Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Electrode Preparation and Characterization
2.3. Electrochemical Experiments
2.4. Analytical Methods
3. Results
3.1. Characterization of Pt/ACF Electrode
3.2. Effect of Different Electrodes
3.3. Effect of Electrolyte Concentration
3.4. Effect of Initial Concentration of EDTA
3.5. Effect of pH
3.6. Effect of Current Density
3.7. Identification of the Degradation Products of EDTA
4. Discussion
5. Conclusions
- (1)
- Two kinds of Pt/ACF electrodes were prepared. The SEM analysis showed that most of the platinum was uniformly distributed as nano-lattice on 3% Pt/ACF. The result of CO adsorption showed that more active sites are present on 3% Pt/ACF; 3% Pt/ACF electrode had a better performance for the removal of EDTA and COD than 5% Pt/ACF and 3% EDPt/ACF electrode.
- (2)
- The experimental parameters which influenced the removal of EDTA and COD were explored using 3% Pt/ACF electrode. The optimal removal of EDTA and COD was 94% and 60% after 100 min electrolysis on condition of electrolyte concentration 0.1 mol/L, initial EDTA concentration 300 mg/L, current density 40 mA/cm2 and initial pH value 5.0.
- (3)
- The intermediate generated by electrochemical oxidation of EDTA was detected by GC-MS. It showed that EDTA could be effectively degraded.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hakem, N.L.; Allen, P.G.; Sylwester, E.R. Effect of EDTA on plutonium migration. J. Radioanal. Nucl. Chem. 2001, 250, 47–53. [Google Scholar]
- Toste, A.P.; Polach, K.J.; White, T.W. Degradation of citric acid in a simulated, mixed nuclear waste: Radiolytic versus chemical forces. Waste Manag. 1994, 14, 27–34. [Google Scholar] [CrossRef]
- Baldwin, P.N. Evaporation and wet oxidation of steam generator cleaning solutions. Nucl. Technol. 1996, 116, 366–372. [Google Scholar]
- Matsuo, T.; Nishi, T.; Matsuda, M.; Izumida, T. Compatibility of the ultraviolet light-ozone system for laundry waste water treatment in nuclear power plants. Nucl. Technol. 1997, 119, 149–157. [Google Scholar]
- Haque, M.M.; Smith, W.T.; Wong, D.K.Y. Conducting polypyrrole films as a potential tool for electrochemical treatment of azo dyes in textile wastewaters. J. Hazard. Mater. 2015, 283, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Li, Y.P.; Cao, H.B.; Wang, Y.; Crittenden, J.C.; Zhang, Y. Activated carbon electrodes: Electrochemical oxidation coupled with desalination for wastewater treatment. Chemosphere 2015, 125, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Peng, X.L.; Li, M.; Xiong, Y.; Wang, B.; Dong, F.Q.; Wang, B. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption. Chemosphere 2017, 171, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef] [PubMed]
- Sopaj, F.; Rodrigo, M.A.; Oturan, N.; Podvorica, F.I.; Pinson, J.; Oturan, M.A. Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin. Chem. Eng. J. 2015, 262, 286–294. [Google Scholar] [CrossRef]
- He, Y.P.; Huang, W.M.; Chen, R.L.; Zhang, W.L.; Lin, H.B. Enhanced electrochemical oxidation of organic pollutants by boron-doped diamond based on porous titanium. Sep. Purif. Technol. 2015, 149, 124–131. [Google Scholar] [CrossRef]
- Moreiraa, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Fajardo, A.S.; Seca, H.F.; Martins, R.C.; Corceiro, V.N.; Freitas, I.F.; Quinta-Ferreira, M.E.; Quinta-Ferreira, R.M. Electrochemical oxidation of phenolic wastewaters using a batch-stirred reactor with NaCl electrolyte and Ti/RuO2 anodes. J. Electroanal. Chem. 2017, 785, 180–189. [Google Scholar] [CrossRef]
- Zhang, C.H.; Tang, J.W.; Chen, P.; Jin, M.Y. Degradation of perfluorinated compounds in wastewater treatment plant effluents by electrochemical oxidation with Nano-ZnO coated electrodes. J. Mol. Liq. 2016, 221, 1145–1150. [Google Scholar] [CrossRef]
