Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Menstrual Cycle Characteristics
2.3. Air Pollution Exposure
2.4. Other Measurements of Participants
2.5. Statistical Analyses
3. Results
3.1. Effect of Multiple-Pollutant Exposure
3.2. Effect of Single-Pollutant Exposure
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- World Health Organization. Air Pollution Levels Rising in Many of the World’s Poorest Cities [Press Release]. Available online: http://www.who.int/mediacentre/news/releases/2016/air-pollution-rising/en (accessed on 20 May 2017).
- Mendola, P.; Messer, L.C.; Rappazzo, K. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult female. Fertil. Steril. 2008, 89, e81–e94. [Google Scholar] [CrossRef] [PubMed]
- Sikka, S.C.; Wang, R. Endocrine disruptors and estrogenic effects on male reproductive axis. Asian J. Androl. 2008, 10, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.B.; Hatch, M. Women and Health; Gulf Professional Publishing: San Diego, CA, USA, 2000. [Google Scholar]
- Merklinger-Gruchala, A.; Kapiszewska, M. Association between PM10 air pollution and birth weight after full-term pregnancy in Krakow city 1995–2009–trimester specificity. Ann. Agric. Environ. Med. 2015, 22, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Stieb, D.M.; Chen, L.; Eshoul, M.; Judek, S. Ambient air pollution, birth weight and preterm birth: A systematic review and meta-analysis. Environ. Res. 2012, 117, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Protano, C.; Scalise, T.; Orsi, G.B.; Vitali, M. A systematic review of benzene exposure during pregnancy and adverse outcomes on intrauterine development and birth: Still far from scientific evidence. Ann. Ig. 2012, 24, 451–463. [Google Scholar] [PubMed]
- Ghosh, R.; Rankin, J.; Pless-Mulloli, T.; Glinianaia, S. Does the effect of air pollution on pregnancy outcomes differ by gender? A systematic review. Environ. Res. 2007, 105, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 2011, 31, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, I.; Guxens, M.; Garcia-Esteban, R.; Corbella, T.; Nieuwenhuijsen, M.J.; Foradada, C.M.; Sunyer, J. Association between GIS-based exposure to urban air pollution during pregnancy and birth weight in the INMA sabadell cohort. Environ. Health Perspect. 2009, 117, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Sadeu, J.C.; Foster, W.G. Effect of in vitro exposure to benzo[a]pyrene, a component of cigarette smoke, on folliculogenesis, steroidogenesis and oocyte nuclear maturation. Reprod. Toxicol. 2011, 31, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Mendola, P.; Buck Louis, G.M. Environmental Contaminants, Female Reproductive Health and Fertility. In Environmental Impacts on Reproductive Health and Fertility; Cambridge University Press: Cambridge, UK, 2010; pp. 161–172. [Google Scholar]
- Bellelis, P.; Podgaec, S.; Abrão, M.S. Environmental factors and endometriosis. Rev. Assoc. Med. Bras. 2011, 57, 448–452. [Google Scholar] [CrossRef]
- Whitehead, S.A.; Rice, S. Endocrine-disrupting chemicals as modulators of sex steroid synthesis. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Callén, M.S.; de la Cruz, M.T.; López, J.M.; Mastral, A.M. PAH in airborne particulate matter: Carcinogenic character of PM10 samples and assessment of the energy generation impact. Fuel Process. Technol. 2011, 92, 176–182. [Google Scholar] [CrossRef]
