Variations in Obesity Rates between US Counties: Impacts of Activity Access, Food Environments, and Settlement Patterns
Abstract
:1. Introduction
1.1. Urban Environment and Obesity
1.2. Contribution of This Study
1.3. Geographical Dimensions of Obesity Variation in the US
2. Methods: Bayesian Regression Analysis of US County Obesity Rates
2.1. Regression Methods
2.2. Methods: Defining Environmental Indicators and their Relevance to Obesity
3. Results: Environmental Indicators, Geographic Categories, and County Obesity Rates
3.1. Regression Using Geographic Categories Only
3.2. Extended Regression
4. Discussion
5. Conclusions
Conflicts of Interest
References
- Cynthia, L.; Ogden, C.; Carroll, M.; Fryar, C.; Flegal, K. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief 2015, 219, 1–8. [Google Scholar]
- Sidney, S.; Quesenberry, C.; Jaffe, M.; Sorel, M.; Nguyen-Huynh, M.; Kushi, L.; Go, A.S.; Rana, J. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol. 2016, 1, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B. Using research on the obesity pandemic as a guide to a unified vision of nutrition. Public Health Nutr. 2005, 8, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Bensimhon, D.; Kraus, W.; Donahue, M. Obesity and physical activity: A review. Am. Heart J. 2006, 151, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Egger, G.; Swinburn, B. An “ecological” approach to the obesity pandemic. BMJ Br. Med. J. 1997, 315, 477. [Google Scholar] [CrossRef]
- Moon, G. Residential Environments and Obesity—Estimating Causal Effects; Chapter 12; Pearce J Routledge: London, UK, 2010. [Google Scholar]
- Townshend, T.; Lake, A. Obesogenic urban form: Theory, policy and practice. Health Place 2009, 15, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.; Dannenberg, A.; Frumkin, H. Health and the built environment: 10 years after. Am. J. Public Health 2013, 103, 1542–1544. [Google Scholar] [CrossRef] [PubMed]
- Elinder, L.; Jansson, M. Obesogenic environments–aspects on measurement and indicators. Public Health Nutr. 2009, 12, 307–315. [Google Scholar] [PubMed]
- Pascual, C.; Regidor, E.; Astasio, P.; Ortega, P.; Navarro, P.; Domínguez, V. The association of current and sustained area-based adverse socioeconomic environment with physical inactivity. Soc. Sci. Med. 2007, 65, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Rundle, A.; Field, S.; Park, Y. Personal and neighborhood socio-economic status and indices of neighborhood walkability predict body mass index in New York City. Soc. Sci. Med. 2008, 67, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Rehm, C.; Solet, D. Disparities in obesity rates: Analysis by ZIP code area. Soc. Sci. Med. 2007, 65, 2458–2463. [Google Scholar] [CrossRef] [PubMed]
- Hillemeier, M.; Lynch, J.; Harper, S.; Casper, M. Measuring contextual characteristics for community health. Health Serv. Res. 2003, 38, 1645–1718. [Google Scholar] [CrossRef] [PubMed]
- Pouliou, T.; Elliott, S.J. An exploratory spatial analysis of overweight and obesity in Canada. Prev. Med. 2009, 48, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Moudon, A.; Cook, A.; Drewnowski, A. The spatial clustering of obesity: Does the built environment matter? J. Hum. Nutr. Diet. 2015, 28, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Best, N. Bayesian ecological modelling. In Disease Mapping and Risk Assessment for Public Health; Chapter 14; Lawson, A., Biggeri, A., Böhning, D., Lesaffre, E., Viel, J., Bertollini, R., Eds.; John Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Loftin, C.; Ward, S. A spatial autocorrelation model of the effects of population density on fertility. Am. Sociol. Rev. 1983, 48, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Ladabaum, U.; Mannalithara, A.; Myer, P.; Singh, G. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. Am. J. Med. 2014, 127, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.; Popkin, B. Time use and physical activity: A shift away from movement across the globe. Obes. Rev. 2012, 13, 659–680. [Google Scholar] [CrossRef] [PubMed]
- Binkley, J.; Eales, J.; Jekanowski, M. The relation between dietary change and rising US obesity. Int. J. Obes. 2000, 24, 1032–1039. [Google Scholar] [CrossRef]
