Water Environment Assessment as an Ecological Red Line Management Tool for Marine Wetland Protection
Abstract
:1. Introduction
- (a)
- To select exclusive indicators and construct an assessment system to assess water quality in the Qilihai Wetland Reserve;
- (b)
- To perform out time series analysis from 2010 to 2013, to reflect the change in water quality in the Qilihai wetlands.
- (c)
- To propose effective water quality management methods, according to the assessment results and the ecological red line regulations.
2. Materials and Methods
2.1. Site Description
2.2. Analytical Method
2.2.1. The Indicator System
2.2.2. Assessment Method
3. Results
3.1. Water Quality Based on Specific Indicators
3.2. Overall Water Quality Assessment
4. Discussion
- Emissions of large amounts of pollutants: Most villagers in the vicinity of the wetlands area rely on aquaculture and fisheries for a living, therefore pesticides, fertilizers and farming cause significant levels of non-point source pollution [70]. These pollution sources and domestic sewage are all discharged into wetland waters, causing COD, TP, TN and other indicators to increase significantly, which also increases the degree of eutrophication [28]. Despite the economic interests in tourism development for the local residents, high levels of tourism and excessive visitors levels, results in a material and energy load beyond the capacity of the systems in the area, resulting in a transfer of metabolites generated by anthropogenic activities being continually applied to the Qilhai wetland system, therefore destroying the aquatic environment [33]. In addition, agriculture, fisheries, tourism and villages have greatly occupied the wetland area, especially the fish pond, obstructing circulation between water resources, and reducing the self-purification capacity of the wetlands ecosystem [71].
- Lack of comprehensive management tools: Firstly, despite many laws and regulations related to nature reserves, such as the red line policy, relevant regulations are still lacking for the ancient coastal wetlands, ensuring implementation of these protection policies [72]. Secondly, the control and supervision of industrial, agricultural, fishery and tourism pollution sources are inadequate, leading to an excessive discharge of pollutants [73]. On the other hand, it is difficult to control pollution in the Qilihai Natural Reserve due to the decentralized protection areas and the lack of protection facilities and infrastructure [74]. Moreover, there is a lack of awareness among local residents regarding environmental wetland protection [75], as residents are not aware of the ecological value of the protected areas, nor do they know how to avoid damaging activities in the protection zone.
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, K.-G.; Lee, H.; Lee, D.-H. Wetland restoration to enhance biodiversity in urban areas: A comparative analysis. Landsc. Ecol. Eng. 2011, 7, 27–32. [Google Scholar] [CrossRef]
- Zedler, J.B. Progress in wetland restoration ecology. Trends Ecol. Evol. 2000, 15, 402–407. [Google Scholar] [CrossRef]
- An, S.; Li, H.; Guan, B.; Zhou, C.; Wang, Z.; Deng, Z.; Zhi, Y.; Liu, Y.; Xu, C.; Fang, S. China’s natural wetlands: Past problems, current status, and future challenges. AMBIO J. Hum. Environ. 2007, 36, 335–342. [Google Scholar] [CrossRef]
- Li-ping, B. Analysis on Ecological Restoration of Nature Wetland Reserve and Its Green Exploration—Taking Qilihai National Nature Wetland Reserve as Example. Environ. Prot. Sci. 2009, 1, 023. (In Chinese) [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, L.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Li, M.; Yang, W.; Sun, T.; Jin, Y. Potential ecological risk of heavy metal contamination in sediments and macrobenthos in coastal wetlands induced by freshwater releases: A case study in the Yellow River Delta, China. Mar. Pollut. Bull. 2016, 103, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; de Groot, R.; Faber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- The Political Bureau of the Central Committee. Communique of the Third Session of the Eighteenth Central Committee of the Communist Party of China; The Political Bureau of the Central Committee: Beijing, China, 2013.
