine non-manual employees | 968 (38.1%) | 871 (36.1%) | 896 (36.4%) | |
Manual workers | 277 (10.9%) | 217 (9.0%) | 181 (7.4%) | |
Occupational Class at Phase 3 (2012) | ||||
Occupational Class at Baseline | Managers and professionals | Semi-professionals | Routine non-manual employees | Manual employees |
Managers and professionals | 632 | 42 | 7 | 0 |
Semi-professionals | 52 | 493 | 29 | 1 |
Routine non-manual employees | 35 | 119 | 768 | 18 |
Manual workers | 6 | 6 | 92 | 162 |
Model 0 | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
Fixed Effects | ||||
Intercept | 0.00 (−0.03, 0.03) | 0.41 *** (0.33, 0.50) | 0.87 *** (0.49, 1.25) | 0.27 (−0.31, 0.84) |
Period | ||||
2000 | 0.19 *** (0.16, 0.23) | 0.11 ** (0.03, 0.18) | 0.10 * (0.02, 0.18) | |
2007 | 0.04 * (0.00, 0.07) | −0.00 (−0.05, 0.05) | −0.00 (−0.05, 0.04) | |
2012 | – | – | – | |
Occupational class | ||||
Managers and professionals | −1.07 *** (−1.17, −0.98) | −1.08 *** (−1.17, −0.99) | −0.95 (−1.13, 0.12) | |
Semi-professionals | −0.55 *** (−0.64, −0.46) | −0.56 *** (−0.65, −0.47) | 0.38 (−0.16, 0.92) | |
Routine non-manual employees | −0.13 ** (−0.21, −0.04) | −0.13 ** (−0.22, −0.05) | 0.39 (−0.13, 0.90) | |
Manual workers | – | – | – | |
Age | −0.01 * (−0.01, −0.00) | 0.00 (−0.01, 0.01) | ||
Interaction: Occupational class × age | ||||
Managers and professionals | −0.01 * (−0.02, −0.00) | |||
Semi-professionals | −0.02 *** (−0.03, −0.01) | |||
Routine non-manual employees | −0.01 * (−0.02, −0.00) | |||
Manual workers | – | |||
Error variance | ||||
Intercept | 0.6269 *** | 0.4082 *** | 0.4073 *** | 0.4066 *** |
Residual | 0.3729 *** | 0.3628 *** | 0.3627 *** | 0.3621 *** |
Model fit | ||||
Level 1 R2 (PRV) | 0.027085 | 0.027353 | 0.028962 | |
Level 2 R2 (PRV) | 0.348859 | 0.350295 | 0.351412 |
Model 0 | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
Fixed Effects | ||||
Intercept | 0.00 (−0.03, 0.03) | −0.16 ** (−0.25, −0.06) | 0.15 (−0.26, 0.56) | 0.35 (−0.31, 1.01) |
Period | ||||
2000 | −0.00 (−0.05, 0.04) | −0.06 (−0.15, 0.02) | −0.06 (−0.15, 0.02) | |
2007 | 0.02 (−0.02, 0.06) | −0.01 (−0.06, 0.05) | −0.01 (−0.06, 0.05) | |
2012 | – | – | – | |
Occupational class | ||||
Managers and professionals | 0.36 *** (0.26, 0.47) | 0.36 *** (0.26, 0.47) | 0.58 (0.05, 1.22) | |
Semi-professionals | 0.20 *** (0.10, 0.31) | 0.20 *** (0.09, 0.30) | −0.16 (−0.80, 0.48) | |
Routine non-manual employees | −0.01 (−0.11, 0.09) | −0.01 (−0.11, 0.08) | −0.48 (−1.10, 0.13) | |
Manual workers | – | – | – | |
Age | −0.01 (−0.01, 0.00) | −0.01 (−0.02, 0.00) | ||
Interaction: Occupational class × age | ||||
Managers and professionals | −0.00 (−0.02, 0.00) | |||
Semi-professionals | 0.01 (−0.01, 0.02) | |||
Routine non-manual employees | 0.01 (−0.00, 0.02) | |||
Manual workers | – | |||
Error variance | ||||
Intercept | 0.4635 *** | 0.4256 *** | 0.4247 *** | 0.4252 *** |
Residual | 0.5364 *** | 0.5380 *** | 0.5382 *** | 0.5368 *** |
Model fit | ||||
Level 1 R2 (PRV) | −0.002983 | −0.003356 | −0.000746 | |
Level 2 R2 (PRV) | 0.081769 | 0.083711 | 0.082632 |
Model 0 | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
Fixed effects | ||||
Intercept | 0.00 (−0.03, 0.03) | −0.65 *** (−0.74, −0.57) | −0.02 (−0.42, 0.37) | −0.03 (−0.61, 0.55) |