- Hendrickson, D.; Smith, C.; Eikenberry, N. Fruit and vegetable access in four low-income food deserts communities in Minnesota. Agric. Hum. Values 2006, 23, 371–383. [Google Scholar] [CrossRef]
- Walker, R.; Keane, C.; Burke, J. Disparities and access to healthy food in the United States: A review of food deserts literature. Health Place 2010, 16, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.; Hiscock, R.; Blakely, T.; Witten, K. The contextual effects of neighbourhood access to supermarkets and convenience stores on individual fruit and vegetable consumption. J. Epidemiol. Community Health 2008, 62, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Hilmers, A.; Hilmers, D.; Dave, J. Neighborhood disparities in access to healthy foods and their effects on environmental justice. Am. J. Public Health 2012, 102, 1644–1654. [Google Scholar] [CrossRef] [PubMed]
- Pucher, J.; Buehler, R.; Bassett, D.R.; Dannenberg, A.L. Walking and cycling to health: A comparative analysis of city, state, and international data. Am. J. Public Health 2010, 100, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. Royal Soc. Lond. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Lopez, R. Urban sprawl and risk for being overweight or obese. Am. J. Public Health 2004, 94, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, B. Analysis of Urban Growth and Sprawl from Remote Sensing Data; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Bengston, D.; Fletcher, J.; Nelson, K. Public policies for managing urban growth and protecting open space: Policy instruments and lessons learned in the United States. Landsc. Urban Plan. 2004, 69, 271–286. [Google Scholar] [CrossRef]
- Chiu, M.; Shah, B.; Rezai, M.; Austin, P.; Tu, J. Neighbourhood walkability and risk of obesity. Can. J. Diabetes 2014, 38, S39. [Google Scholar] [CrossRef]
- Zhang, M. On the Cul-de-Sac vs. Checker-board street network: Search for sustainable urban form. Int. Rev. Spat. Plan. Sustain. Dev. 2013, 1, 1–6. [Google Scholar] [CrossRef]
- Frank, L.; Andresen, M.; Schmid, T. Obesity relationships with community design, physical activity, and time spent in cars. Am. J. Prev. Med. 2004, 27, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Buehler, R.; Pucher, J.; Merom, D.; Bauman, A. Active travel in Germany and the US: Contributions of daily walking and cycling to physical activity. Am. J. Prev. Med. 2011, 41, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.; Pucher, J.; Buehler, R.; Thompson, D.; Crouter, S. Walking, cycling, and obesity rates in Europe, North America, and Australia. J. Phys. Act. Health 2008, 5, 795–814. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S.; King, D.; Yuan, R. A note on the relationship between obesity and driving. Transp. Policy 2011, 18, 772–776. [Google Scholar] [CrossRef]
- Gutiérrez-Fisac, J.; Rodríguez Artalejo, F.; Guallar-Castillon, P.; Banegas Banegas, J.; del Rey Calero, J. Determinants of geographical variations in body mass index (BMI) and obesity in Spain. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.; Mokdad, A.; Giles, W.; Galuska, D.; Serdula, M. Geographic variation in the prevalence of obesity, diabetes, and obesity-related behaviors. Obesity 2005, 13, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, N.; Peters, P.; Oliver, L. Are obesity and physical activity clustered? A spatial analysis linked to residential density. Obesity 2009, 17, 2202–2209. [Google Scholar] [CrossRef] [PubMed]
- Kinge, J.; Steingrímsdóttir, Ó.; Strand, B.; Kravdal, Ø. Can socioeconomic factors explain geographic variation in overweight in Norway? SSM Popul. Health 2016, 2, 333–340. [Google Scholar] [CrossRef]
- Myers, C.; Slack, T.; Martin, C.; Broyles, S.; Heymsfield, S. Regional disparities in obesity prevalence in the United States: A spatial regime analysis. Obesity 2015, 23, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Centre for Disease Control (CDC) County Data Indicators. Available online: https://www.cdc.gov/diabetes/data/countydata/countydataindicators.html (accessed on 10 June 2017).
- Robert Wood Johnson Foundation and University of Wisconsin. Learn More About Access to Exercise Opportunities. Available online: http://www.countyhealthrankings.org/measure/learn/access-exercise-opportunities; https://uwphi.pophealth.wisc.edu/publications/index.htm (accessed on 15 June 2017).