- Hombach-Klonisch, S.; Pocar, P.; Kietz, S.; Klonisch, T. Molecular actions of polyhalogenated arylhydrocarbons (PAHs) in female reproduction. Curr. Med. Chem. 2005, 12, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Practice Committee of the American Society for Reproductive Medicine. Current clinical irrelevance of luteal phase deficiency: A committee opinion. Fertil. Steril. 2015, 103, e27–e32. [Google Scholar]
- Brodin, T.; Bergh, T.; Berglund, L.; Hadziosmanovic, N.; Holte, J. Menstrual cycle length is an age-independent marker of female fertility: Results from 6271 treatment cycles of in vitro fertilization. Fertil. Steril. 2008, 90, 1656–1661. [Google Scholar] [CrossRef] [PubMed]
- Hariparsad, S. O23-1 the effects of occupational pollutants on the reproductive health of female informal street traders in Durban South Africa. Occup. Environ. Med. 2016, 73 (Suppl. 1), A44. [Google Scholar] [CrossRef]
- Luderer, U.; Christensen, F.; Johnson, W.O.; She, J.; Ip, H.S.S.; Zhou, J.; Alvaran, J.; Krieg, E.F.; Kesner, J.S. Associations between urinary biomarkers of polycyclic aromatic hydrocarbon exposure and reproductive function during menstrual cycles in women. Environ. Int. 2017, 100, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Siddique, S.; Chakraborty, S.; Bhattacharya, P.; Banerjee, M.; Roychoudhury, S.; Lahiri, T.; Ray, M.R. Adverse reproductive health outcomes in pre-menopausal Indian women chronically exposed to biomass smoke. J. Public Health 2015, 23, 363–372. [Google Scholar] [CrossRef]
- Perin, P.M.; Maluf, M.; Czeresnia, C.E.; Januário, D.A.N.F.; Saldiva, P.H.N. Effects of exposure to high levels of particulate air pollution during the follicular phase of the conception cycle on pregnancy outcome in couples undergoing in vitro fertilization and embryo transfer. Fertil. Steril. 2010, 93, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.S.; Balkhair, T.; Knowledge Synthesis Group on Determinants of Preterm/LBW Births. Air pollution and birth outcomes: A systematic review. Environ. Int. 2011, 37, 498–516. [Google Scholar] [CrossRef] [PubMed]
- Govarts, E.; Remy, S.; Bruckers, L.; Den Hond, E.; Sioen, I.; Nelen, V.; Baeyens, W.; Nawrot, T.S.; Loots, I.; Van Larebeke, N. Combined effects of prenatal exposures to environmental chemicals on birth weight. Int. J. Environ. Res. Public Health 2016, 13, 495. [Google Scholar] [CrossRef] [PubMed]
- Parazzini, F.; La Vecchia, C.; Negri, E.; Gentile, A. Menstrual factors and the risk of epithelial ovarian cancer. J. Clin. Epidemiol. 1989, 42, 443–448. [Google Scholar] [CrossRef]
- Whelan, E.A.; Sandler, D.P.; Root, J.L.; Smith, K.R.; Weinberg, C.R. Menstrual cycle patterns and risk of breast cancer. Am. J. Epidemiol. 1994, 140, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hitchcock, C.L.; Barr, S.I.; Yu, T.; Prior, J.C. Negative spinal bone mineral density changes and subclinical ovulatory disturbances—Prospective data in healthy premenopausal women with regular menstrual cycles. Epidemiol. Rev. 2014, 36, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Solomon, C.G.; Hu, F.B.; Dunaif, A.; Rich-Edwards, J.; Willett, W.C.; Hunter, D.J.; Colditz, G.A.; Speizer, F.E.; Manson, J.E. Long or highly irregular menstrual cycles as a marker for risk of type 2 diabetes mellitus. JAMA 2001, 286, 2421–2426. [Google Scholar] [CrossRef] [PubMed]