Period | ||||
2000 | 0.15 *** (0.12, 0.18) | 0.03 (−0.06, 0.11) | 0.02 (−0.06, 0.11) | |
2007 | 0.09 *** (0.06, 0.12) | 0.03 (−0.02, 0.08) | 0.03 (−0.01, 0.08) | |
2012 | – | – | – | |
Occupational class | ||||
Managers and professionals | 1.08 *** (0.98, 1.17) | 1.07 *** (0.98, 1.17) | 1.06 *** (0.53, 1.58) | |
Semi-professionals | 0.70 *** (0.61, 0.80) | 0.69 *** (0.60, 0.79) | 0.90 ** (0.36, 1.43) | |
Routine non-manual employees | 0.23 *** (0.14, 0.31) | 0.22 *** (0.14, 0.31) | 0.12 (−0.38, 0.63) | |
Manual workers | – | – | – | |
Age | −0.01 ** (−0.02, −0.00) | −0.01 * (−0.02, 0.00) | ||
Interaction: Occupational class × age | ||||
Managers and professionals | 0.00 (−0.01, 0.01) | |||
Semi-professionals | −0.00 (−0.01, 0.01) | |||
Routine non-manual employees | 0.00 (0.00, 0.01) | |||
Manual workers | – | |||
Error variance | ||||
Intercept | 0.6479 *** | 0.4611 *** | 0.4590 *** | 0.4589 *** |
Residual | 0.3520 *** | 0.3465 *** | 0.3464 *** | 0.3463 *** |
Model fit | ||||
Level 1 R2 (PRV) | 0.015625 | 0.015909 | 0.016193 | |
Level 2 R2 (PRV) | 0.288316 | 0.291557 | 0.291711 |
References
- United Nations Department of Economic and Social Affairs Population Division. World Population Ageing 2013. Available online: http://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2013.pdf (accessed on 13 July 2017).
- Lahelma, E.; Uusitalo, H.; Martikainen, P. Longer work careers through tackling socioeconomic inequalities in disability retirement. Eur. J. Public Health 2012, 22, 299–300. [Google Scholar] [CrossRef] [PubMed]
- Kubicek, B.; Korunka, C.; Hoonakker, P.; Raymo, J.M. Work and Family Characteristics as Predictors of Early Retirement in Married Men and Women. Res. Aging 2010, 32, 467–498. [Google Scholar] [CrossRef] [PubMed]
- Mein, G.; Martikainen, P.; Stansfeld, S.A.; Brunner, E.J.; Fuhrer, R.; Marmot, M.G. Predictors of early retirement in British civil servants. Age Ageing 2000, 29, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, T.; Pietiläinen, O.; Laaksonen, M.; Rahkonen, O.; Lahelma, E.; Martikainen, P. Occupational social class and disability retirement among municipal employees—The contribution of health behaviors and working conditions. Scand. J. Work. Environ. Heal. 2011, 37, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Lahelma, E.; Laaksonen, M.; Lallukka, T.; Martikainen, P.; Pietiläinen, O.; Saastamoinen, P.; Gould, R.; Rahkonen, O. Working conditions as risk factors for disability retirement: A longitudinal register linkage study. BMC Public Health 2012, 12, 309. [Google Scholar] [CrossRef] [PubMed]
- Shultz, K.S.; Wang, M.; Crimmins, E.M.; Fisher, G.G. Age Differences in the Demand-Control Model of Work Stress: An Examination of Data From 15 European Countries. J. Appl. Gerontol. 2010, 29, 21–47. [Google Scholar] [CrossRef] [PubMed]
- European Foundation for the Improvement of Living and Working Conditions. Impact of the Crisis on Industrial Relations and Working Conditions in Europe. Available online: https://www.eurofound.europa.eu/publications/report/2014/working-conditions-industrial-relations/impact-of-the-crisis-on-industrial-relations-and-working-conditions-in-europe (accessed on 13 July 2017).
