The Non-Linear Relationship between BMI and Health Care Costs and the Resulting Cost Fraction Attributable to Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Design
2.2. Measures
2.3. Statistical Analyses
3. Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the global burden of disease study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef]
- Mensink, G.B.; Schienkiewitz, A.; Haftenberger, M.; Lampert, T.; Ziese, T.; Scheidt-Nave, C. Overweight and obesity in Germany: Results of the German health interview and examination survey for adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013, 56, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.A. Medical consequences of obesity. J. Clin. Endocrinol. Metab. 2004, 89, 2583–2589. [Google Scholar] [CrossRef] [PubMed]
- Bertakis, K.D.; Azari, R. Obesity and the use of health care services. Obes. Res. 2005, 13, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Von Lengerke, T.; Krauth, C. Economic costs of adult obesity: A review of recent European studies with a focus on subgroup-specific costs. Maturitas 2011, 69, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Yates, N.; Teuner, C.M.; Hunger, M.; Holle, R.; Stark, R.; Laxy, M.; Hauner, H.; Peters, A.; Wolfenstetter, S.B. The economic burden of obesity in Germany: Results from the population-based KORA Studies. Obes. Facts 2016, 9, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Sen, A.; Prasad, M.; Norat, T.; Janszky, I.; Tonstad, S.; Romundstad, P.; Vatten, L.J. BMI and all cause mortality: Systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ 2016, 353, i2156. [Google Scholar] [CrossRef] [PubMed]
- Cawley, J.; Meyerhoefer, C. The medical care costs of obesity: An instrumental variables approach. J. Health Econ. 2012, 31, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Holle, R.; Happich, M.; Lowel, H.; Wichmann, H.E. KORA—A research platform for population based health research. Gesundheitswesen 2005, 67, S19–S25. [Google Scholar] [CrossRef] [PubMed]
- Hofmeister, C.; Maier, W.; Mielck, A.; Stahl, L.; Breckenkamp, J.; Razum, O. Regional deprivation in Germany: Nation-wide analysis of its association with mortality using the German index of multiple deprivation (GIMD). Gesundheitswesen 2016, 78, 42–48. [Google Scholar] [PubMed]
- Bock, J.O.; Brettschneider, C.; Seidl, H.; Bowles, D.; Holle, R.; Greiner, W.; König, H.H. Calculation of standardised unit costs from a societal perspective for health economic evaluation. Gesundheitswesen 2015, 77, 53–61. [Google Scholar] [PubMed]
- Wissenschaftliches Institut der AOK (WIdO): Arzneimittel. Available online: https://www.wido.de/arz_themenueberblick.html (accessed on 25 August 2017).
- Statistisches Bundesamt Verbraucherpreisindex: Deutschland, Monate, Klassifikation der Verwendungszwecke des Individualkonsums. Available online: https://www-genesis.destatis.de/genesis/online/logon?sequenz=tabelleErgebnis&selectionname=61111-0004&sachmerkmal=CC98A4&sachschluessel=CC06*&zeitscheiben=3 (accessed on 1 June 2014).
- Wood, S.N. Generalized Additive Models: An Introduction with R. Available online: https://www.crcpress.com/Generalized-Additive-Models-An-Introduction-with-R/Wood/p/book/9781584884743 (accessed on 27 February 2006).
- Lehnert, T.; Streltchenia, P.; Konnopka, A.; Riedel-Heller, S.G.; Konig, H.H. Health burden and costs of obesity and overweight in Germany: An update. Eur. J. Health Econ. 2015, 16, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.G.; Williamson, D.F.; Glick, H.A. Direct medical cost of overweight and obesity in the USA: A quantitative systematic review. Obes. Rev. 2011, 12, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Stoll, C.R.; Song, J.; Varela, J.E.; Eagon, C.J.; Colditz, G.A. The effectiveness and risks of bariatric surgery: An updated systematic review and meta-analysis, 2003–2012. JAMA Surg. 2014, 149, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Cawley, J. Does anything work to reduce obesity? (Yes, Modestly). J. Health Politics Policy Law 2016, 41, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Statistisches Bundesamt (Destatis) Current Population Based on the 2011 Census. Available online: https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Bevoelkerung/Bevoelkerungsstand/Tabellen/Durchschnittsalter_Zensus.html (accessed on 3 August 2017).