- Jiang, D.; Cao, X.; Kuang, H.; Cai, M.; Huang, Y.; Yin, C. Ecological red line planning and related key analysis for China. Resour. Sci. 2015, 9, 1755–1764. [Google Scholar]
- Lü, Y.; Ma, Z.; Zhang, L.; Fu, B.; Gao, G. Redlines for the greening of China. Environ. Sci. Policy 2013, 33, 346–353. [Google Scholar] [CrossRef]
- Yang, S.F.; An, Y.L. A study of ecological red-line area partitioning in the Chishui River Basin in Guizhou. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2016. [Google Scholar]
- Zhao, P.; Lu, W.; Song, J.; Stuart, P.; Yang, H. Natural Coast Protection and Use in China: Implications of Resource Protection “Redline” Policies. Coast. Manag. 2016, 44, 21–35. [Google Scholar]
- Bai, Y.; Jiang, B.; Wang, M.; Li, H.; Alatalo, J.M.; Huang, S. New ecological redline policy (ERP) to secure ecosystem services in China. Land Use Policy 2016, 55, 348–351. [Google Scholar] [CrossRef]
- Wang, C.; Sun, G.; Dang, L. Identifying Ecological Red Lines: A Case Study of the Coast in Liaoning Province. Sustainability 2015, 7, 9461–9477. [Google Scholar] [CrossRef]
- Shafer, C.L. National park and reserve planning to protect biological diversity: Some basic elements. Landsc. Urban Plan. 1999, 44, 123–153. [Google Scholar] [CrossRef]
- Svancara, L.K.; Scott, J.M.; Loveland, T.R.; Pidgorna, A.B. Assessing the landscape context and conversion risk of protected areas using satellite data products. Remote Sens. Environ. 2009, 113, 1357–1369. [Google Scholar] [CrossRef]
- Pan, J. China’s Environmental Governing and Ecological Civilization; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Peng, S.; Zhao, Y.; Zhang, G.; Jing, L.; Zhan, S.; Yu, H. Analysis on current situation of biological diversity and protection measures in Qilihai Wetland. J. Waterw. Harb. 2009, 2, 015. [Google Scholar]
- Zhang, Y.; Chu, C.; Li, T.; Xu, S.; Liu, L.; Ju, M. A water quality management strategy for regionally protected water through health risk assessment and spatial distribution of heavy metal pollution in 3 marine reserves. Sci. Total Environ. 2017, 599, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Xu, L.; Duan, X.; Xu, X. Analysis of boundary adjustments and land use policy change—A case study of Tianjin Palaeocoast and Wetland National Natural Reserve, China. Ocean Coast. Manag. 2012, 56, 56–63. [Google Scholar] [CrossRef]
- Striegnitz, M. Conflicts over coastal protection in a National Park: Mediation and negotiated law making. Land Use Policy 2006, 23, 26–33. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, X.; Yan, L. Analyzing qualitative and quantitative changes in coastal wetland associated to the effects of natural and anthropogenic factors in a part of Tianjin, China. Estuar. Coast. Shelf Sci. 2010, 86, 379–386. [Google Scholar] [CrossRef]
- Hu, B.; Xu, L.; Li, Z.; Meng, W. Assessment on Qilihai wetland value in Tianjin City. Meteorol. Environ. Res. 2012, 3, 41–45. [Google Scholar]
- Wang, K.; Dong, J. Research on the value assessment of wetland ecosystem in Qilihai. In Soft Computing in Information Communication Technology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 299–306. [Google Scholar]
- Li, W. Construction and Evaluation of Ecosystem Degradation Index System of Coastal Wetlands in Tianjin; Shandong Normal University: Jinan, China, 2011. [Google Scholar]
- Gao, X.; Chen, Y.; Zhang, C. Water renewal timescales in an ecological reconstructed lagoon in China. J. Hydroinform. 2013, 15, 991–1001. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Gao, X.P.; Zhang, C. Research on water environment problem for landscape design of waterfront districts. Appl. Mech. Mater. 2011, 90–93, 2414–2417. [Google Scholar] [CrossRef]