- Jojoa-Sierra, S.D.; Silva-Agredo, J.; Herrera-Calderon, E.; Torres-Palma, R.A. Elimination of the antibiotic norfloxacin in municipal wastewater, urine and seawater by electrochemical oxidation on IrO2 anodes. Sci. Total Environ. 2017, 575, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Souza, F.; Quijorna, S.; Lanza, M.R.V.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Applicability of electrochemical oxidation using diamond anodes to the treatment of a sulfonylurea herbicide. Catal. Today 2017, 280, 192–198. [Google Scholar] [CrossRef]
- Umukoro, E.H.; Peleyeju, M.G.; Ngila, J.C.; Arotiba, O.A. Towards wastewater treatment: Photo-assisted electrochemical degradation of 2-nitrophenol and orange II dye at a tungsten trioxide-exfoliated graphite composite electrode. Chem. Eng. J. 2017, 317, 290–301. [Google Scholar] [CrossRef]
- Chen, G.H. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004, 38, 11–41. [Google Scholar] [CrossRef]
- Haider, S.; Kamal, T.; Khan, S.B.; Omer, M.; Haider, A.; Khan, F.U.; Asiri, A.M. Natural polymers supported copper nanoparticles for pollutants degradation. Appl. Surf. Sci. 2016, 387, 1154–1161. [Google Scholar] [CrossRef]
- Qu, Y.Y.; Pei, X.F.; Shen, W.L.; Zhang, X.W.; Wang, J.W.; Zhang, Z.J.; Li, S.Z.; You, S.N.; Ma, F.; Zhou, J.T. Biosynthesis of gold nanoparticles by Aspergillum sp. WL-Au for degradation of aromatic pollutants. Physica E 2017, 88, 133–141. [Google Scholar] [CrossRef]
- MeenaKumari, M.; Philip, D. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts. Spectrochim. Acta A 2015, 135, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Kadu, B.S.; Wani, K.D.; Kaul-Ghanekar, R.; Chikate, R.C. Degradation of doxorubicin to non-toxic metabolites using Fe-Ni bimetallic nanoparticles. Chem. Eng. J. 2017, 325, 715–724. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, M.Y.; Guo, Q.X.; Fu, Y. Electrocatalytic hydrogenation of furfural to furfuryl alcohol using platinum supported on activated carbon fibers. Electrochim. Acta 2014, 135, 139–146. [Google Scholar] [CrossRef]
- Liang, D.; Gao, J.; Wang, J.H.; Chen, P.; Hou, Z.Y.; Zheng, X.M. Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catal. Commun. 2009, 10, 1586–1590. [Google Scholar] [CrossRef]
- Zhou, T.; Lu, X.; Wang, J.; Wong, F.; Li, Y. Rapid decolorization and mineralization of simulated textile wastewater in a heterogeneous Fenton like system with/without external energy. J. Hazard. Mater. 2009, 165, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Comninellis, C.; Pulagarin, C. Anodic oxidation of phenol for waste water treatment. J. Appl. Electrochem. 1991, 21, 703–708. [Google Scholar] [CrossRef]
- Zhou, T.; Lim, T.T.; Lu, X.H.; Li, Y.Z.; Wong, F.S. Simultaneous degradation of 4CP and EDTA in a heterogeneous Ultrasound/Fenton like system at ambient circumstance. Sep. Purif. Technol. 2009, 68, 367–374. [Google Scholar] [CrossRef]
- Pérez, M.C.M.; Lecea, C.S.M.; Solano, A.L. Platinum supported on activated carbon cloths as catalyst for nitrobenzene hydrogenation. Appl. Catal. A 1997, 151, 461–475. [Google Scholar] [CrossRef]
- Li, Z.; Garedew, M.; Lam, C.H.; Jackson, J.E.; Miller, D.J.; Saffron, C.M. Mild electro-catalytic hydrogenation and hydrodeoxygenation of bio-oil derived phenolic compounds using ruthenium supported on activated carbon cloth. Green Chem. 2012, 14, 2540–2549. [Google Scholar] [CrossRef]