- Solomon, C.G.; Hu, F.B.; Dunaif, A.; Rich-Edwards, J.E.; Stampfer, M.J.; Willett, W.C.; Speizer, F.E.; Manson, J.E. Menstrual cycle irregularity and risk for future cardiovascular disease. J. Clin. Endocrinol. Metab. 2002, 87, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Johns, D.O.; Stanek, L.W.; Walker, K.; Benromdhane, S.; Hubbell, B.; Ross, M.; Devlin, R.B.; Costa, D.L.; Greenbaum, D.S. Practical advancement of multipollutant scientific and risk assessment approaches for ambient air pollution. Environ. Health Perspect. 2012, 120, 1238. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Shaw, C.; Su, H.; Lai, J.; Ko, Y.; Huang, S.-L.; Sung, F.-C.; Guo, Y. Climate, traffic-related air pollutants and allergic rhinitis prevalence in middle-school children in Taiwan. Eur. Respir. J. 2003, 21, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.L.; Lin, Y.-C.; Sung, F.-C.; Huang, S.-L.; Ko, Y.-C.; Lai, J.-S.; Su, H.-J.; Shaw, C.-K.; Lin, R.-S.; Dockery, D.W. Climate, traffic-related air pollutants, and asthma prevalence in middle-school children in Taiwan. Environ. Health Perspect. 1999, 107, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Naeher, L.P. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 2006, 32, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Ritz, B.; Wilhelm, M. Ambient air pollution and adverse birth outcomes: Methodologic issues in an emerging field. Basic Clin. Pharmacol. Toxicol. 2008, 102, 182–190. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Air Quality in Europe—2016 Report. EEA, 2016. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2016 (accessed on 28 June 2017).
- Institute of Environmental Protection. KOBiZE Poland’s Informative Inventory Report 2016. National Research Institute-National Centre for Emissions Management: Warsaw, Poland. Available online: http://www.kobize.pl/uploads/materialy/materialy_do_pobrania/krajowa_inwentaryzacja_emisji/IIR_Poland_2016.pdf (accessed on 28 June 2017).
- Lipson, S.F.; Ellison, P.T. Development of protocols for the application of salivary steroid analysis to field conditions. Am. J. Hum. Biol. 1989, 1, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Ellison, P.T. Human salivary steroids: Methodological considerations and applications in physical anthropology. Am. J. Phys. Anthropol. 1988, 31, 115–142. [Google Scholar] [CrossRef]
- Jasienska, G.; Ellison, P.T. Energetic factors and seasonal changes in ovarian function in women from rural Poland. Am. J. Hum. Biol. 2004, 16, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Klimek, M.; Galbarczyk, A.; Colleran, H.; Thune, I.; Ellison, P.T.; Ziomkiewicz, A.; Jasienska, G. Digit ratio (2D: 4D) does not correlate with daily 17β-estradiol and progesterone concentrations in healthy women of reproductive age. Am. J. Hum. Biol. 2015, 27, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Second State of European Cities Report, Research Project for the European Commission, DG Regional Policy. November 2010. Available online: http://ec.europa.eu/regional_policy/sources/docgener/studies/pdf/urban/stateofcities_2010.pdf (accessed on 20 May 2017).
- European Environment Agency. Air quality in Europe—2014 Report. Luxembourg: Publications Office of the European Union. Available online: http://www.eea.europa.eu/publications/air-quality-in-europe-2014/download (accessed on 20 May 2017).
- Central Statistical Office. Statistical Yearbook of the Republic of Poland. 2013. Available online: http://stat.gov.pl/cps/rde/xbcr/gus/RS_rocznik_statystyczny_rp_2013.pdf (accessed on 20 May 2017).