- Lin, J. Study on Qilihai Wetland Restoration Based on Scientific Conservation of Paleogeologic Landscape Resources. Ph.D. Thesis, Tianjin University, Tianjin, China, 2014. [Google Scholar]
- Zhang, J.; Liu, J.; Hao, L.; Gao, X.; Zhang, Z.; Liu, S.; Li, X.; Chen, X.; Zhang, W.; Zhang, M. Carrying out Wetland Restoration Project to Strengthen the Tianjin Wetland Protection. Tianjin Agric. Sci. 2015, 1, 60–67. (In Chinese) [Google Scholar]
- Xie, Z.; Liu, J.; Ma, Z.; Duan, X.; Cui, Y. Effect of surrounding land-use change on the wetland landscape pattern of a natural protected area in Tianjin, China. Int. J. Sustain. Dev. World Ecol. 2012, 19, 16–24. [Google Scholar] [CrossRef]
- Tao, G.; Xiaojian, Z.; Tiexin, C. Evaluation of Wetland Ecological Restoration Project Based on SD: A Case study on Qilihai Wetland in Tianjin. Procedia Environ. Sci. 2011, 10, 2587–2593. [Google Scholar] [CrossRef]
- Qin, L.; Shi, W.X.; Zhang, B.H.; Han, F.; Li, L.W. The Resources of Geological Remains in Qilihai and the Discussion on the Technology of Protective Development. Adv. Mater. Res. 2012, 518–523, 5959–5962. [Google Scholar] [CrossRef]
- Li, T.; Chu, C.; Zhang, Y.; Ju, M.; Wang, Y. Contrasting Eutrophication Risks and Countermeasures in Different Water Bodies: Assessments to Support Targeted Watershed Management. Int. J. Environ. Res. Public Health 2017, 14, 695. [Google Scholar]
- Li, X.; Zhao, L.; Li, N. Degradation of dissolved organic nitrogen and biogeochemistry of amino acids in surface sediment of lake Qingnian and wetland Qilihai. Fresenius Environ. Bull. 2012, 21, 282–289. [Google Scholar]
- Tia, Y.; Wang, J. Influence factor analysis and assessment of water quality in national nature reserve in Ruoergai Wetland, Sichuan, China. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2012, 29, 83–90. [Google Scholar]
- Liu, C.; He, H.; Tan, X.H.; Gao, A.L.; Xue, S. Establishment and Application of Water Quality Assessment Model for Jiaozhou Bay Basin. Adv. Mater. Res. 2012, 518–523, 1165–1170. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, J.; Ma, Q.; Chen, Y. Human health and ecological risk assessment of 16 polycyclic aromatic hydrocarbons in drinking source water from a large mixed-use reservoir. Int. J. Environ. Res. Public Health 2015, 12, 13956–13969. [Google Scholar] [CrossRef] [PubMed]
- Miniero, G.; Codini, A.; Bonera, M.; Corvi, E.; Bertoli, G. Being green: From attitude to actual consumption. Int. J. Consum. Stud. 2014, 38, 521–528. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, S.; Jia, R.; Liu, X. Pollution characteristics and ecological risk assessment of HCHs and DDTs in estuary wetland sediments from the Bohai Bay, North China. In Environmental Science and Pollution Research; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–7. [Google Scholar]
- Wu, T.; Hong, B.; Zhou, S.; Zhao, J.; Xia, C.; Liu, H. Residues of HCHs and DDTs in Soils and Sediments of Preconstructing Urban Wetland. Bull. Environ. Contam. Toxicol. 2012, 89, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Ma, J.; Zhang, H.; Xu, W. Evaluation of ecosystem health for the coastal wetlands at the Yangtze Estuary, Shanghai. Wetl. Ecol. Manag. 2013, 21, 433–445. [Google Scholar] [CrossRef]
- Herrera-Silveira, J.A.; Morales-Oieda, S.M. Evaluation of the health status of a coastal ecosystem in southeast Mexico: Assessment of water quality, phytoplankton and submerged aquatic vegetation. Mar. Pollut. Bull. 2009, 59, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, S.K.; Yang, J.C.; Du, X.M.; Li, F.S.; Hou, H. Petroleum contamination of soil and water, and their effects on vegetables by statistically analyzing entire data set. Sci. Total Environ. 2014, 476, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Hu, H.; Cai, Y.; Zhang, L.; Chen, Y. Spatial distribution of chlorophyll a and its relationship with the environment during summer in Lake Poyang: A Yangtze-connected lake. Hydrobiologia 2014, 732, 61–70. [Google Scholar] [CrossRef]
