The Human Exposure Potential from Propylene Releases to the Environment
Abstract
:1. Introduction
2. Airborne Concentrations
3. Emission Sources
3.1. Pyrogenic Sources
3.1.1. Biomass Burning
3.1.2. Vehicle Emissions
3.2. Biogenic Sources
3.2.1. Vegetation
3.2.2. Seawater, Sediment and Snowpack
3.2.3. Soil and Forest Debris
3.3. Industrial Emissions
3.4. Miscellaneous Sources
4. Indoor Air
4.1. Indoor to Outdoor Ratios
4.2. Food Preparation
4.3. Appliance Use
4.4. Miscellaneous Indoor Sources
5. Human Exposure
6. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Wood Mackenzie. Propylene Capacity Expected to Increase to 165 MT by 2030; Versik Analytics: Edinburgh, UK, 2014. [Google Scholar]
- CEH. Chemical Economics Handbook. Propylene; IHS Markit: London, UK, 2015. [Google Scholar]
- ACC. Propylene. Product Stewardship Guidance Manual. Available online: http://www2.spotchemi.eu/techspec/03426.pdf (accessed on 4 April 2016).
- Sanderson, M.G. Emission of Isoprene, Monoterpenes, Ethene and Propene by Vegetation. Available online: ftp://149.222-62-69.ftth.swbr.surewest.net/TreePDF/HCTN_40.pdf (accessed on 20 March 2016).
- Health Canada. Screening Assessment for 1-Propene; Environment Canada: Ottawa, ON, USA, 2014.
- HSDB. Propylene CASRN 115-07-1. 175; U.S. National Library of Medicine, Hazardous Substance Database: Bethesda, MD, USA, 2006.
- OEHHA. Air Toxics Hot Spots Program. Guidance Manual for Preparation of Health Risk Assessments; California Environmental Protection Agency, Office of Environmental Health Hazard Assessment: Sacramento, CA, USA, 2015.
- SCAPA. Protective Action Criteria (PAC) Rev. 29 Based on Applicable 60-Minute AEGLs, ERPGs, or TEELs (Table 4), 2016. Available online: https://sp.eota.energy.gov/pac/docs/Revision_29_Table4.pdf (accessed on 10 January 2017).
- ACGIH. Threshold Limit Values for Chemical Substances and Physical Agents; ACGIH: Cincinnati, OH, USA, 2016. [Google Scholar]
- Trentmann, J.; Andreae, M.O.; Graf, H.F. Chemical Processes in a Young Biomass-Burning Plume. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Lawrimore, J.H.; Das, M.; Aneja, V.P. Vertical Sampling and Analysis of Nonmethane Hydrocarbons for Ozone Control in Urban North Carolina. J. Geophys. Res. Atmos. 1995, 100, 22785–22793. [Google Scholar] [CrossRef]
- Tille, K.J.W.; Savelsberg, M.; Bachmann, K. Airborne Measurements of Nonmethane Hydrocarbons over Western Europe—Vertical Distributions, Seasonal Cycles of Mixing Ratios and Source Strengths. Atmos. Environ. 1985, 19, 1751–1760. [Google Scholar] [CrossRef]
- Matsunaga, S.N.; Chatani, S.; Morikawa, T.; Nakatsuka, S.; Suthawaree, J.; Tajima, Y.; Kato, S.; Kajii, Y.; Minoura, H. Evaluation of Non-Methane Hydrocarbon (NMHC) Emissions Based on an Ambient Air Measurement in Tokyo Area, Japan. Atmos. Environ. 2010, 44, 4982–4993. [Google Scholar] [CrossRef]
- Li, L.F.; Wang, X.M. Seasonal and Diurnal Variations of Atmospheric Non-Methane Hydrocarbons in Guangzhou, China. Int. J. Environ. Res. Public Health 2012, 9, 1859–1873. [Google Scholar] [CrossRef] [PubMed]
- Na, K.; Kim, Y.P.; Moon, K.C. Diurnal Characteristics of Volatile Organic Compounds in the Seoul Atmosphere. Atmos. Environ. 2003, 37, 733–742. [Google Scholar] [CrossRef]
- Qin, Y.; Walk, T.; Gary, R.; Yao, X.; Elles, S. C2–C10 Nonmethane Hydrocarbons Measured in Dallas, USA—Seasonal Trends and Diurnal Characteristics. Atmos. Environ. 2007, 41, 6018–6032. [Google Scholar] [CrossRef]
- Fanizza, C.; Incoronato, F.; Baiguera, S.; Schiro, R.; Brocco, D. Volatile Organic Compound Levels at One Site in Rome Urban Air. Atmos. Pollut. Res. 2014, 5, 303–314. [Google Scholar] [CrossRef]
- Roemer, M.; Builtjes, P.; Esser, P.; Guicherit, R.; Thijsse, T. C2–C5 Hydrocarbon Measurements in The Netherlands 1981–1991. Atmos. Environ. 1999, 33, 3579–3595. [Google Scholar] [CrossRef]
- Sahu, L.K.; Lal, S. Characterization of C2–C4 NMHCs Distributions at a High Altitude Tropical Site in India. J. Atmos. Chem. 2006, 54, 161–175. [Google Scholar] [CrossRef]