- Jasienska, G.; Ziomkiewicz, A.; Thune, I.; Lipson, S.F.; Ellison, P.T. Habitual physical activity and estradiol levels in women of reproductive age. Eur. J. Cancer Prev. 2006, 15, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Merklinger-Gruchala, A.; Ellison, P.T.; Lipson, S.F.; Thune, I.; Jasienska, G. Low estradiol levels in women of reproductive age having low sleep variation. Eur. J. Cancer Prev. 2008, 17, 467–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarosz, M.; Wierzejska, R.; Mojska, H.; Świderska, K.; Siuba, M. Zawartość kofeiny w produktach spożywczych. Bromat. Chem. Toksykol. 2009, 42, 776–781. [Google Scholar]
- Jasienska, G.; Ziomkiewicz, A.; Lipson, S.F.; Thune, I.; Ellison, P.T. High ponderal index at birth predicts high estradiol levels in adult women. Am. J. Hum. Biol. 2006, 18, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Statheropoulos, M.; Vassiliadis, N.; Pappa, A. Principal component and canonical correlation analysis for examining air pollution and meteorological data. Atmos. Environ. 1998, 32, 1087–1095. [Google Scholar] [CrossRef]
- Moya-Laraño, J.; Corcobado, G. Plotting partial correlation and regression in ecological studies. Web Ecol. 2008, 8, 35–46. [Google Scholar] [CrossRef]
- Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 2010, 1, 103–113. [Google Scholar] [CrossRef]
- Soper, D.S. Regression Coefficient Confidence Interval Calculator [Software]. Available online: http://www.danielsoper.com/statcalc (accessed on 6 June 2017).
- Hahn, K.A.; Wise, L.A.; Riis, A.H.; Mikkelsen, E.M.; Rothman, K.J.; Banholzer, K.; Hatch, E.E. Correlates of menstrual cycle characteristics among nulliparous Danish women. Clin. Epidemiol. 2013, 5, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gold, E.B.; Lasley, B.L.; Johnson, W.O. Factors affecting menstrual cycle characteristics. Am. J. Epidemiol. 2004, 160, 131–140. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics Committee on Adloescence; American College of Obstetricians and Gynecoloqists Committee on Adolescent Health Care; Diaz, A.; Laufer, M.R.; Breech, L.L. Menstruation in girls and adolescents: Using the menstrual cycle as a vital sign. Pediatrics 2006, 118, 2245–2250. [Google Scholar] [PubMed]
- Gouveia, N.; Bremner, S.A.; Novaes, H.M.D. Association between ambient air pollution and birth weight in São Paulo, Brazil. J. Epidemiol. Community Health 2004, 58, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Legro, R.S.; Sauer, M.V.; Mottla, G.L.; Richter, K.S.; Li, X.; Dodson, W.C.; Liao, D. Effect of air quality on assisted human reproduction. Hum. Reprod. 2010, 25, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Dejmek, J.; Jelínek, R. Fecundability and parental exposure to ambient sulfur dioxide. Environ. Health Perspect. 2000, 108, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Belis, C.A.; Karagulian, F.; Larsen, B.R.; Hopke, P.K. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 2013, 69, 94–108. [Google Scholar] [CrossRef]
- Junninen, H.; Mønster, J.; Rey, M.; Cancelinha, J.; Douglas, K.; Duane, M.; Forcina, V.; Muller, A.; Lagler, F.; Marelli, L. Quantifying the impact of residential heating on the urban air quality in a typical European coal combustion region. Environ. Sci. Technol. 2009, 43, 7964–7970. [Google Scholar] [CrossRef] [PubMed]