- Chen, D.; Dahlgren, R.A.; Shen, Y.; Lu, J. A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment. Sci. Total Environ. 2012, 430, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, J.; Christopher, W.; Wang, Y. A Bayesian approach of high impaired river reaches identification and total nitrogen load estimation in a sparsely monitored basin. Environ. Sci. Pollut. Res. 2017, 24, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, G.; Liu, Z.; Guo, W.; Gao, N. Water pollution characteristics and assessment of lower reaches in Haihe River Basin. Procedia Environ. Sci. 2010, 2, 199–206. [Google Scholar] [CrossRef]
- Gallardo, B.; García, M.; Cabezas, Á.; González, E.; González, M.; Ciancarelli, C.; Comín, F.A. Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquat. Sci. 2008, 70, 248–258. [Google Scholar] [CrossRef]
- Paillex, A.; Castella, E.; Zu Ermgassen, P.S.; Aldridge, D.C. Testing predictions of changes in alien and native macroinvertebrate communities and their interaction after the restoration of a large river floodplain (French Rhône). Freshw. Biol. 2015, 60, 1162–1175. [Google Scholar] [CrossRef]
- Cheung, P.K.; Yuen, K.L.; Li, P.F.; Lau, W.H.; Chiu, C.M.; Yuen, S.W.; Baker, D.M. To swim or not to swim? A disagreement between microbial indicators on beach water quality assessment in Hong Kong. Mar. Pollut. Bull. 2015, 101, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Chen, Z. Integrated Water-Quality Assessment of the Huai River Basin in China. J. Hydrol. Eng. 2014, 20, 05014018. [Google Scholar] [CrossRef]
- Liou, S.M.; Lo, S.L.; Wang, S.H. A generalized water quality index for Taiwan. Environ. Monit. Assess. 2004, 96, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Hülya, B. Development of a water quality index based on a European classification scheme. Water 2007, 33. [Google Scholar] [CrossRef]
- Bharti, N.; Katyal, D. Water quality indices used for surface water vulnerability assessment. Int. J. Environ. Sci. 2011, 2, 154. [Google Scholar]
- Melloul, A.J.; Collin, M. A proposed index for aquifer water-quality assessment: The case of Israel’s Sharon region. J. Environ. Manag. 1998, 54, 131–142. [Google Scholar] [CrossRef]
- Jha, D.K.; Devi, M.P.; Vidyalakshmi, R.; Brindha, B.; Vinithkumar, N.V.; Kirubagaran, R. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India. Mar. Pollut. Bull. 2015, 100, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Sargaonkar, A.; Deshpande, V. Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environ. Monit. Assess. 2003, 89, 43–67. [Google Scholar] [CrossRef] [PubMed]
- Tsegaye, T.; Sheppard, D.; Islam, K.R.; Tadesse, W.; Atalay, A.; Marzen, L. Development of chemical index as a measure of in-stream water quality in response to land-use and land cover changes. Water Air Soil Pollut. 2006, 174, 161–179. [Google Scholar] [CrossRef]
- Praus, P. Water quality assessment using SVD-based principal component analysis of hydrological data. Water SA 2005, 31, 417–422. [Google Scholar] [CrossRef]
- Gao, W.C.; Pan, J.; Ding, F.; Gong, Y.C.; Zhang, Y.X. Research on Fuzzy Comprehensive Evaluation of Surface Water Quality in Xiquan Lake Wetland. Adv. Mater. Res. 2013, 726–731, 1174–1177. [Google Scholar] [CrossRef]
- Kavurmaci, M.; Üstün, A.K. Assessment of groundwater quality using DEA and AHP: A case study in the Sereflikochisar region in Turkey. Environ. Monit. Assess. 2016, 188, 1–13. [Google Scholar] [CrossRef]