- Suzuki, E. Time changes, so do people. Soc. Sci. Med. 2012, 75, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Kuh, D.; Ben-Shlomo, Y.; Lynch, J.; Hallqvist, J.; Power, C. Life course epidemiology. J. Epidemiol. Community Health 2003, 57, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Singh-Manoux, A.; Ferrie, J.E.; Chandola, T.; Marmot, M. Socioeconomic trajectories across the life course and health outcomes in midlife: evidence for the accumulation hypothesis? Int. J. Epidemiol. 2004, 33, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Borg, V.; Kristensen, T.S. Social class and self-rated health: Can the gradient be explained by differences in life style or work environment? Soc. Sci. Med. 2000, 51, 1019–1030. [Google Scholar] [CrossRef]
- Pelfrene, E.; Vlerick, P.; Mak, R.P.; De Smet, P.; Kornitzer, M.; De Backer, G. Scale reliability and validity of the Karasek “Job Demand-Control-Support” model in the Belstress study. Work Stress 2001, 15, 297–313. [Google Scholar] [CrossRef]
- Rahkonen, O.; Laaksonen, M.; Martikainen, P.; Roos, E.; Lahelma, E. Job control, job demands, or social class? The impact of working conditions on the relation between social class and health. J. Epidemiol. Community Health 2006, 60, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Karasek, R. Job Demands, Job Decision Latitude, and Mental Strain: Implications for Job Redesign. Adm. Sci. Q. 1979, 24, 285–308. [Google Scholar] [CrossRef]
- Kivimäki, M.; Nyberg, S.T.; Batty, G.D.; Fransson, E.I.; Heikkilä, K.; Alfredsson, L.; Bjorner, J.B.; Borritz, M.; Burr, H.; Casini, A.; et al. Job strain as a risk factor for coronary heart disease: A collaborative meta-analysis of individual participant data. Lancet 2012, 380, 1491–1497. [Google Scholar] [CrossRef]
- Häusser, J.A.; Mojzisch, A.; Niesel, M.; Schulz-Hardt, S. Ten years on: A review of recent research on the Job Demand–Control (-Support) model and psychological well-being. Work Stress 2010, 24, 1–35. [Google Scholar] [CrossRef]
- Heikkilä, K.; Fransson, E.I.; Nyberg, S.T.; Zins, M.; Westerlund, H.; Westerholm, P.; Virtanen, M.; Vahtera, J.; Suominen, S.; Steptoe, A.; et al. Job Strain and Health-Related Lifestyle: Findings From an Individual-Participant Meta-Analysis of 118 000 Working Adults. Am. J. Public Health 2013, 103, 2090–2097. [Google Scholar] [CrossRef] [PubMed]
- Fransson, E.I.; Heikkilä, K.; Nyberg, S.T.; Zins, M.; Westerlund, H.; Westerholm, P.; Väänänen, A.; Virtanen, M.; Vahtera, J.; Theorell, T.; et al. Job strain as a risk factor for leisure-time physical inactivity: An individual-participant meta-analysis of up to 170,000 men and women. Am. J. Epidemiol. 2012, 176, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, T.S. The demand-control-support model: Methodological challenges for future research. Stress Med. 1995, 11, 17–26. [Google Scholar] [CrossRef]
- Mänty, M.; Kouvonen, A.; Lallukka, T.; Lahti, J.; Lahelma, E.; Rahkonen, O. Changes in working conditions and physical health functioning among midlife and ageing employees. Scand. J. Work. Environ. Health 2015, 41, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Kouvonen, A.; Mänty, M.; Lallukka, T.; Lahelma, E.; Rahkonen, O. Changes in psychosocial and physical working conditions and common mental disorders. Eur. J. Public Health 2016, 26, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Lahelma, E.; Aittomäki, A.; Laaksonen, M.; Lallukka, T.; Martikainen, P.; Piha, K.; Rahkonen, O.; Saastamoinen, P. Cohort Profile: The Helsinki Health Study. Int. J. Epidemiol. 2013, 42, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, M.; Aittomäki, A.; Lallukka, T.; Rahkonen, O.; Saastamoinen, P.; Silventoinen, K.; Lahelma, E. Register-based study among employees showed small nonparticipation bias in health surveys and check-ups. J. Clin. Epidemiol. 2008, 61, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Kouvonen, A.; Koskinen, A.; Kokkinen, L.; Donnelly, M.; O’Reilly, D.; Väänänen, A. Distinctive role of income in the all-cause mortality among working age migrants and the settled population in Finland: a follow-up study from 2001 to 2014. Scand. J. Public Health. (accepted for publication).