- Penkett, S.A.; Burgess, R.A.; Coe, H.; Coll, I.; Hov, O.; Lindskog, A.; Schmidbauer, N.; Solberg, S.; Roemer, M.; Thijsse, T.; et al. Evidence for Large Average Concentrations of the Nitrate Radical (NO3) in Western Europe from the HANSA Hydrocarbon Database. Atmos. Environ. 2007, 41, 3465–3478. [Google Scholar] [CrossRef]
- Navazo, M.; Durana, N.; Alonso, L.; Gomez, M.C.; Garcia, J.A.; Ilardia, J.L.; Gangoiti, G.; Iza, J. High Temporal Resolution Measurements of Ozone Precursors in a Rural Background Station. A Two-Year Study. Environ. Monit. Assess. 2008, 136, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Gnauk, T.; Rolle, W. A Three-Year Study of Nonmethane Hydrocarbons in Surface Air over Saxony (Germany). J. Atmos. Chem. 1998, 30, 371–395. [Google Scholar] [CrossRef]
- Myers, J.L.; Phillips, T.; Grant, R.L. Emissions and Ambient Air Monitoring Trends of Lower Olefins across Texas from 2002 to 2012. Chem. Biol. Interact. 2015, 241, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Von Schneidemesser, E.; Monks, P.S.; Plass-Duelmer, C. Global Comparison of VOC and CO Observations in Urban Areas. Atmos. Environ. 2010, 44, 5053–5064. [Google Scholar] [CrossRef]
- Dollard, G.; Dumitrean, P.; Telling, S.; Dixon, J.; Derwent, R. Observed Trends in Ambient Concentrations of C2–C8 Hydrocarbons in the United Kingdom over the Period from 1993 to 2004. Atmos. Environ. 2007, 41, 2559–2569. [Google Scholar] [CrossRef]
- Pang, Y.B.; Fuentes, M.; Rieger, P. Trends in Selected Ambient Volatile Organic Compound (VOC) Concentrations and a Comparison to Mobile Source Emission Trends in California’s South Coast Air Basin. Atmos. Environ. 2015, 122, 686–695. [Google Scholar] [CrossRef]
- Warneke, C.; de Gouw, J.A.; Holloway, J.S.; Peischl, J.; Ryerson, T.B.; Atlas, E.; Blake, D.; Trainer, M.; Parrish, D.D. Multiyear Trends in Volatile Organic Compounds in Los Angeles, California: Five Decades of Decreasing Emissions. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Wang, M.; Shao, M.; Chen, W.; Lu, S.; Liu, Y.; Yuan, B.; Zhang, Q.; Zhang, Q.; Chang, C.C.; Wang, B.; et al. Trends of Non-Methane Hydrocarbons (NMHC) Emissions in Beijing During 2002–2013. Atmos. Chem. Phys. 2015, 15, 1489–1502. [Google Scholar] [CrossRef]
- Poisson, N.; Kanakidou, M.; Crutzen, P.J. Impact of Non-Methane Hydrocarbons on Tropospheric Chemistry and the Oxidizing Power of the Global Troposphere: 3-Dimensional Modelling Results. J. Atmos. Chem. 2000, 36, 157–230. [Google Scholar] [CrossRef]
- Ito, A.; Sillman, S.; Penner, J.E. Global Chemical Transport Model Study of Ozone Response to Changes in Chemical Kinetics and Biogenic Volatile Organic Compounds Emissions Due to Increasing Temperatures: Sensitivities to Isoprene Nitrate Chemistry and Grid Resolution. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Pozzer, A.; Jockel, P.; Tost, H.; Sander, R.; Ganzeveld, L.; Kerkweg, A.; Lelieveld, J. Simulating Organic Species with the Global Atmospheric Chemistry General Circulation Model ECHAM5/MESSy1: A Comparison of Model Results with Observations. Atmos. Chem. Phys. 2007, 7, 2527–2550. [Google Scholar] [CrossRef]
- Williams, J.E.; van Velthoven, P.F.J.; Brenninkmeijer, C.A.M. Quantifying the Uncertainty in Simulating Global Tropospheric Composition Due to the Variability in Global Emission Estimates of Biogenic Volatile Organic Compounds. Atmos. Chem. Phys. 2013, 13, 2857–2891. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass Burning Emissions Estimated with a Global Fire Assimilation System Based on Observed Fire Radiative Power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Olivier, J.; Peters, J.; Granier, C.; OPetron, G.; Muller, J.F.; Wallens, S. Present and Future Surface Emissions of Atmospheric Compounds, 2003. Available online: http://tropo.aeronomie.be/pdf/POET_emissions_report.pdf (accessed on 20 February 2017).