- Rowland, A.S.; Baird, D.D.; Long, S.; Wegienka, G.; Harlow, S.D.; Alavanja, M.; Sandler, D.P. Influence of medical conditions and lifestyle factors on the menstrual cycle. Epidemiology 2002, 13, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Windham, G.; Elkin, E.; Swan, S.; Waller, K.; Fenster, L. Cigarette smoking and effects on menstrual function. Obstet. Gynecol. 1999, 93, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Crawford, N.M.; Pritchard, D.A.; Herring, A.H.; Steiner, A.Z. Prospective evaluation of luteal phase length and natural fertility. Fertil. Steril. 2017, 107, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Hornsby, P.P.; Wilcox, A.J.; Weinberg, C.R. Cigarette smoking and disturbance of menstrual function. Epidemiology 1998, 9, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Frutos, V.; González-Comadrán, M.; Solà, I.; Jacquemin, B.; Carreras, R.; Checa Vizcaíno, M.A. Impact of air pollution on fertility: A systematic review. Gynecol. Endocrinol. 2015, 31, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Vrijheid, M.; Martinez, D.; Manzanares, S.; Dadvand, P.; Schembari, A.; Rankin, J.; Nieuwenhuijsen, M. Ambient air pollution and risk of congenital anomalies: A systematic review and meta-analysis. Environ. Health Perspect. 2011, 119, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Jasienska, G. The Fragile Wisdom. An Evolutionary View on Women’s Biology and Health; Harvard University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Harlow, S.D.; Baird, D.D.; Weinberg, C.R.; Wilcox, A.J. Urinary oestrogen patterns in long follicular phases. Hum. Reprod. 2000, 15, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Windham, G.C.; Elkin, E.; Fenster, L.; Waller, K.; Anderson, M.; Mitchell, P.R.; Swan, S.H. Ovarian hormones in premenopausal women: variation by demographic, reproductive and menstrual cycle characteristics. Epidemiology 2002, 13, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Jahan, S.A.; Kabir, E.; Brown, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Sevastyanova, O.; Binkova, B.; Topinka, J.; Sram, R.; Kalina, I.; Popov, T.; Novakova, Z.; Farmer, P. In vitro genotoxicity of PAH mixtures and organic extract from urban air particles: Part II: Human cell lines. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2007, 620, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Wenger, D.; Gerecke, A.C.; Heeb, N.V.; Schmid, P.; Hueglin, C.; Naegeli, H.; Zenobi, R. In vitro estrogenicity of ambient particulate matter: Contribution of hydroxylated polycyclic aromatic hydrocarbons. J. Appl. Toxicol. 2009, 29, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Greathouse, K.; Walker, C. Mechanisms of endocrine disruption. In Environmental Impacts on Reproductive Health and Fertility; Woodruff, T., Janssen, S., Guillette, L., Jr., Giudice, L., Eds.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Bukulmez, O.; Arici, A. Luteal phase defect: Myth or reality. Obstet. Gynecol. Clin. N. Am. 2004, 31, 727–744. [Google Scholar] [CrossRef] [PubMed]