- City of Helsinki. HenkilöstöRaportti [Staff Report]; City of Helsinki: Helsinki, Finnland, 2015. [Google Scholar]
- Piirainen, H.; Hirvonen, M.; Elo, A.-L.; Huuhtanen, P.; Kandolin, I.; Kauppinen, K.; Ketola, R.; Lindström, K.; Salminen, S.; Reijula, K.; et al. Työ ja Terveys -Haastattelututkimus v. 2003. Taulukkoraportti [Work and Health Interview Study in Year 2003. Table Report]; Finnish Institute of Occupational Health: Helsinki, Finland, 2003. [Google Scholar]
- Karasek, R.; Brisson, C.; Kawakami, N.; Houtman, I.; Bongers, P.; Amick, B. The Job Content Questionnaire (JCQ): An instrument for internationally comparative assessments of psychosocial job characteristics. J. Occup. Health Psychol. 1998, 3, 322–355. [Google Scholar] [CrossRef] [PubMed]
- Peugh, J.L. A practical guide to multilevel modeling. J. Sch. Psychol. 2010, 48, 85–112. [Google Scholar] [CrossRef] [PubMed]
- Schrijvers, C.T.; van de Mheen, H.D.; Stronks, K.; Mackenbach, J.P. Socioeconomic inequalities in health in the working population: the contribution of working conditions. Int. J. Epidemiol. 1998, 27, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Theorell, T. Working conditions and health. In Social Epidemiology; Berkman, L., Kawachi, I., Eds.; Oxford University Press: New York, NY, USA, 2000; pp. 95–117. [Google Scholar]
- Siegrist, J.; Rödel, A. Work stress and health risk behavior. Scand. J. Work. Environ. Health 2006, 32, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Netterstrom, B.; Conrad, N.; Bech, P.; Fink, P.; Olsen, O.; Rugulies, R.; Stansfeld, S. The Relation between Work-related Psychosocial Factors and the Development of Depression. Epidemiol. Rev. 2008, 30, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.; Ramadoss, K. The Job Demands–Control–Support Model and Job Satisfaction Across Gender: The Mediating Role of Work–Family Conflict. J. Fam. Issues 2017, 38, 52–72. [Google Scholar] [CrossRef]
- Griffin, J.M.; Fuhrer, R.; Stansfeld, S.A.; Marmot, M. The importance of low control at work and home on depression and anxiety: Do these effects vary by gender and social class? Soc. Sci. Med. 2002, 54, 783–798. [Google Scholar] [CrossRef]
- Grönlund, A. More Control, Less Conflict: Job Demand–Control, Gender and Work–Family Conflict. Gender, Work Organ. 2007, 14, 476–497. [Google Scholar] [CrossRef]
- City of Helsinki. Mahdollinen uudelleensijoitus—Helsingin kaupunki: Eri-ikäisten Johtaminen. Available online: http://www.eri-ikaistenjohtaminen.fi/tyokyky/tehostettu-tuki-tyossa-jatkaminen/mahdollinen-uudelleensijoitus.html (accessed on 22 June 2017).
- City of Helsinki. Vastuullinen työnantaja | Helsingin Kaupunki. Available online: https://www.hel.fi/helsinki/fi/kaupunki-ja-hallinto/tietoa-helsingista/helsinki-tyonantajana/vastuullinen/ (accessed on 22 June 2017).