- Von Kuhlmann, R.; Lawrence, M.G.; Crutzen, P.J.; Rasch, P.J. A Model for Studies of Tropospheric Ozone and Nonmethane Hydrocarbons: Model Description and Ozone Results. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Horowitz, L.W.; Walters, S.; Mauzerall, D.L.; Emmons, L.K.; Rasch, P.J.; Granier, C.; Tie, X.X.; Lamarque, J.F.; Schultz, M.G.; Tyndall, G.S.; et al. A Global Simulation of Tropospheric Ozone and Related Tracers: Description and Evaluation of MOZART, Version 2. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Folberth, G.A.; Hauglustaine, D.A.; Lathiere, J.; Brocheton, F. Interactive Chemistry in the Laboratoire de Meteorologie Dynamique General Circulation Model: Model Description and Impact Analysis of Biogenic Hydrocarbons on Tropospheric Chemistry. Atmos. Chem. Phys. 2006, 6, 2273–2319. [Google Scholar] [CrossRef]
- Lewis, A.C.; Evans, M.J.; Hopkins, J.R.; Punjabi, S.; Read, K.A.; Purvis, R.M.; Andrews, S.J.; Moller, S.J.; Carpenter, L.J.; Lee, J.D.; et al. The Influence of Biomass Burning on the Global Distribution of Selected Non-Methane Organic Compounds. Atmos. Chem. Phys. 2013, 13, 851–867. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.L.; Liu, Y.; Shao, M.; Lu, S.H.; Wang, M.; Yuan, B.; Gong, Z.H.; He, L.Y.; Zeng, L.M.; Hu, M.; et al. The Contributions of Biomass Burning to Primary and Secondary Organics: A Case Study in Pearl River Delta (PRD), China. Sci. Total Environ. 2016, 569, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Brunke, E.G.; Labuschagne, C.; Scheel, H.E. Trace Gas Variations at Cape Point, South Africa, during May 1997 Following a Regional Biomass Burning Episode. Atmos. Environ. 2001, 35, 777–786. [Google Scholar] [CrossRef]
- Hobbs, P.V.; Sinha, P.; Yokelson, R.J.; Christian, T.J.; Blake, D.R.; Gao, S.; Kirchstetter, T.W.; Novakov, T.; Pilewskie, P. Evolution of Gases and Particles from a Savanna Fire in South Africa. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Schultz, M.G.; Heil, A.; Hoelzemann, J.J.; Spessa, A.; Thonicke, K.; Goldammer, J.G.; Held, A.C.; Pereira, J.M.C.; van het Bolscher, M. Global Wildland Fire Emissions from 1960 to 2000. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Yonemura, S.; Sudo, S.; Tsuruta, H.; Kawashima, S. Relations between Light Hydrocarbon, Carbon Monoxide, and Carbon Dioxide Concentrations in the Plume from the Combustion of Plant Material in a Furnace. J. Atmos. Chem. 2002, 43, 1–19. [Google Scholar] [CrossRef]
- Barrefors, G.; Petersson, G. Assessment by Gas-Chromatography and Gas-Chromatography Mass-Spectrometry of Volatile Hydrocarbons from Biomass Burning. J. Chromatogr. A 1995, 710, 71–77. [Google Scholar] [CrossRef]
- Jost, C.; Trentmann, J.; Sprung, D.; Andreae, M.O.; McQuaid, J.B.; Barjat, H. Trace Gas Chemistry in a Young Biomass Burning Plume Over Namibia: Observations and Model Simulations. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Shi, J.W.; Deng, H.; Bai, Z.P.; Kong, S.F.; Wang, X.Y.; Hao, J.M.; Han, X.Y.; Ning, P. Emission and Profile Characteristic of Volatile Organic Compounds Emitted from Coke Production, Iron Smelt, Heating Station and Power Plant in Liaoning Province, China. Sci. Total Environ. 2015, 515, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Laursen, K.K.; Hobbs, P.V.; Radke, L.F.; Rasmussen, R.A. Some Trace Gas Emissions from North American Biomass Fires with an Assessment of Regional and Global Fluxes from Biomass Burning. J. Geophys. Res. Atmos. 1992, 97, 20687–20701. [Google Scholar] [CrossRef]
- Aurell, J.; Gullett, B.K.; Tabor, D. Emissions from Southeastern US Grasslands and Pine Savannas: Comparison of Aerial and Ground Field Measurements with Laboratory Burns. Atmos. Environ. 2015, 111, 170–178. [Google Scholar] [CrossRef]