- Robert Wood Johnson Foundation and University of Wisconsin. Food Environment Index. Available online: http://www.countyhealthrankings.org/measure/food-environment-index (accessed on 15 June 2017).
- Garden, F.; Jalaludin, B. Impact of urban sprawl on overweight, obesity, and physical activity in Sydney, Australia. J. Urban Health 2009, 86, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Lakerveld, J.; Rebah, M.; Mackenbach, J.; Charreire, H.; Compernolle, S.; Glonti, K.; Bardos, H.; Rutter, H.; De Bourdeaudhuij, I.; Brug, J.; et al. Obesity-related behaviours and BMI in five urban regions across Europe: Sampling design and results from the SPOTLIGHT cross-sectional survey. BMJ Open 2015, 5, e008505. [Google Scholar] [CrossRef] [PubMed]
- Etzioni, R.; Kadane, J. Bayesian statistical methods in public health and medicine. Annu. Rev. Public Health 1995, 16, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, L. Mapping Obesity and Poverty in the United States. PLOS Blogs, Public Health Perspectives. 2015. Available online: http://blogs.plos.org/publichealth/2015/09/28/obesity-poverty/ (accessed on 22 June 2017).
- Levine, J. Poverty and Obesity in the U.S. Diabetes 2011, 60, 2667–2668. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Spicer, P.; Peercy, M. Obesity, diabetes, and birth outcomes among American Indians and Alaska natives. Mater. Child Health J. 2016, 20, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Ingram, D.; Franco, S. 2013 NCHS Urban-rural classification scheme for counties. Vital Health Stat. 2012, 2, 1–73. [Google Scholar]
- Drewnowski, A.; Specter, S. Poverty and obesity: The role of energy density and energy costs. Am. J. Clin. Nutr. 2004, 79, 6–16. [Google Scholar] [PubMed]
- Wilkinson, R.; Marmot, M. (Eds.) Social Determinants of Health: The Solid Facts; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Martin, M.; Lippert, A. Feeding her children, but risking her health: The intersection of gender, household food insecurity and obesity. Soc. Sci. Med. 2012, 74, 1754–1764. [Google Scholar] [CrossRef] [PubMed]
- Lunn, D.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Walter Applied Spatial Ecology Laboratory. Manual of Applied Spatial Ecology, Chapter 9. Available online: http://ecosystems.psu.edu/research/labs/walter-lab/manual/complete-manual-pdf (accessed on 15 June 2017).
- Eksler, V. Exploring spatial structure behind the road mortality of regions in Europe. Appl. Spat. Anal. Policy 2008, 1, 133–150. [Google Scholar] [CrossRef]
- Van Ravenzwaaij, D.; Cassey, P.; Brown, S. A simple introduction to Markov Chain Monte-Carlo sampling. Psychon. Bull. Rev. 2017. [Google Scholar] [CrossRef] [PubMed]
- Brooks, S.; Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1997, 7, 434–455. [Google Scholar]
- USDA ERS—Food Environment Atlas. Available online: https://www.ers.usda.gov/data-products/food-environment-atlas (accessed on 15 June 2017).
- Robert Wood Johnson Foundation and University of Wisconsin. Available online: http://www.countyhealthrankings.org/ (accessed on 15 June 2017).