- Balaji, S.; Kokovkin, V.V.; Chung, S.J.; Moon, I.S. Destruction of EDTA by mediated electrochemical oxidation process: Monitoring by continuous CO2 measurements. Water Res. 2007, 41, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.Z.; Zhou, J.Z.; Meng, X.Y.; Feng, D.L.; Wu, C.Q.; Chen, J.M. Electrochemical oxidation of cinnamic acid with Mo modified PbO2 electrode: Electrode characterization, kinetics and degradation pathway. Chem. Eng. J. 2016, 289, 239–246. [Google Scholar] [CrossRef]
- Chen, J.M.; Xia, Y.J.; Dai, Q.Z. Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: Performance, kinetics and degradation mechanism. Electrochim. Acta 2015, 165, 277–287. [Google Scholar] [CrossRef]
- Dai, Q.Z.; Shen, H.; Xia, Y.J.; Chen, F.; Wang, J.D.; Chen, J.M. The application of a novel Ti/SnO2–Sb2O3/PTFE–La–Ce–β–PbO2 anode on the degradation of cationic gold yellow X-GL in sono-electrochemical oxidation system. Sep. Purif. Technol. 2013, 104, 9–16. [Google Scholar] [CrossRef]
- Zhong, C.Q.; Wei, K.J.; Han, W.Q.; Wang, L.J.; Sun, X.Y.; Li, J.S. Electrochemical degradation of tricyclazole in aqueous solution using Ti/SnO2–Sb/PbO2 anode. J. Electroanal. Chem. 2013, 705, 68–74. [Google Scholar] [CrossRef]
- Lin, H.; Niu, J.F.; Ding, S.Y.; Zhang, L.L. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2–Sb, Ti/SnO2–Sb/PbO2 and Ti/SnO2–Sb/MnO2 anodes. Water Res. 2012, 46, 2281–2289. [Google Scholar] [CrossRef] [PubMed]
- Neto, S.A.; Andrade, A.R. Electrooxidation of glyphosate herbicide at different DSA compositions: pH, concentration and supporting electrolyte effect. Electrochim. Acta 2009, 54, 2039–2045. [Google Scholar] [CrossRef]
- Mansilla, H.D.; Bravo, C.; Ferreyra, R. Photocatalytic EDTA degradation on suspended and immobilized TiO2. J. Photochem. Photobiol. A Chem. 2006, 181, 188–194. [Google Scholar] [CrossRef]
- Wang, J.G.; Wang, X.K.; Li, G.L.; Guo, P.Q.; Luo, Z.X. Degradation of EDTA in aqueous solution by using ozonolysis and ozonolysis combined with sonolysis. J. Hazard. Mater. 2010, 176, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Oviedo, C.; Conireras, D.; Freer, J.; Rodriguez, J. Fe(III)-EDTA complex abatement using a catechol driven fenton reaction combined with a biological treatment. Environ. Technol. 2004, 25, 801–807. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Preparation Method | BET (m2/g) | Micropore Volume (cm3/g) | Micropore Area (m2/g) |
---|---|---|---|---|
Blank ACF | Water wash and H2 reduction | 2398 | 1.13 | 1729 |
3% Pt/ACF | impregnation method | 1862 | 0.94 | 1347 |
5% Pt/ACF | impregnation method | 1360 | 0.66 | 995 |
3% EDPt/ACF | electrodeposition method | 896 | 0.47 | 671 |
Catalyst | CO Adsorption (µmol/g) | Pt Area (m2 g/cat) | Pt Area (m2 g/Pt) | Dispersion (%) | Particle Size (nm) |
---|---|---|---|---|---|
3% Pt/ACF | 83.4 | 4.0 | 134.0 | 54.2 | 2.1 |
5% Pt/ACF | 44.8 | 2.2 | 43.1 | 17.5 | 6.5 |
3% EDPt/ACF | n.d. a | n.d. a | n.d. a | n.d. a | n.d. a |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Zhu, W.; Mu, T.; Hu, Z.; Duan, T. Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers. Int. J. Environ. Res. Public Health 2017, 14, 819. https://doi.org/10.3390/ijerph14070819
Zhao B, Zhu W, Mu T, Hu Z, Duan T. Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers. International Journal of Environmental Research and Public Health. 2017; 14(7):819. https://doi.org/10.3390/ijerph14070819
Chicago/Turabian StyleZhao, Bo, Wenkun Zhu, Tao Mu, Zuowen Hu, and Tao Duan. 2017. "Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers" International Journal of Environmental Research and Public Health 14, no. 7: 819. https://doi.org/10.3390/ijerph14070819
APA StyleZhao, B., Zhu, W., Mu, T., Hu, Z., & Duan, T. (2017). Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers. International Journal of Environmental Research and Public Health, 14(7), 819. https://doi.org/10.3390/ijerph14070819