- Guild, L.S.; Kauffman, J.B.; Cohen, W.B.; Hlavka, C.A.; Ward, D.E. Modeling Biomass Burning Emissions for Amazon Forest and Pastures in Rondonia, Brazil. Ecol. Appl. 2004, 14, S232–S246. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Burling, I.R.; Gilman, J.B.; Warneke, C.; Stockwell, C.E.; de Gouw, J.; Akagi, S.K.; Urbanski, S.P.; Veres, P.; Roberts, J.M.; et al. Coupling Field and Laboratory Measurements to Estimate the Emission Factors of Identified and Unidentified Trace Gases for Prescribed Fires. Atmos. Chem. Phys. 2013, 13, 89–116. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Christian, T.J.; Karl, T.G.; Guenther, A. The Tropical Forest and Fire Emissions Experiment: Laboratory Fire Measurements and Synthesis of Campaign Data. Atmos. Chem. Phys. 2008, 8, 3509–3527. [Google Scholar] [CrossRef]
- Stockwell, C.E.; Yokelson, R.J.; Kreidenweis, S.M.; Robinson, A.L.; Demott, P.J.; Sullivan, R.C.; Reardon, J.; Ryan, K.C.; Griffith, D.W.T.; Stevens, L. Trace Gas Emissions from Combustion of Peat, Crop Residue, Domestic Biofuels, Grasses, and Other Fuels: Configuration and Fourier Transform Infrared (FTIR) Component of the Fourth Fire Lab at Missoula Experiment (FLAME-4). Atmos. Chem. Phys. 2014, 14, 9727–9754. [Google Scholar] [CrossRef]
- George, I.J.; Black, R.R.; Geron, C.D.; Aurell, J.; Hays, M.D.; Preston, W.T.; Gullett, B.K. Volatile and Semivolatile Organic Compounds in Laboratory Peat Fire Emissions. Atmos. Environ. 2016, 132, 163–170. [Google Scholar] [CrossRef]
- Christian, T.J.; Kleiss, B.; Yokelson, R.J.; Holzinger, R.; Crutzen, P.J.; Hao, W.M.; Saharjo, B.H.; Ward, D.E. Comprehensive Laboratory Measurements of Biomass-Burning Emissions: 1. Emissions from Indonesian, African, and Other Fuels. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Stockwell, C.E.; Jayarathne, T.; Cochrane, M.A.; Ryan, K.C.; Putra, E.I.; Saharjo, B.H.; Nurhayati, A.D.; Albar, I.; Blake, D.R.; Simpson, I.J.; et al. Field Measurements of Trace Gases and Aerosols Emitted by Peat Fires in Central Kalimantan, Indonesia, during the 2015 El Nino. Atmos. Chem. Phys. 2016, 16, 11711–11732. [Google Scholar] [CrossRef]
- McMeeking, G.R.; Kreidenweis, S.M.; Baker, S.; Carrico, C.M.; Chow, J.C.; Collett, J.L.; Hao, W.M.; Holden, A.S.; Kirchstetter, T.W.; Malm, W.C.; et al. Emissions of Trace Gases and Aerosols during the Open Combustion of Biomass in the Laboratory. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Burling, I.R.; Yokelson, R.J.; Griffith, D.W.T.; Johnson, T.J.; Veres, P.; Roberts, J.M.; Warneke, C.; Urbanski, S.P.; Reardon, J.; Weise, D.R.; et al. Laboratory Measurements of Trace Gas Emissions from Biomass Burning of Fuel Types from the Southeastern and Southwestern United States. Atmos. Chem. Phys. 2010, 10, 11115–11130. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Shao, M.; Lin, Y.; Luan, S.J.; Mao, N.; Chen, W.T.; Wang, M. Emission Inventory of Carbonaceous Pollutants from Biomass Burning in the Pearl River Delta Region, China. Atmos. Environ. 2013, 76, 189–199. [Google Scholar] [CrossRef]
- Li, X.H.; Wang, S.X.; Duan, L.; Hao, J.M. Characterization of Non-Methane Hydrocarbons Emitted from Open Burning of Wheat Straw and Corn Stover in China. Environ. Res. Lett. 2009, 4, 044015. [Google Scholar] [CrossRef]
- Cooper, D.A.; Peterson, K.; Simpson, D. Hydrocarbon, PAH and PCB Emissions from Ferries: A Case Study in the Skagerak-Kattegatt-Oresund Region. Atmos. Environ. 1996, 30, 2463–2473. [Google Scholar] [CrossRef]
- Henry, R.F. Weekday/Weekend Differences in Gasoline Related Hydrocarbons at Coastal PAMS Sites Due to Recreational Boating. Atmos. Environ. 2013, 75, 58–65. [Google Scholar] [CrossRef]