- Dinour, L.; Bergen, D.; Yeh, M. The Food insecurity—Obesity paradox: A review of the literature and the role food stamps may play. J. Am. Diet. Assoc. 2007, 107, 1952–1961. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Hamidi, S. Measuring sprawl 2014. In Smart Growth America and Metropolitan Research Center; University of Utah: Salt Lake City, UT, USA, 2014. [Google Scholar]
- Myers, C.; Slack, T.; Martin, C.; Broyles, S.; Heymsfield, S. Change in obesity prevalence across the United States is influenced by recreational and healthcare contexts, food environments, and Hispanic populations. PLoS ONE 2016, 11, e0148394. [Google Scholar] [CrossRef] [PubMed]
- Michimi, A.; Wimberly, M. Spatial patterns of obesity and associated risk factors in the conterminous US. Am. J. Prev. Med. 2010, 39, e1–e12. [Google Scholar] [CrossRef] [PubMed]
- Befort, C.; Nazir, N.; Perri, M. Prevalence of obesity among adults from rural and urban areas of the United States: Findings from NHANES (2005–2008). J. Rural Health 2012, 28, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.; You, W.; Zoellner, J. Disparities in obesity among rural and urban residents in a health disparate region. BMC Public Health 2014, 14, 1051. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.; Poston, W.; Jones, L.; Kraft, M. Environmental justice: Obesity, physical activity, and healthy eating. J. Phys. Act. Health 2006, 3 (Suppl. 1), S30–S54. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.; Jilcott, S.; Floyd, M.; Moore, J. County-level disparities in access to recreational resources and associations with adult obesity. J. Park Recreat. Adm. 2011, 29, 39–54. [Google Scholar]
- Kamphuis, C.; Van Lenthe, F.; Giskes, K.; Huisman, M.; Brug, J.; Mackenbach, J. Socioeconomic differences in lack of recreational walking among older adults: The role of neighbourhood and individual factors. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humpel, N.; Owen, N.; Leslie, E. Environmental factors associated with adults’ participation in physical activity: A review. Am. J. Prev. Med. 2002, 22, 188–199. [Google Scholar] [CrossRef]
- Crane, R. Is there a quiet revolution in women's travel? Revisiting the gender gap in commuting. J. Am. Plan. Assoc. 2007, 73, 298–316. [Google Scholar] [CrossRef]
- Gielen, E.; Riutort-Mayol, G.; Palencia-Jiménez, J.; Cantarino, I. An urban sprawl index based on multivariate and Bayesian factor analysis with application at the municipality level in Valencia. Environ. Plan. B 2017. [Google Scholar] [CrossRef]
- Franklin, B.; Jones, A.; Love, D.; Puckett, S.; Macklin, J.; White-Means, S. Exploring mediators of food insecurity and obesity: A review of recent literature. J. Community Health 2012, 37, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, J.; Johnson, C.; Dean, W.; Horel, S. Association between proximity to and coverage of traditional fast-food restaurants and non-traditional fast-food outlets and fast-food consumption among rural adults. Int. J. Health Geogr. 2011, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, P. Ecological studies: Advantages and disadvantages. BMJ Br. Med. J. (Online) 2014, 2, 348. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Rehm, C.; Moudon, A.; Arterburn, D. The geography of diabetes by census tract in a large sample of insured adults in king county, Washington, 2005–2006. Prev. Chronic Disease 2014, 11, E125. [Google Scholar] [CrossRef] [PubMed]