- Aittomäki, A.; Lahelma, E.; Rahkonen, O.; Leino-Arjas, P.; Martikainen, P. Job decision latitude as a potential modifier of the contribution of physical workload to poor functioning in middle-aged employees. Int. Arch. Occup. Environ. Health 2008, 81, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Ghisletta, P.; Renaud, O.; Nadége, J.; Courvoisier, D. Linear Mixed-Effects and Latent Curve Models for Longitudinal Life Course Analyses. In A Life Course Perspective on Health Trajectories and Transitions; Burton-Jeangros, C., Cullati, S., Sacker, A., Blane, D., Eds.; Springer: Cham, Germay, 2015; Volume 4, pp. 155–178. [Google Scholar]
- Karasek, R.; Theorell, T. Healthy Work: Stress, Productivity, and the Reconstruction of Working Life; Basic Books: New York, NY, USA, 1992. [Google Scholar]
- Van der Doef, M.; Maes, S. The Job Demand-Control (-Support) Model and psychological well-being: A review of 20 years of empirical research. Work Stress 1999, 13, 87–114. [Google Scholar] [CrossRef]
- Vermeulen, M.; Mustard, C. Gender differences in job strain, social support at work, and psychological distress. J. Occup. Health Psychol. 2000, 5, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Elovainio, M.; Forma, P.; Kivimäki, M.; Sinervo, T.; Sutinen, R.; Laine, M. Job demands and job control as correlates of early retirement thoughts in Finnish social and health care employees. Work Stress 2005, 19, 84–92. [Google Scholar] [CrossRef]
Occupational Class | Phase 1 (Age Range: 40–55) | Phase 2 (Age Range: 45–62) | Phase 3 (Age Range: 50–67) | |
---|---|---|---|---|
Managers & professionals n = 705 (28%) | Physical workload | −0.54 (−0.59, −0.48) | −0.65 (−0.71, −0.60) | −0.72 (−0.77, −0.66) |
Job demands | 0.25 (0.19, 0.32) | 0.32 (0.25, 0.39) | 0.15 (0.07, 0.22) | |
Job control | 0.64 (0.59, 0.70) | 0.56 (0.49, 0.62) | 0.51 (0.45, 0.57) | |
Semi-professionals n = 590 (23%) | Physical workload | 0.09 (0.01, 0.16) | −0.09 (−0.16, −0.01) | −0.20 (−0.27, −0.12) |
Job demands | 0.04 (−0.03, 0.12) | 0.05 (−0.03, 0.13) | 0.11 (0.03, 0.18) | |
Job control | 0.28 (0.2, 0.35) | 0.19 (0.12, 0.26) | 0.11 (0.04, 0.18) | |
Routine non-manual employees n = 968 (38%) | Physical workload | 0.51 (0.45, 0.57) | 0.25 (0.19, 0.31) | 0.24 (0.18, 0.30) |
Job demands | −0.22 (−0.28, −0.16) | −0.20 (−0.26, −0.14) | −0.16 (−0.22, −0.09) | |
Job control | −0.33 (−0.39, −0.27) | −0.29 (−0.35, −0.23) | −0.37 (−0.43, −0.31) | |
Manual workers n = 277 (11%) | Physical workload | 0.63 (0.54, 0.72) | 0.59 (0.48, 0.69) | 0.57 (0.47, 0.68) |
Job demands | −0.12 (−0.23, −0.01) | −0.09 (−0.21, 0.04) | −0.03 (−0.15, 0.10) | |
Job control | −0.67 (−0.79, −0.55) | −0.65 (−0.76, −0.53) | −0.80 (−0.91, −0.68) |
Age at Phase 1 | Phase 1 (Age Range: 40–55) | Phase 2 (Age Range: 45–62) | Phase 3 (Age Range: 50–67) | |
---|---|---|---|---|
40 n = 802 (32%) | Physical workload | 0.20 (0.14, 0.27) | −0.03 (−0.09, 0.04) | −0.09 (−0.16, −0.02) |