- Beyersdorf, A.J.; Thornhill, K.L.; Winstead, E.L.; Ziemba, L.D.; Blake, D.R.; Timko, M.T.; Anderson, B.E. Power-Dependent Speciation of Volatile Organic Compounds in Aircraft Exhaust. Atmos. Environ. 2012, 61, 275–282. [Google Scholar] [CrossRef]
- Ho, K.F.; Ho, S.S.H.; Lee, S.C.; Louie, P.K.K.; Cao, J.J.; Deng, W.J. Volatile Organic Compounds in Roadside Environment of Hong Kong. Aerosol Air Qual. Res. 2013, 13, 1331–1347. [Google Scholar] [CrossRef]
- Wong, Y.C.; Sin, D.W.M.; Yeung, L.L. Assessment of the Air Quality in Indoor Car Parks. Indoor Built Environ. 2002, 11, 134–145. [Google Scholar] [CrossRef]
- Wu, B.-Z.; Chang, C.C.; Sree, U.; Chiu, K.-H.; Lo, J.-G. Measurement of Non-Methane Hydrocarbons in Taipei City and Their Impact on Ozone Formation in Relation to Air Quality. Anal. Chim. Acta 2006, 576, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Broderick, B.M.; Marnane, I.S. A Comparison of the C2–C9 Hydrocarbon Compositions of Vehicle Fuels and Urban Air in Dublin, Ireland. Atmos. Environ. 2002, 36, 975–986. [Google Scholar] [CrossRef]
- Olson, D.A.; Hammond, D.M.; Seila, R.L.; Burke, J.M.; Norris, G.A. Spatial Gradients and Source Apportionment of Volatile Organic Compounds Near Roadways. Atmos. Environ. 2009, 43, 5647–5653. [Google Scholar] [CrossRef]
- O’Donoghue, R.T.; Broderick, B.M. Local and Regional Sources of C2–C8 Hydrocarbon Concentrations at a Sub-Urban Motorway Site (M4) in Ireland. Environ. Monit. Assess. 2009, 155, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J.I.; Kean, A.J.; Harley, R.A.; Millet, D.B.; Goldstein, A.H. Temperature Dependence of Volatile Organic Compound Evaporative Emissions from Motor Vehicles. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Nelson, P.F.; Quigley, S.M. The Hydrocarbon Composition of Exhaust Emitted from Gasoline Fueled Vehicles. Atmos. Environ. 1984, 18, 79–87. [Google Scholar] [CrossRef]
- Montero, L.; Duane, M.; Manfredi, U.; Astorga, C.; Martini, G.; Carriero, M.; Krasenbrink, A.; Larsen, B.R. Hydrocarbon Emission Fingerprints from Contemporary Vehicle/Engine Technologies with Conventional and New Fuels. Atmos. Environ. 2010, 44, 2167–2175. [Google Scholar] [CrossRef]
- Wang, J.; Jin, L.M.; Gao, J.H.; Shi, J.W.; Zhao, Y.L.; Liu, S.X.; Jin, T.S.; Bai, Z.P.; Wu, C.Y. Investigation of Speciated VOC in Gasoline Vehicular Exhaust Under ECE and EUDC Test Cycles. Sci. Total Environ. 2013, 445, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.L.; Shen, X.B.; Ye, Y.; Cao, X.Y.; Jiang, X.; Zhang, Y.Z.; He, K.B. On-Road Emission Characteristics of VOCs from Diesel Trucks in Beijing, China. Atmos. Environ. 2015, 103, 87–93. [Google Scholar] [CrossRef]
- Pang, Y.B.; Fuentes, M.; Rieger, P. Trends in the Emissions of Volatile Organic Compounds (VOCs) from Light-Duty Gasoline Vehicles Tested on Chassis Dynamometers in Southern California. Atmos. Environ. 2014, 83, 127–135. [Google Scholar] [CrossRef]
- Stump, F.D.; Knapp, K.T.; Ray, W.D. Seasonal Impact of Blending Oxygenated Organics with Gasoline on Motor-Vehicle Tailpipe and Evaporative Emissions. J. Air Waste Manag. Assoc. 1990, 40, 872–880. [Google Scholar] [CrossRef]
- Lough, G.C.; Schauer, J.J.; Lonneman, W.A.; Allen, M.K. Summer and Winter Nonmethane Hydrocarbon Emissions from on-Road Motor Vehicles in the Midwestern United States. J. Air Waste Manag. Assoc. 2005, 55, 629–646. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.Y.; Simpson, I.J.; Blake, D.R.; Rowland, F.S. Impact of the Leakage of Liquefied Petroleum Gas (LPG) on Santiago Air Quality. Geophys. Res. Lett. 2001, 28, 2193–2196. [Google Scholar] [CrossRef]
- Blake, D.R.; Rowland, F.S. Urban Leakage of Liquefied Petroleum Gas and Its Impact on Mexico City Air Quality. Science 1995, 269, 953–956. [Google Scholar] [CrossRef] [PubMed]