- Swinburn, B.; Egger, G.; Raza, F. Dissecting obesogenic environments: The development and application of a framework for identifying and prioritizing environmental interventions for obesity. Prev. Med. 1999, 29, 563–570. [Google Scholar] [CrossRef] [PubMed]
Poverty Quintile * | Urban-rural Category ** | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Males | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | All |
1 | 28.0 | 30.4 | 30.5 | 29.0 | 27.6 | 31.7 | 30.3 | 31.9 | 31.3 | 29.9 |
2 | 29.8 | 29.8 | 30.4 | 31.5 | 28.5 | 31.9 | 31.3 | 30.6 | 31.5 | 30.8 |
3 | 30.6 | 30.6 | 31.4 | 32.3 | 33.1 | 31.6 | 30.6 | 30.9 | 31.1 | 31.2 |
4 | 29.3 | 31.5 | 31.8 | 32.1 | 31.3 | 32.8 | 32.1 | 32.7 | 31.1 | 31.8 |
5 | 31.3 | 32.5 | 30.9 | 32.2 | 32.7 | 33.5 | 33.4 | 33.4 | 33.5 | 33.0 |
All Counties | 29.1 | 30.9 | 31.1 | 31.7 | 31.2 | 32.5 | 31.7 | 32.1 | 31.7 | 31.3 |
Females | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | All |
1 | 25.9 | 28.4 | 27.9 | 27.0 | 24.9 | 28.9 | 27.7 | 28.7 | 27.9 | 27.4 |
2 | 28.6 | 28.3 | 28.4 | 29.4 | 26.3 | 29.9 | 29.0 | 28.2 | 28.9 | 28.8 |
3 | 30.1 | 29.6 | 30.4 | 30.8 | 31.6 | 30.1 | 28.7 | 28.8 | 28.8 | 29.8 |
4 | 30.1 | 31.8 | 31.5 | 31.3 | 30.5 | 32.1 | 31.0 | 32.3 | 29.5 | 31.3 |
5 | 36.0 | 33.5 | 32.4 | 33.6 | 36.0 | 35.2 | 34.5 | 36.1 | 33.9 | 34.5 |
All Counties | 28.2 | 30.1 | 30.1 | 30.8 | 30.5 | 31.9 | 30.5 | 31.3 | 29.8 | 30.3 |
Males | Majority Race/Ethnic Category | ||||
---|---|---|---|---|---|
Poverty Quintile * | White N-H | Black N-H | Hispanic | Other | All |
1 | 29.9 | 31.1 | 30.7 | 33.3 | 29.9 |
2 | 30.9 | 30.3 | 28.5 | 27.9 | 30.8 |
3 | 31.2 | 33.2 | 29.4 | 29.9 | 31.2 |
4 | 31.9 | 29.0 | 28.2 | 30.0 | 31.8 |
5 | 33.0 | 34.5 | 28.8 | 34.3 | 33.0 |
All counties | 31.3 | 34.1 | 28.8 | 32.8 | 31.3 |
Females | Majority Race/Ethnic Category | ||||
Poverty Quintile * | White N-H | Black N-H | Hispanic | Other | All |
1 | 27.3 | 35.9 | 28.2 | 33.3 | 27.4 |
2 | 28.9 | 31.2 | 25.5 | 25.6 | 28.8 |
3 | 29.8 | 37.7 | 27.1 | 30.4 | 29.8 |
4 | 31.4 | 34.3 | 26.3 | 29.3 | 31.3 |
5 | 33.8 | 42.2 | 26.8 | 36.6 | 34.5 |
All counties | 30.0 | 41.4 | 26.8 | 34.0 | 30.3 |
Poverty Quintile * | Census Division ** | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Males | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | All |
1 | 26.4 | 28.4 | 30.6 | 32.8 | 28.2 | 31.0 | 30.0 | 24.3 | 27.5 | 29.9 |
2 | 26.0 | 31.6 | 31.8 | 32.9 | 29.1 | 31.8 | 31.5 | 26.6 | 26.1 | 30.8 |
3 | 29.9 | 31.4 | 32.4 | 32.6 | 31.4 | 33.3 | 31.7 | 26.9 | 27.1 | 31.2 |