- Mohallem, S.V.; de Araujo Lobo, D.J.; Pesquero, C.R.; Assunção, J.V.; de Andre, P.A.; Saldiva, P.H.N.; Dolhnikoff, M. Decreased fertility in mice exposed to environmental air pollution in the city of Sao Paulo. Environ. Res. 2005, 98, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Maluf, M.; Perin, P.M.; Januário, D.A.N.F.; Saldiva, P.H.N. In vitro fertilization, embryo development, and cell lineage segregation after pre-and/or postnatal exposure of female mice to ambient fine particulate matter. Fertil. Steril. 2009, 92, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Wang, D.; Zou, X.; Yang, Z.; Li, T.C.; Chen, Y. Does ambient air pollutants increase the risk of fetal loss? A case-control study. Arch. Gynecol. Obstet. 2014, 289, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Vassena, R.; Vidal, R.; Coll, O.; Vernaeve, V. Menstrual cycle length in reproductive age women is an indicator of oocyte quality and a candidate marker of ovarian reserve. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 177, 130–134. [Google Scholar] [CrossRef] [PubMed]
- De Souza, M.J. Menstrual disturbances in athletes: A focus on luteal phase defects. Med. Sci. Sports Exerc. 2003, 35, 1553–1563. [Google Scholar] [CrossRef] [PubMed]
- Barrett, E.; Thune, I.; Lipson, S.F.; Furberg, A.-S.; Ellison, P.T. A factor analysis approach to examining relationships among ovarian steroid concentrations, gonadotrophin concentrations and menstrual cycle length characteristics in healthy, cycling women. Hum. Reprod. 2013, 28, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Waller, K.; Swan, S.H.; Windham, G.C.; Fenster, L.; Elkin, E.P.; Lasley, B.L. Use of urine biomarkers to evaluate menstrual function in healthy premenopausal women. Am. J. Epidemiol. 1998, 147, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Kreienbrock, L. Environmental epidemiology. In Handbook of Epidemiology; Ahrens, W., Pigeot, I., Eds.; Springer: New York, NY, USA, 2014; pp. 1611–1657. [Google Scholar]
- Hanigan, I.; Hall, G.; Dear, K.B. A comparison of methods for calculating population exposure estimates of daily weather for health research. Int. J. Health Geogr. 2006, 5, 38. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.J.; Fang, J.; Mittleman, M.A.; Kapral, M.K.; Wellenius, G.A. Investigators of the Registry of Canadian Stroke Network. Fine particulate air pollution (PM2.5) and the risk of acute ischemic stroke. Epidemiology 2011, 22, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Spencer-Hwang, R.; Knutsen, S.F.; Soret, S.; Ghamsary, M.; Beeson, W.L.; Oda, K.; Shavlik, D. Ambient air pollutants and risk of fatal coronary heart disease among kidney transplant recipients. Am. J. Kidney Dis. 2011, 58, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Bravo, M.A.; Fuentes, M.; Zhang, Y.; Burr, M.J.; Bell, M.L. Comparison of exposure estimation methods for air pollutants: Ambient monitoring data and regional air quality simulation. Environ. Res. 2012, 116, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.D.; Nethery, E.; Brauer, M. Within-urban variability in ambient air pollution: Comparison of estimation methods. Atmos. Environ. 2008, 42, 1359–1369. [Google Scholar] [CrossRef]