- Hwa, M.Y.; Hsieh, C.C.; Wu, T.C.; Chang, L.F.W. Real-World Vehicle Emissions and VOCs Profile in the Taipei Tunnel Located at Taiwan Taipei Area. Atmos. Environ. 2002, 36, 1993–2002. [Google Scholar] [CrossRef]
- Staehelin, J.; Keller, C.; Stahel, W.; Schlapfer, K.; Wunderli, S. Emission Factors from Road Traffic from a Tunnel Study (Gubrist Tunnel, Switzerland). Part III: Results of Organic Compounds, SO2 and Speciation of Organic Exhaust Emission. Atmos. Environ. 1998, 32, 999–1009. [Google Scholar] [CrossRef]
- Ho, K.F.; Lee, S.C.; Ho, W.K.; Blake, D.R.; Cheng, Y.; Li, Y.S.; Ho, S.S.H.; Fung, K.; Louie, P.K.K.; Park, D. Vehicular Emission of Volatile Organic Compounds (VOCs) from a Tunnel Study in Hong Kong. Atmos. Chem. Phys. 2009, 9, 7491–7504. [Google Scholar] [CrossRef]
- Araizaga, A.E.; Mancilla, Y.; Mendoza, A. Volatile Organic Compound Emissions from Light-Duty Vehicles in Monterrey, Mexico: A Tunnel Study. Int. J. Environ. Res. 2013, 7, 277–292. [Google Scholar]
- Touaty, M.; Bonsang, B. Hydrocarbon Emissions in a Highway Tunnel in the Paris Area. Atmos. Environ. 2000, 34, 985–996. [Google Scholar] [CrossRef]
- Sagebiel, J.C.; Zielinska, B.; Pierson, W.R.; Gertler, A.W. Real-World Emissions and Calculated Reactivities of Organic Species from Motor Vehicles. Atmos. Environ. 1996, 30, 2287–2296. [Google Scholar] [CrossRef]
- Gentner, D.R.; Worton, D.R.; Isaacman, G.; Davis, L.C.; Dallmann, T.R.; Wood, E.C.; Herndon, S.C.; Goldstein, A.H.; Harley, R.A. Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production. Environ. Sci. Technol. 2013, 47, 11837–11848. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.L.; Hwu, C.S.; Chen, S.Y.; Wu, M.C.; Ma, S.Y.; Huang, Y.S. Emission Factors and Characteristics of Criteria Pollutants and Volatile Organic Compounds (VOCs) in a Freeway Tunnel Study. Sci. Total Environ. 2007, 381, 200–211. [Google Scholar] [PubMed]
- Duffy, B.L.; Nelson, P.F. Non-Methane Exhaust Composition in the Sydney Harbour Tunnel: A Focus on Benzene and 1,3-Butadiene. Atmos. Environ. 1996, 30, 2759–2768. [Google Scholar] [CrossRef]
- Na, K.; Kim, Y.P.; Moon, K.C. Seasonal Variation of the C2–C9 Hydrocarbons Concentrations and Compositions Emitted from Motor Vehicles in a Seoul Tunnel. Atmos. Environ. 2002, 36, 1969–1978. [Google Scholar] [CrossRef]
- Lai, C.H.; Peng, Y.P. Volatile Hydrocarbon Emissions from Vehicles and Vertical Ventilations in the Hsuehshan Traffic Tunnel, Taiwan. Environ. Monit. Assess. 2012, 184, 4015–4028. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.S.; Lai, C.H.; Ho, Y.T. Source Profiles and Ozone Formation Potentials of Volatile Organic Compounds in Three Traffic Tunnels in Kaohsiung, Taiwan. J. Air Waste Manag. Assoc. 2003, 53, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, B.; Fung, K.K. The Composition and Concentration of Hydrocarbons in the Range of C2 to C18 Emitted from Motor-Vehicles. Sci. Total Environ. 1994, 147, 281–288. [Google Scholar] [CrossRef]
- Na, K.S. Determination of VOC Source Signature of Vehicle Exhaust in a Traffic Tunnel. J. Environ. Manag. 2006, 81, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Barrefors, G.; Petersson, G. Volatile Hazardous Hydrocarbons in a Scandinavian Urban Road Tunnel. Chemosphere 1992, 25, 691–696. [Google Scholar] [CrossRef]
- Siegl, W.O.; Mccabe, R.W.; Chun, W.; Kaiser, E.W.; Perry, J.; Henig, Y.I.; Trinker, F.H.; Anderson, R.W. Speciated Hydrocarbon Emissions from the Combustion of Single Component Fuels. 1. Effect of Fuel Structure. J. Air Waste Manag. Assoc. 1992, 42, 912–920. [Google Scholar] [CrossRef]