4 | 31.5 | 30.4 | 32.3 | 32.6 | 31.2 | 33.7 | 33.0 | 27.4 | 28.2 | 31.8 |
5 | 21.2 | 26.0 | 31.7 | 33.9 | 32.3 | 35.2 | 33.6 | 27.6 | 29.0 | 33.0 |
All counties | 27.0 | 30.4 | 31.7 | 32.9 | 30.9 | 34.1 | 32.5 | 26.4 | 27.5 | 31.3 |
Females | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | All |
1 | 23.4 | 24.5 | 29.3 | 29.2 | 27.2 | 30.3 | 27.1 | 22.0 | 26.4 | 27.4 |
2 | 24.4 | 28.5 | 30.7 | 30.0 | 28.5 | 31.6 | 29.3 | 24.2 | 24.8 | 28.8 |
3 | 29.9 | 28.2 | 31.3 | 30.7 | 31.0 | 32.8 | 29.8 | 24.6 | 26.0 | 29.8 |
4 | 31.0 | 27.1 | 31.7 | 31.4 | 31.7 | 34.1 | 31.7 | 25.5 | 27.6 | 31.3 |
5 | 22.3 | 28.9 | 31.7 | 34.0 | 35.1 | 38.4 | 33.1 | 27.1 | 28.1 | 34.5 |
All counties | 25.0 | 27.1 | 30.7 | 30.2 | 31.7 | 35.5 | 31.0 | 24.4 | 26.5 | 30.3 |
Persons | Males | Females | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | 2.5% | 97.5% | Mean | 2.5% | 97.5% | Mean | 2.5% | 97.5% | |
% variation explained | 33 | 29 | 38 | 28 | 21 | 33 | 38 | 32 | 43 |
% of residual variation spatially structured | 63 | 59 | 68 | 64 | 59 | 69 | 65 | 61 | 70 |
Intercept | 26.4 | 23.1 | 29.8 | 26.3 | 23.3 | 29.5 | 26.5 | 22.7 | 30.4 |
Urbanicity 1 | |||||||||
Metro counties, 250,000 to 1 million pop. | 0.44 | −1.29 | 1.82 | 0.74 | −0.26 | 1.92 | 0.26 | −1.06 | 1.48 |
Metro counties, fewer than 250,000 pop. | 0.30 | −1.18 | 1.40 | 0.61 | −0.51 | 1.94 | 0.12 | −1.38 | 1.58 |
Urban pop. >20,000, adjacent to metro area | 1.10 | −0.47 | 2.46 | 1.42 | 0.33 | 2.71 | 0.99 | −0.35 | 2.41 |
Urban pop. >20,000, not adj. metro area | 1.05 | −0.49 | 2.56 | 1.27 | 0.04 | 2.78 | 0.94 | −0.60 | 2.63 |
Urban pop., 2500 to 19,999, adj. metro area | 1.17 | −0.79 | 2.54 | 1.54 | 0.42 | 2.97 | 1.14 | −0.25 | 2.89 |
Urban pop., 2500 to 19,999, not adj. metro area | 0.43 | −1.94 | 1.48 | 0.65 | −0.83 | 1.64 | 0.08 | −1.76 | 1.28 |
Rural or <2500 urban pop., adj. metro area | 1.05 | −0.15 | 2.65 | 1.34 | 0.23 | 2.70 | 0.98 | −0.37 | 2.77 |
Rural or <2500 urban pop., not adj. metro area | 0.38 | −1.40 | 1.57 | 0.83 | −0.24 | 1.98 | 0.05 | −1.38 | 1.39 |
Census division 2 | |||||||||
Middle Atlantic | 2.27 | −0.75 | 5.14 | 3.64 | 1.26 | 6.22 | 1.31 | −1.49 | 4.52 |
East North Central | 2.32 | −1.19 | 5.43 | 2.72 | −0.50 | 5.71 | 2.08 | −1.66 | 5.56 |
West North Central | 3.52 | 0.05 | 6.65 | 4.55 | 1.23 | 7.75 | 2.32 | −1.55 | 6.16 |
South Atlantic | 1.75 | −1.55 | 4.72 | 2.48 | −0.31 | 5.28 | 0.98 | −2.30 | 4.20 |
East South Central | 4.37 | 0.71 | 7.24 | 4.70 | 1.66 | 7.77 | 3.97 | 0.33 | 7.61 |
West South Central | 4.04 | −0.05 | 7.16 | 5.59 | 2.62 | 8.77 | 2.24 | −1.19 | 5.91 |
Mountain | −0.45 | −4.11 | 3.07 | 0.13 | −2.92 | 3.40 | −0.99 | −4.56 | 2.95 |
Pacific | −2.30 | −6.36 | 1.81 | −2.39 | −5.73 | 1.19 | −2.39 | −6.18 | 1.66 |
County majority ethnicity/race 3 | |||||||||
Black N-H | 2.66 | 1.59 | 3.82 | 0.72 | −0.38 | 1.74 | 4.23 | 2.11 | 5.76 |
Hispanic | 0.92 | −0.21 | 2.35 | 0.90 | −0.20 | 2.12 | 1.04 | −0.49 | 2.96 |
Other | 5.30 | 3.69 | 6.99 | 3.90 | 2.40 | 5.47 | 6.54 | 4.49 | 8.57 |