Job demands | −0.08 (−0.15, −0.02) | 0.04 (−0.03, 0.11) | 0.09 (0.02, 0.16) | |
Job control | 0.11 (0.05, 0.18) | 0.10 (0.04, 0.17) | 0.05 (−0.01, 0.12) | |
45 n = 887 (35%) | Physical workload | 0.12 (0.06, 0.18) | −0.07 (−0.14, −0.01) | −0.11 (−0.18, −0.05) |
Job demands | 0.01 (−0.05, 0.07) | 0.04 (−0.03, 0.11) | 0.05 (−0.01, 0.12) | |
Job control | 0.05 (−0.02, 0.12) | 0.00 (−0.06, 0.07) | −0.06 (−0.12, 0.01) | |
50 n = 767 (30%) | Physical workload | 0.09 (0.02, 0.16) | 0.00 (−0.07, 0.07) | −0.04 (−0.11, 0.04) |
Job demands | 0.03 (−0.05, 0.10) | −0.01 (−0.09, 0.06) | −0.11 (−0.18, −0.04) | |
Job control | −0.04 (−0.12, 0.03) | −0.08 (−0.15, −0.01) | −0.20 (−0.27, −0.13) | |
55 n = 83 (3%) | Physical workload | −0.06 (−0.28, 0.17) | −0.29 (−0.49, −0.08) | −0.35 (−0.55, −0.14) |
Job demands | −0.04 (−0.28, 0.20) | −0.25 (−0.47, −0.03) | −0.34 (−0.56, −0.11) | |
Job control | 0.09 (−0.14, 0.31) | 0.15 (−0.08, 0.38) | 0.12 (−0.1, 0.34) |
Model 0 | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
Fixed Effects | ||||
Intercept | 0.00 (−0.03, 0.03) | 0.51 *** (0.42, 0.60) | 0.93 *** (0.54, 1.32) | 0.18 (−0.39, 0.74) |
Period | ||||
2000 | 0.22 *** (0.19, 0.26) | 0.14 *** (0.06, 0.22) | 0.14 *** (0.06, 0.22) | |
2007 | 0.05 ** (0.02, 0.08) | 0.01 (−0.04, 0.06) | 0.01 (−0.04, 0.06) | |
2012 | – | – | – | |
Occupational class | ||||
Managers and professionals | −1.23 *** (−1.34, −1.13) | −1.24 *** (−1.34, −1.13) | −0.62 * (−1.13, −0.11) | |
Semi-professionals | −0.66 *** (−0.77, −0.56) | −0.67 *** (−0.78, −0.57) | 0.35 (−0.17, 0.88) | |
Routine non-manual employees | −0.26 *** (−0.36, −0.16) | −0.27 *** (−0.37, −0.17) | 0.65 ** (0.16, 1.14) | |
Manual workers | – | – | – | |
Age | −0.01 * (−0.01, 0.00) | 0.01 (0.00, 0.02) | ||
Interaction: Occupational class × age | ||||
Managers and professionals | −0.01 * (−0.02, 0.00) | |||
Semi-professionals | −0.02 *** (−0.03, −0.01) | |||
Routine non-manual employees | −0.02 *** (−0.03, −0.01) | |||
Manual workers | – | |||
Error variance | ||||
Intercept | 0.6269 *** | 0.4371 *** | 0.4366 *** | 0.4368 *** |
Residual | 0.3729 *** | 0.3590 *** | 0.3588 *** | 0.3576 *** |
Model fit | ||||
Level 1 R2 (PRV) | 0.037275 | 0.037812 | 0.04103 | |
Level 2 R2 (PRV) | 0.30276 | 0.303557 | 0.303238 |
Model 0 | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
Fixed Effects | ||||
Intercept | 0.00 (−0.03, 0.03) | −0.08 (−0.17, 0.02) | 0.23 (−0.18, 0.64) | 0.07 (−0.56, 0.70) |
Period | ||||
2000 | −0.02 (−0.06, 0.02) | −0.08 (−0.16, 0.01) | −0.08 (−0.16, 0.01) | |
2007 | 0.01 (−0.03, 0.05) | −0.01 (−0.07, 0.04) | −0.01 (−0.07, 0.04) | |
2012 | – | – | – | |
Occupational class | ||||
Managers and professionals | 0.32 *** (0.21, 0.43) | 0.32 *** (0.21, 0.43) | 0.96 ** (0.35, 1.57) | |
Semi-professionals | 0.15 * (0.03, 0.26) | 0.14 * (0.03, 0.25) | 0.04 (−0.58, 0.66) | |
Routine non-manual employees | −0.11 * (−0.22, −0.01) | −0.12 * (−0.22, −0.01) | −0.13 (−0.71, 0.45) | |
Manual workers | – | – | – | |