- Duffy, B.L.; Nelson, P.F.; Ye, Y.; Weeks, I.A. Speciated Hydrocarbon Profiles and Calculated Reactivities of Exhaust and Evaporative Emissions from 82 in-Use Light-Duty Australian Vehicles. Atmos. Environ. 1999, 33, 291–307. [Google Scholar] [CrossRef]
- Siegl, W.O.; Hammerle, R.H.; Herrmann, H.M.; Wenclawiak, B.W.; Luers-Jongen, B. Organic Emissions Profile for a Light-Duty Diesel Vehicle. Atmos. Environ. 1999, 33, 797–805. [Google Scholar] [CrossRef]
- Tsai, J.H.; Huang, P.H.; Chiang, H.L. Characteristics of Volatile Organic Compounds from Motorcycle Exhaust Emission during Real-World Driving. Atmos. Environ. 2014, 99, 215–226. [Google Scholar] [CrossRef]
- Guo, H.; Zou, S.C.; Tsai, W.Y.; Chan, L.Y.; Blake, D.R. Emission Characteristics of Nonmethane Hydrocarbons from Private Cars and Taxis at Different Driving Speeds in Hong Kong. Atmos. Environ. 2011, 45, 2711–2721. [Google Scholar] [CrossRef]
- Adam, T.W.; Astorga, C.; Clairotte, M.; Duane, M.; Elsasser, M.; Krasenbrink, A.; Larsen, B.R.; Manfredi, U.; Martini, G.; Montero, L.; et al. Chemical Analysis and Ozone Formation Potential of Exhaust from Dual-Fuel (Liquefied Petroleum Gas/Gasoline) Light Duty Vehicles. Atmos. Environ. 2011, 45, 2842–2848. [Google Scholar] [CrossRef]
- Lyu, X.P.; Guo, H.; Simpson, I.J.; Meinardi, S.; Louie, P.K.K.; Ling, Z.H.; Wang, Y.; Liu, M.; Luk, C.W.Y.; Wang, N.; et al. Effectiveness of Replacing Catalytic Converters in LPG-Fueled Vehicles in Hong Kong. Atmos. Chem. Phys. 2016, 16, 6609–6626. [Google Scholar] [CrossRef]
- Ludykar, D.; Westerholm, R.; Almen, J. Cold Start Emissions at +22, −7 and −20 °C Ambient Temperatures from a Three-Way Catalyst (TWC) Car: Regulated and Unregulated Exhaust Components. Sci. Total Environ. 1999, 235, 65–69. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of Emissions from Air Pollution Sources. 2. C1 through C30 Organic Compounds from Medium Duty Diesel Trucks. Environ. Sci. Technol. 1999, 33, 1578–1587. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of Emissions from Air Pollution Sources. 5. C1–C32 Organic Compounds from Gasoline-Powered Motor Vehicles. Environ. Sci. Technol. 2002, 36, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Derwent, R.G.; Stevenson, D.S.; Collins, W.J.; Johnson, C.E. Intercontinental Transport and the Origins of the Ozone Observed at Surface Sites in Europe. Atmos. Environ. 2004, 38, 1891–1901. [Google Scholar] [CrossRef]
- Goldstein, A.H.; Fan, S.M.; Goulden, M.L.; Munger, J.W.; Wofsy, S.C. Emissions of Ethene, Propene, and 1-Butene by a Midlatitude Forest. J. Geophys. Res. Atmos. 1996, 101, 9149–9157. [Google Scholar] [CrossRef]
- Janson, R.; De Serves, C. Isoprene Emissions from Boreal Wetlands in Scandinavia. J. Geophys. Res. Atmos. 1998, 103, 25513–25517. [Google Scholar] [CrossRef]
- Haapanala, S.; Rinne, J.; Pystynen, K.H.; Hellen, H.; Hakola, H.; Riutta, T. Measurements of Hydrocarbon Emissions from a Boreal Fen Using the REA Technique. Biogeosciences 2006, 3, 103–112. [Google Scholar] [CrossRef]
- Hellen, H.; Hakola, H.; Pystynen, K.H.; Rinne, J.; Haapanala, S. C2–C10 Hydrocarbon Emissions from a Boreal Wetland and Forest Floor. Biogeosciences 2006, 3, 167–174. [Google Scholar] [CrossRef]
- Jones, C.E.; Hopkins, J.R.; Lewis, A.C. In Situ Measurements of Isoprene and Monoterpenes within a South-East Asian Tropical Rainforest. Atmos. Chem. Phys. 2011, 11, 6971–6984. [Google Scholar] [CrossRef] [Green Version]
- Hakola, H.; Laurila, T.; Lindfors, V.; Hellen, H.; Gaman, A.; Rinne, J. Variation of the VOC Emission Rates of Birch Species during the Growing Season. Boreal Environ. Res. 2001, 6, 237–249. [Google Scholar]