- Mora, T.; Gil, J.; Sicras-Mainar, A. The influence of obesity and overweight on medical costs: A panel data perspective. Eur. J. Health Econ. 2015, 16, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Hunger, M.; Schwarzkopf, L.; Heier, M.; Peters, A.; Holle, R. Official statistics and claims data records indicate non-response and recall bias within survey-based estimates of health care utilization in the older population. BMC Health Serv. Res. 2013, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Golinvaux, N.S.; Bohl, D.D.; Basques, B.A.; Fu, M.C.; Gardner, E.C.; Grauer, J.N. Limitations of administrative databases in spine research: A study in obesity. Spine J. 2014, 14, 2923–2928. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.J.; Chen, G.; Graham, M.; Quan, H. Coding of obesity in administrative hospital discharge abstract data: Accuracy and impact for future research studies. BMC Health Serv. Res. 2014, 14, 70. [Google Scholar] [CrossRef] [PubMed]
Variable | Detail | Total |
---|---|---|
N = 6757 (100%) | ||
Gender | Women | 3499 (51.8%) |
Men | 3258 (48.2%) | |
Age | Mean | 59.42 (13.8%) |
BMI | Underweight (BMI < 18.5) | 30 (0.4%) |
Normal weight (18.5 ≤ BMI < 25) | 1968 (29.1%) | |
Pre-obese (25 ≥ BMI < 30) | 2933 (43.4%) | |
Obese Class I (30 ≥ BMI < 35) | 1352 (20.0%) | |
Obese Class II (35 ≥ BMI < 40) | 360 (5.5%) | |
Obese Class III (BMI ≥ 40) | 115 (1.7%) | |
Education | Basic | 3831 (56.7%) |
Medium | 1534 (22.7%) | |
High | 1392 (20.6%) | |
Income | ≥150% median income | 1245 (18.4%) |
≥100% and <150% median income | 1913 (28.3%) | |
≥60% and <100% median income | 2313 (34.2%) | |
<60% median income | 721 (10.7%) | |
Income unknown | 565 (8.4%) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laxy, M.; Stark, R.; Peters, A.; Hauner, H.; Holle, R.; Teuner, C.M. The Non-Linear Relationship between BMI and Health Care Costs and the Resulting Cost Fraction Attributable to Obesity. Int. J. Environ. Res. Public Health 2017, 14, 984. https://doi.org/10.3390/ijerph14090984
Laxy M, Stark R, Peters A, Hauner H, Holle R, Teuner CM. The Non-Linear Relationship between BMI and Health Care Costs and the Resulting Cost Fraction Attributable to Obesity. International Journal of Environmental Research and Public Health. 2017; 14(9):984. https://doi.org/10.3390/ijerph14090984
Chicago/Turabian StyleLaxy, Michael, Renée Stark, Annette Peters, Hans Hauner, Rolf Holle, and Christina M. Teuner. 2017. "The Non-Linear Relationship between BMI and Health Care Costs and the Resulting Cost Fraction Attributable to Obesity" International Journal of Environmental Research and Public Health 14, no. 9: 984. https://doi.org/10.3390/ijerph14090984
APA StyleLaxy, M., Stark, R., Peters, A., Hauner, H., Holle, R., & Teuner, C. M. (2017). The Non-Linear Relationship between BMI and Health Care Costs and the Resulting Cost Fraction Attributable to Obesity. International Journal of Environmental Research and Public Health, 14(9), 984. https://doi.org/10.3390/ijerph14090984