- Jedrychowski, W.; Bendkowska, I.; Flak, E.; Penar, A.; Jacek, R.; Kaim, I.; Spengler, J.D.; Camann, D.; Perera, F.P. Estimated risk for altered fetal growth resulting from exposure to fine particles during pregnancy: An epidemiologic prospective cohort study in Poland. Environ. Health Perspect. 2004, 112, 1398–1402. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.E.; Garshick, E.; Dockery, D.W.; Smith, T.J.; Ryan, L.; Laden, F. Long-term ambient multipollutant exposures and mortality. Am. J. Respir. Crit. Care Med. 2011, 183, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Fehring, R.J.; Schneider, M.; Raviele, K. Variability in the phases of the menstrual cycle. J. Obstet. Gynecol. Neonatal Nurs. 2006, 35, 376–384. [Google Scholar] [CrossRef] [PubMed]
Pollutant | n | Mean (SD) |
---|---|---|
PM10 (µg/m3) | ||
overall cycle | 133 | 61.7 (13.2) |
follicular phase | 123 | 66.9 (22.2) |
luteal phase | 123 | 55.5 (14.7) |
SO2 (µg/m3) | ||
overall cycle | 133 | 16.4 (5.4) |
follicular phase | 123 | 17.9 (7.3) |
luteal phase | 123 | 14.9 (5.5) |
CO (mg/m3) | ||
overall cycle | 133 | 1.3 (0.5) |
follicular phase | 123 | 1.3 (0.6) |
luteal phase | 123 | 1.2 (0.5) |
NOX (µg/m3) | ||
overall cycle | 133 | 121.4 (45.7) |
follicular phase | 123 | 127.7 (52.0) |
luteal phase | 123 | 116.3 (47.3) |
Characteristics (Continuous) | n | Mean | SD | Pearson r Coeff. | p-Value |
---|---|---|---|---|---|
Age (years) * | 132 | 29.5 | 3.13 | −0.27 | <0.01 |
Age at first child (years) | 50 | 24.1 | 3.11 | 0.15 | 0.30 |
Birth weight (g) * | 112 | 3306.6 | 632.76 | 0.05 | 0.59 |
Birth length (cm) | 102 | 53.5 | 3.96 | 0.02 | 0.81 |
Ponderal index (kg/m3) | 102 | 22.1 | 6.63 | 0.00 | 0.98 |
Menarcheal age (years) | 129 | 13.3 | 1.40 | 0.02 | 0.80 |
Height (cm) | 133 | 164.6 | 5.96 | −0.02 | 0.79 |
BMI (kg/m2) * | 133 | 22.2 | 2.90 | −0.07 | 0.41 |
Body weight difference (kg) | 129 | −0.6 | 1.39 | 0.04 | 0.65 |
Mean body weight (kg) * | 132 | 60.2 | 8.79 | −0.07 | 0.40 |
Physical activity (sum of MET/day) * | 102 | 37.9 | 8.16 | 0.02 | 0.88 |
Education (years) | 131 | 16.6 | 2.74 | 0.11 | 0.20 |
Caffeine intake (mg/day) | 130 | 243.4 | 100.93 | −0.03 | 0.76 |
Alcohol intake (g/day) | 130 | 7.4 | 10.12 | −0.14 | 0.12 |
Usual cycle length (days) * | 128 | 29.2 | 2.61 | 0.61 | <0.01 |
Mean E2 levels (pmol/L) * | 133 | 17.9 | 9.78 | 0.12 | 0.15 |
Mean P levels (pmol/L) * | 134 | 136.3 | 64.24 | 0.14 | 0.11 |
Characteristics (Categorical) | n | Mean | SD | F | p-Value |
Parity | |||||
no | 82 | 29.2 | 4.10 | F(1,130) = 2.92 | 0.09 |
yes | 50 | 28.1 | 2.98 | ||
Marital status | |||||
single | 49 | 29.1 | 3.67 | F(1,129) = 0.65 | 0.42 |
ever married | 82 | 28.6 | 3.81 | ||
Smoking status | |||||
non-smoker | 104 | 28.8 | 3.54 | F(1,127) = 0.03 | 0.87 |
smoker | 25 | 28.9 | 4.57 |
Pollutant | PC1 Traffic-Related | PC2 Fossil Fuel-Related |
---|---|---|
Overall cycle | ||
PM10 mean | −0.11 | 0.76 |
SO2 mean | 0.05 | 0.79 |
CO mean | 0.99 | −0.02 |
NOx mean | 0.99 | −0.03 |
Eigenvalue | 1.99 | 1.21 |
Variance explained | 50% | 30% |
Follicular phase | ||
PM10 mean | 0.16 | 0.94 |
SO2 mean | 0.14 | 0.94 |
CO mean | 0.98 | 0.16 |
NOx mean | 0.99 | 0.12 |
Eigenvalue | 1.99 | 1.81 |
Variance explained | 50% | 45% |
Luteal phase | ||
PM10 mean | 0.19 | 0.88 |
SO2 mean | 0.25 | 0.86 |
CO mean | 0.96 | 0.23 |
NOx mean | 0.98 | 0.16 |
Eigenvalue | 1.99 | 1.60 |
Variance explained | 50% | 40% |
Principal Component (PC) | Crude | Adjusted * | |||||