- De Troyer, N.; Mereta, S.T.; Goethals, P.L.M.; Boets, P. Water Quality Assessment of Streams and Wetlands in a Fast Growing East African City. Water 2016, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wu, J.; Qian, H. Groundwater quality assessment based on rough sets attribute reduction and TOPSIS method in a semi-arid area, China. Environ. Monit. Assess. 2012, 184, 4841–4854. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Dubey, D. Multiple sourcing decisions using integrated AHP and knapsack model: A case on carton sourcing. Int. J. Adv. Manuf. Technol. 2010, 51, 1171–1178. [Google Scholar] [CrossRef]
- Şener, Ş.; Şener, E.; Nas, B.; Karagüzel, R. Combining AHP with GIS for landfill site selection: A case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste Manag. 2010, 30, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Javadian, M.; Shamskooshki, H.; Momeni, M. Application of sustainable urban development in environmental suitability analysis of educational land use by using AHP and GIS in Tehran. Procedia Eng. 2011, 21, 72–80. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, Z.; Liu, W.; Yao, L.; Suo, W.; Xing, J.; Huang, B.; Jin, D.; Wang, J. Indicators for environment health risk assessment in the Jiangsu Province of China. Int. J. Environ. Res. Public Health 2015, 12, 11012–11024. [Google Scholar] [CrossRef] [PubMed]
- Xiaojian, Z. Study on Post Evaluation for the Project of Wetland Protection and Ecological Restoration—Exampled by Qilihai Project in Tianjin; Tianjin University: Tianjin, China, 2011. (In Chinese) [Google Scholar]
- Fletcher, S.; Kawabe, M.; Rewhorn, S. Wetland conservation and sustainable coastal governance in Japan and England. Mar. Pollut. Bull. 2011, 62, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Kaplan, D.; Li, L.; Li, H.; Song, F.; Liu, H. Identifying and Classifying Pollution Hotspots to Guide Watershed Management in a Large Multiuse Watershed. Int. J. Environ. Res. Public Health 2017, 14, 260. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Y.; Zhang, X.B. Study on water resources restoration planning of the Qilihai wetlands in Tianjin. Sci. Technol. Vis. 2014, 8, 299. [Google Scholar]
- Ding, S.K. Research on the Ecological Protection of Qilihai Wetland Reserve in Tianjin. Ph.D. Thesis, Hebei Agricultural Univeriity, Hebei, China, 2012. [Google Scholar]
- Bai, X.; Imura, H. Towards sustainable urban water resource management: A case study in Tianjin, China. Sustain. Dev. 2001, 9, 24–35. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M.; Li, Z.; Lu, S. Degeneration characteristics and rehabilitation of Qilihai Wetland environment ecological system. Res. Soil Water Conserv. 2005, 12, 244–248. (In Chinese) [Google Scholar]
- Zhang, W.Z.; Wei, Y.F. Strengthening the protection and restoration of the ecological environment of the Qilihai wetland. Seek Knowl. Mon. 2016, 1, 35–37. (In Chinese) [Google Scholar]
- Zuo, J.; Yan, Q. Recycling Inter-Feed Relationship between Wetlands’Protective Using and Eco-Town Construction. Adv. Mater. Res. 2012, 361–363, 1085–1090. [Google Scholar]
- Marrucci, A.; Marras, B.; Campisi, S.S.; Schintu, M. Using SPMDs to monitor the seawater concentrations of PAHs and PCBs in marine protected areas (Western Mediterranean). Mar. Pollut. Bull. 2013, 75, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, H.; Zhou, Y.; Wu, C.; Kanchanopas-Barnette, P. Distribution and source apportionment of polycyclic aromatic hydrocarbons in surface sediments from Zhoushan Archipelago and Xiangshan Harbor, East China Sea. Mar. Pollut. Bull. 2015, 101, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J.; Lefeuvre, J.-C.; Bouchard, V. Ecological Engineering Applied to River and Wetland Restoration. Ecol. Eng. 2002, 18, 529–541. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem services of wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef]