County poverty level 4 | |||||||||
Quintile 2 | 0.48 | −1.21 | 1.30 | 0.33 | −1.19 | 1.13 | 0.23 | −3.06 | 1.67 |
Quintile 3 | 1.30 | 0.31 | 2.08 | 0.93 | −0.21 | 1.68 | 1.45 | −0.89 | 2.64 |
Quintile 4 | 1.65 | 0.56 | 2.48 | 0.98 | −0.45 | 1.77 | 1.89 | −0.77 | 3.21 |
Quintile 5 | 2.57 | 1.67 | 3.37 | 1.52 | 0.46 | 2.29 | 3.41 | 1.41 | 4.58 |
Variances first order interactions, geographic categories | |||||||||
Urbanicity*division | 0.021 | 0.003 | 0.084 | 0.028 | 0.003 | 0.109 | 0.021 | 0.003 | 0.088 |
Urbanicity*majority ethnic | 0.256 | 0.004 | 1.612 | 0.227 | 0.004 | 0.912 | 0.362 | 0.004 | 1.477 |
Urbanicity*poverty status | 0.073 | 0.006 | 0.205 | 0.056 | 0.005 | 0.169 | 0.104 | 0.009 | 0.286 |
Division*majority ethnic | 0.094 | 0.003 | 0.649 | 0.078 | 0.003 | 0.472 | 0.175 | 0.003 | 1.289 |
Division*poverty status | 0.129 | 0.005 | 0.409 | 0.120 | 0.007 | 0.369 | 0.189 | 0.013 | 0.549 |
Majority ethnic*poverty status | 0.064 | 0.003 | 0.560 | 0.056 | 0.003 | 0.446 | 0.340 | 0.003 | 2.211 |
Persons | Males | Females | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | 2.5% | 97.5% | Mean | 2.5% | 97.5% | Mean | 2.5% | 97.5% | |
% variation explained | 56 | 52 | 60 | 50 | 43 | 54 | 62 | 57 | 65 |
% of residual variation spatially structured | 49 | 41 | 55 | 53 | 46 | 60 | 50 | 44 | 57 |
Intercept | 25.1 | 22.4 | 27.8 | 24.3 | 21.6 | 26.9 | 25.4 | 22.0 | 28.7 |
Environmental indices | |||||||||
Inactivity | 15.2 | 14.2 | 16.3 | 12.8 | 11.9 | 13.8 | 18.0 | 16.8 | 19.1 |
Adequate exercise access | −0.98 | −1.44 | −0.50 | −1.13 | −1.56 | −0.68 | −0.8 | −1.3 | −0.3 |
Ratio fast food to grocery outlets | 1.58 | 0.57 | 2.57 | 1.58 | 0.63 | 2.51 | 1.6 | 0.5 | 2.7 |
Groceries per head | −1.65 | −3.36 | 0.06 | −1.13 | −2.75 | 0.45 | −1.9 | −3.8 | 0.0 |
Food environment index | −2.32 | −3.40 | −1.27 | −0.68 | −1.74 | 0.35 | −3.9 | −5.1 | −2.7 |
% restaurants that are fast food | 1.23 | 0.57 | 1.88 | 0.98 | 0.37 | 1.61 | 1.5 | 0.8 | 2.2 |
Concentration score | −16.5 | −20.0 | −13.1 | −19.7 | −23.0 | −16.4 | −13.8 | −17.6 | −9.9 |
Urbanicity 1 | |||||||||
Metro counties, 250,000 to 1 million pop. | 0.16 | −1.0 | 1.2 | 0.31 | −0.51 | 1.25 | −0.04 | −1.27 | 1.06 |
Metro counties, fewer than 250,000 pop. | −0.14 | −1.5 | 0.8 | 0.05 | −0.95 | 0.89 | −0.30 | −1.65 | 0.75 |
Urban pop. >20,000, adjacent to metro area | 0.41 | −0.6 | 1.5 | 0.57 | −0.34 | 1.85 | 0.34 | −0.88 | 2.03 |
Urban pop. >20,000, not adj. metro area | 0.52 | −0.6 | 1.7 | 0.67 | −0.23 | 1.79 | 0.43 | −0.73 | 1.83 |
Urban pop., 2500 to 19,999, adj. metro area | 0.48 | −0.6 | 1.8 | 0.58 | −0.29 | 1.56 | 0.40 | −0.75 | 1.78 |
Urban pop., 2500 to 19,999, not adj. metro area | −0.17 | −1.6 | 0.8 | −0.02 | −1.13 | 0.76 | −0.38 | −2.00 | 0.68 |
Rural or <2500 urban pop., adj. metro area | 0.29 | −0.8 | 1.5 | 0.41 | −0.44 | 1.69 | 0.31 | −0.82 | 2.02 |
Rural or <2500 urban pop., not adj. metro area | −0.14 | −1.3 | 0.8 | 0.19 | −0.86 | 1.07 | −0.37 | −1.93 | 0.72 |
Census division 2 | |||||||||