---|---|---|---|---|---|---|---|
Beta Coeff. | b Coeff. (95% CI) | p | Beta Coeff. | b Coeff. (95% CI) | Partial r Coeff. | p | |
Overall cycle | |||||||
PC1 traffic-related | 0.01 | 0.03 (−0.52 to 0.58) | 0.93 | 0.00 | 0.01 (−0.54 to 0.56) | 0.00 | 0.98 |
PC2 fossil fuel-related | −0.09 | −0.32 (−0.85 to 0.21) | 0.33 | 0.00 | 0.00 (−0.53 to 0.53) | 0.00 | 0.99 |
Follicular phase | |||||||
PC1 traffic-related | 0.00 | 0.00 (−0.71 to 0.71) | 0.99 | 0.02 | 0.07 (−0.56 to 0.70) | 0.02 | 0.83 |
PC2 fossil fuel-related | −0.10 | −0.41 (−1.14 to 0.32) | 0.26 | −0.03 | −0.13 (−0.74 to 0.48) | −0.04 | 0.66 |
Luteal phase | |||||||
PC1 traffic-related | −0.10 | −0.15 (−0.41 to 0.11) | 0.27 | −0.14 | −0.20 (−0.48 to 0.08) | −0.14 | 0.14 |
PC2 fossil fuel-related | −0.13 | −0.18 (−044 to 0.08) | 0.16 | −0.22 | −0.32 (−0.60 to −0.04) | −0.22 | 0.02 |
Pollutant | Crude | Adjusted * | |||||
---|---|---|---|---|---|---|---|
Beta Coeff. | b Coeff. (95% CI) | p-Value | Beta Coeff. | b Coeff. (95% CI) | Partial r Coeff. | p-Value | |
Overall cycle | |||||||
PM10 mean | −0.15 | −0.04 (−0.08 to 0.00) | 0.09 | −0.04 | −0.01(−0.05 to 0.03) | −0.05 | 0.56 |
SO2 mean | −1.01 | 0.00 (−0.12 to 0.12) | 0.94 | 0.04 | 0.02 (−0.08 to 0.12) | 0.05 | 0.56 |
CO mean | −1.01 | −0.06 (−1.31 to 1.19) | 0.93 | 0.00 | −0.01 (−1.10 to 1.08) | 0.00 | 0.99 |
NOx mean | 0.00 | 0.00 (−0.02 to 0.02) | 0.96 | 0.00 | 0.00 (−0.02 to 0.02) | 0.00 | 0.99 |
Follicular phase | |||||||
PM10 mean | −0.15 | −0.03 (−0.07 to 0.01) | 0.10 | −0.05 | −0.01 (−0.03 to 0.01) | −0.07 | 0.48 |
SO2 mean | −0.05 | −0.03 (−0.13 to 0.07) | 0.61 | −0.01 | 0.00 (−0.08 to 0.08) | −0.01 | 0.94 |
CO mean | −0.02 | −0.12 (−1.39 to 1.15) | 0.85 | 0.01 | 0.05 (−1.06 to 1.16) | 0.01 | 0.92 |
NOx mean | −0.01 | 0.00 (−0.02 to 0.02) | 0.91 | 0.08 | 0.00 (−1.02 to 0.02) | 0.02 | 0.84 |
Luteal phase | |||||||
PM10 mean | −0.12 | −0.01 (−0.03 to 0.01) | 0.17 | −0.21 | −0.02 (−0.04 to −0.00) | −0.21 | 0.03 |
SO2 mean | −0.14 | −0.04 (−008 to 0.00) | 0.12 | −0.23 | −0.06 (−0.11 to −0.01) | −0.21 | 0.02 |
CO mean | −0.13 | −0.37 (−086 to 0.12) | 0.15 | −0.18 | −0.52 (−005 to 0.01) | −0.18 | 0.06 |
NOx mean | −0.11 | 0.00 (0.00 to 0.00) | 0.21 | −0.15 | −0.01 (−0.02 to −0.00) | −0.15 | 0.11 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merklinger-Gruchala, A.; Jasienska, G.; Kapiszewska, M. Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health. Int. J. Environ. Res. Public Health 2017, 14, 816. https://doi.org/10.3390/ijerph14070816
Merklinger-Gruchala A, Jasienska G, Kapiszewska M. Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health. International Journal of Environmental Research and Public Health. 2017; 14(7):816. https://doi.org/10.3390/ijerph14070816
Chicago/Turabian StyleMerklinger-Gruchala, Anna, Grazyna Jasienska, and Maria Kapiszewska. 2017. "Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health" International Journal of Environmental Research and Public Health 14, no. 7: 816. https://doi.org/10.3390/ijerph14070816
APA StyleMerklinger-Gruchala, A., Jasienska, G., & Kapiszewska, M. (2017). Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health. International Journal of Environmental Research and Public Health, 14(7), 816. https://doi.org/10.3390/ijerph14070816