- He, Q.; Bertness, M.D.; Bruno, J.F.; Li, B.; Chen, G.; Coverdale, T.C.; Altieri, A.H.; Bai, J.; Sun, T.; Pennings, S.C. Economic development and coastal ecosystem change in China. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Pacheco, J.I.; Rös, M.; Escobar, F.; Castro-Lima, F.; Verdú, J.R.; López-Iborra, G.M. Effect of wetland management: Are lentic wetlands refuges of plant-species diversity in the Andean–Orinoco Piedmont of Colombia? Peer J. 2016, 4, e2267. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; Ruth, S.D.; Díaz, S.; Dietz, T.; Duraiappah, A.K. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
Monitoring Points Number | Longitude | Latitude |
---|---|---|
1 | 117°36′00.0′′ | 39°18′06.20′′ |
2 | 117°36′0.12′′ | 39°17′57.66′′ |
3 | 117°36′2.51′′ | 39°17′47.96′′ |
Indicator | Analytical Method | Method Source |
---|---|---|
pH | Glass electrode method | GB 6920-86 |
DO | Iodometric method | GB7489-87 |
COD | Dichromate method | GB11914-89 |
TN | Alkaline persulfate digestion UV spectrophotometry | GB11894-89 |
TP | Ammonium molybdate spectrophotometric method | GB11893-89 |
Petroleum | Infrared spectrophotometry | GB/T16488-1996 |
Chlorophyll a | Spectrophotometry | SL88-2012 |
Transparency | Seine disc method | --- |
Classification | Value Range |
---|---|
Slight pollution | ~ |
Moderate pollution | ~ + 2 × SD |
Severe pollution | ~ + 3 × SD |
Index Category | Index | Motoring Value | Standard Value | SD | Weight | |||
---|---|---|---|---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | |||||
general indicator | pH | 8.91 | 8.65 | 8.46 | 8.75 | 6-9 | 0.16 | 0.036 |
DO | 5.67 | 9.43 | 9.49 | 9.20 | 7.5 | 1.61 | 0.107 | |
transparency | 0.38 | 0.18 | 1.23 | 0.27 | 5 | 0.42 | 0.107 | |
pollution indicator | COD | 22.30 | 17.53 | 28.33 | 14.99 | 15 | 5.08 | 0.178 |
TN | 1.69 | 2.45 | 2.43 | 3.08 | 0.2 | 0.49 | 0.178 | |
TP | 0.192 | 0.168 | 0.268 | 0.167 | 0.01 | 0.04 | 0.178 | |
petroleum | 0.79 | 0.143 | 0.122 | 0.025 | 0.05 | 0.30 | 0.059 | |
biological indicator | chlorophyll a | 0.087 | 0.034 | 0.093 | 0.055 | 2 × 10−3 | 0.024 | 0.157 |
Year | Value | Classification | Range |
---|---|---|---|
2010 | 14.55 | Severe pollution | 14.5–16.2 |
2011 | 11.26 | Slight pollution | 11.2–12.8 |
2012 | 15.26 | Severe pollution | 14.5–16.2 |
2013 | 12.32 | Slight pollution | 11.2–12.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chu, C.; Liu, L.; Xu, S.; Ruan, X.; Ju, M. Water Environment Assessment as an Ecological Red Line Management Tool for Marine Wetland Protection. Int. J. Environ. Res. Public Health 2017, 14, 870. https://doi.org/10.3390/ijerph14080870
Zhang Y, Chu C, Liu L, Xu S, Ruan X, Ju M. Water Environment Assessment as an Ecological Red Line Management Tool for Marine Wetland Protection. International Journal of Environmental Research and Public Health. 2017; 14(8):870. https://doi.org/10.3390/ijerph14080870
Chicago/Turabian StyleZhang, Yinan, Chunli Chu, Lei Liu, Shengguo Xu, Xiaoxue Ruan, and Meiting Ju. 2017. "Water Environment Assessment as an Ecological Red Line Management Tool for Marine Wetland Protection" International Journal of Environmental Research and Public Health 14, no. 8: 870. https://doi.org/10.3390/ijerph14080870
APA StyleZhang, Y., Chu, C., Liu, L., Xu, S., Ruan, X., & Ju, M. (2017). Water Environment Assessment as an Ecological Red Line Management Tool for Marine Wetland Protection. International Journal of Environmental Research and Public Health, 14(8), 870. https://doi.org/10.3390/ijerph14080870