Age | −0.01 (−0.01, 0.00) | 0.00 (−0.01, 0.01) | ||
Interaction: Occupational class × age | ||||
Managers and professionals | −0.01 * (−0.02, 0.00) | |||
Semi-professionals | 0.00 (−0.01, 0.01) | |||
Routine non-manual employees | 0.00 (−0.01, 0.01) | |||
Manual workers | – | |||
Error variance | ||||
Intercept | 0.4635 *** | 0.4317 *** | 0.4308 *** | 0.4311 *** |
Residual | 0.5364 *** | 0.5361 *** | 0.5363 *** | 0.5349 *** |
Model fit | ||||
Level 1 R2 (PRV) | 0.000559 | 0.000186 | 0.002796 | |
Level 2 R2 (PRV) | 0.068608 | 0.07055 | 0.069903 |
Model 0 | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
Fixed Effects | ||||
Intercept | 0.00 (−0.03, 0.03) | −0.76 *** (−0.86, −0.67) | −0.15 (−0.54, 0.25) | −0.08 (−0.64, 0.48) |
Period | ||||
2000 | 0.10 *** (0.07, 0.14) | −0.02 (−0.1, 0.06) | −0.02 (−0.10, 0.06) | |
2007 | 0.08 *** (0.04, 0.11) | 0.02 (−0.03, 0.07) | 0.02 (−0.03, 0.07) | |
2012 | – | – | – | |
Occupational class | ||||
Managers & professionals | 1.28 *** (1.17, 1.38) | 1.27 *** (1.17, 1.38) | 1.35 *** (0.84, 1.85) | |
Semi-professionals | 0.90 *** (0.79, 1.01) | 0.88 *** (0.77, 0.99) | 1.10 *** (0.58, 1.62) | |
Routine non-manual employees | 0.37 *** (0.27, 0.47) | 0.37 *** (0.27, 0.47) | 0.04 (−0.44, 0.53) | |
Manual workers | – | – | – | |
Age | −0.01 ** (−0.02, 0.00) | −0.01 * (−0.02, 0.00) | ||
Interaction: Occupational class × age | ||||
Managers & professionals | 0.00 (−0.01, 0.01) | |||
Semi-professionals | 0.00 (−0.01, 0.01) | |||
Routine non-manual employees | 0.01 (0.00, 0.02) | |||
Manual workers | – | |||
Error variance | ||||
Intercept | 0.6479 *** | 0.4537 *** | 0.4514 *** | 0.4519 *** |
Residual | 0.3520 *** | 0.3492 *** | 0.3492 *** | 0.3484 *** |
Model fit | ||||
Level 1 R2 (PRV) | 0.007955 | 0.007955 | 0.010227 | |
Level 2 R2 (PRV) | 0.299738 | 0.303288 | 0.302516 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raittila, S.; Rahkonen, O.; Lahelma, E.; Alho, J.; Kouvonen, A. Occupational Class Differences in Trajectories of Working Conditions in Women. Int. J. Environ. Res. Public Health 2017, 14, 790. https://doi.org/10.3390/ijerph14070790
Raittila S, Rahkonen O, Lahelma E, Alho J, Kouvonen A. Occupational Class Differences in Trajectories of Working Conditions in Women. International Journal of Environmental Research and Public Health. 2017; 14(7):790. https://doi.org/10.3390/ijerph14070790
Chicago/Turabian StyleRaittila, Simo, Ossi Rahkonen, Eero Lahelma, Juha Alho, and Anne Kouvonen. 2017. "Occupational Class Differences in Trajectories of Working Conditions in Women" International Journal of Environmental Research and Public Health 14, no. 7: 790. https://doi.org/10.3390/ijerph14070790
APA StyleRaittila, S., Rahkonen, O., Lahelma, E., Alho, J., & Kouvonen, A. (2017). Occupational Class Differences in Trajectories of Working Conditions in Women. International Journal of Environmental Research and Public Health, 14(7), 790. https://doi.org/10.3390/ijerph14070790