Middle Atlantic | 0.46 | −1.5 | 2.6 | 2.29 | 0.36 | 4.37 | −0.60 | −2.82 | 1.80 |
East North Central | −0.70 | −3.0 | 1.9 | 0.52 | −1.99 | 3.07 | −0.76 | −3.66 | 2.15 |
West North Central | 0.21 | −2.2 | 2.9 | 2.36 | −0.09 | 5.07 | −0.90 | −3.72 | 2.19 |
South Atlantic | −0.47 | −2.8 | 2.0 | 1.10 | −1.41 | 3.51 | −1.24 | −4.09 | 1.54 |
East South Central | 0.12 | −2.2 | 2.6 | 1.74 | −0.69 | 4.24 | −0.68 | −3.49 | 2.21 |
West South Central | −0.32 | −2.8 | 2.2 | 2.49 | 0.16 | 5.26 | −2.67 | −5.38 | 0.55 |
Mountain | −3.40 | −6.0 | −0.5 | −1.73 | −4.36 | 1.01 | −4.16 | −7.15 | −1.05 |
Pacific | −3.15 | −5.9 | 0.3 | −2.34 | −4.98 | 0.68 | −2.99 | −6.04 | 0.47 |
County majority ethnicity/race 3 | |||||||||
Black N-H | 2.25 | 1.2 | 3.1 | 0.72 | −0.15 | 1.62 | 3.48 | 1.63 | 4.77 |
Hispanic | 0.30 | −0.6 | 1.3 | 0.41 | −0.47 | 1.35 | 0.41 | −0.80 | 1.79 |
Other | 3.41 | 2.1 | 4.8 | 3.11 | 1.85 | 4.33 | 3.52 | 1.79 | 5.13 |
County poverty level 4 | |||||||||
Quintile 2 | 0.07 | −1.1 | 0.7 | 0.09 | −0.66 | 0.70 | −0.39 | −4.02 | 0.82 |
Quintile 3 | 0.44 | −0.3 | 1.1 | 0.43 | −0.26 | 0.99 | 0.18 | −1.86 | 1.16 |
Quintile 4 | 0.57 | −0.4 | 1.2 | 0.41 | −0.54 | 1.02 | 0.33 | −2.25 | 1.39 |
Quintile 5 | 1.04 | 0.3 | 1.7 | 0.69 | 0.02 | 1.31 | 1.09 | −0.92 | 2.05 |
Variances first order interactions, geographic categories | |||||||||
Urbanicity*division | 0.011 | 0.002 | 0.033 | 0.011 | 0.003 | 0.040 | 0.013 | 0.003 | 0.046 |
Urbanicity*majority ethnic | 0.164 | 0.004 | 0.813 | 0.137 | 0.004 | 0.655 | 0.258 | 0.004 | 1.120 |
Urbanicity*poverty status | 0.036 | 0.004 | 0.122 | 0.018 | 0.003 | 0.060 | 0.068 | 0.005 | 0.205 |
Division*majority ethnic | 0.033 | 0.003 | 0.216 | 0.031 | 0.003 | 0.164 | 0.048 | 0.003 | 0.340 |
Division poverty status | 0.026 | 0.003 | 0.109 | 0.028 | 0.003 | 0.109 | 0.043 | 0.004 | 0.166 |
Majority ethnic*poverty status | 0.043 | 0.003 | 0.287 | 0.037 | 0.003 | 0.218 | 0.272 | 0.003 | 1.919 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Congdon, P. Variations in Obesity Rates between US Counties: Impacts of Activity Access, Food Environments, and Settlement Patterns. Int. J. Environ. Res. Public Health 2017, 14, 1023. https://doi.org/10.3390/ijerph14091023
Congdon P. Variations in Obesity Rates between US Counties: Impacts of Activity Access, Food Environments, and Settlement Patterns. International Journal of Environmental Research and Public Health. 2017; 14(9):1023. https://doi.org/10.3390/ijerph14091023
Chicago/Turabian StyleCongdon, Peter. 2017. "Variations in Obesity Rates between US Counties: Impacts of Activity Access, Food Environments, and Settlement Patterns" International Journal of Environmental Research and Public Health 14, no. 9: 1023. https://doi.org/10.3390/ijerph14091023
APA StyleCongdon, P. (2017). Variations in Obesity Rates between US Counties: Impacts of Activity Access, Food Environments, and Settlement Patterns. International Journal of Environmental Research and Public Health, 14(9), 1023. https://doi.org/10.3390/ijerph14091023