- Hakola, H.; Rinne, J.; Laurila, T. The Hydrocarbon Emission Rates of Tea-Leafed Willow (Salix phylicifolia), Silver Birch (Betula pendula) and European Aspen (Populus tremula). Atmos. Environ. 1998, 32, 1825–1833. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Zenkevich, I.G.; Ioffe, B.V. Volatile Organic-Compounds in the Atmosphere of Forests. Atmos. Environ. 1985, 19, 1–8. [Google Scholar] [CrossRef]
- Svedberg, U.; Samuelsson, J.; Melin, S. Hazardous Off-Gassing of Carbon Monoxide and Oxygen Depletion during Ocean Transportation of Wood Pellets. Ann. Occup. Hyg. 2008, 52, 259–266. [Google Scholar] [PubMed]
- Kang, D.; Aneja, V.P.; Das, M.; Seila, R. Measurements of Air-Surface Exchange Rates of Volatile Organic Compounds. Int. J. Environ. Pollut. 2004, 22, 547–562. [Google Scholar] [CrossRef]
- Smiatek, G.; Steinbrecher, R. Temporal and Spatial Variation of Forest VOC Emissions in Germany in the Decade 1994–2003. Atmos. Environ. 2006, 40, S166–S177. [Google Scholar] [CrossRef]
- Lewis, A.C.; McQuaid, J.B.; Carslaw, N.; Pilling, M.J. Diurnal Cycles of Short-Lived Tropospheric Alkenes at a North Atlantic Coastal Site. Atmos. Environ. 1999, 33, 2417–2422. [Google Scholar] [CrossRef]
- Plass-Dulmer, C.; Koppmann, R.; Ratte, M.; Rudolph, J. Light Nonmethane Hydrocarbons in Seawater. Glob. Biogeochem. Cycles 1995, 9, 79–100. [Google Scholar] [CrossRef]
- Tran, S.; Bonsang, B.; Gros, V.; Peeken, I.; Sarda-Esteve, R.; Bernhardt, A.; Belviso, S. A Survey of Carbon Monoxide and Non-Methane Hydrocarbons in the Arctic Ocean during Summer 2010. Biogeosciences 2013, 10, 1909–1935. [Google Scholar] [CrossRef] [Green Version]
- Plass, C.; Koppmann, R.; Rudolph, J. Light Hydrocarbons in the Surface Water of the Mid-Atlantic. J. Atmos. Chem. 1992, 15, 235–251. [Google Scholar] [CrossRef]
- Broadgate, W.J.; Liss, P.S.; Penkett, S.A. Seasonal Emissions of Isoprene and Other Reactive Hydrocarbon Gases from the Ocean. Geophys. Res. Lett. 1997, 24, 2675–2678. [Google Scholar] [CrossRef]
- Bonsang, B.; Al Aarbaoui, A.; Sciare, J. Diurnal Variation of Non-Methane Hydrocarbons in the Subantarctic Atmosphere. Environ. Chem. 2008, 5, 16–23. [Google Scholar] [CrossRef]
- Lamontagne, R.A.; Swinnerton, J.W.; Linnenbom, V.J. C1–C4 Hydrocarbons in North and South Pacific. Tellus 1974, 26, 71–77. [Google Scholar] [CrossRef]
- Gist, N.; Lewis, A.C. Seasonal Variations of Dissolved Alkenes in Coastal Waters. Mar. Chem. 2006, 100, 1–10. [Google Scholar] [CrossRef]
- Ratte, M.; Plassdulmer, C.; Koppmann, R.; Rudolph, J. Horizontal and Vertical Profiles of Light-Hydrocarbons in Sea-Water Related to Biological, Chemical and Physical Parameters. Tellus B Chem. Phys. Meteorol. 1995, 47, 607–623. [Google Scholar] [CrossRef]
- Ratte, M.; Bujok, O.; Spitzy, A.; Rudolph, J. Photochemical Alkene Formation in Seawater from Dissolved Organic Carbon: Results from Laboratory Experiments. J. Geophys. Res. Atmos. 1998, 103, 5707–5717. [Google Scholar] [CrossRef]
- Ratte, M.; Plassdulmer, C.; Koppmann, R.; Rudolph, J.; Denga, J. Production Mechanism of C2–C4 Hydrocarbons in Seawater—Field Measurements and Experiments. Glob. Biogeochem. Cycles 1993, 7, 369–378. [Google Scholar] [CrossRef]
- Riemer, D.D.; Milne, P.J.; Zika, R.G.; Pos, W.H. Photoproduction of Nonmethane Hydrocarbons (NMHCs) in Seawater. Mar. Chem. 2000, 71, 177–198. [Google Scholar] [CrossRef]
- Claypool, G.E.; Kvenvolden, K.A. Methane and Other Hydrocarbon Gases in Marine Sediment. Annu. Rev. Earth Planet. Sci. 1983, 11, 299–327. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. Hydrocarbon Gas in Sediment of the Southern Pacific Ocean. Geo-Mar. Lett. 1988, 8, 179–187. [Google Scholar] [CrossRef]
- Kvenvolden, K.A.; Redden, G.D. Hydrocarbon-Gas in Sediment from the Shelf, Slope, and Basin of the Bering Sea. Geochim. Cosmochim. Acta 1980, 44, 1145–1150. [Google Scholar] [CrossRef]
- Kvenvolden, K.A.; Frank, T.J.; Golan-Bac, M. Hydrocarbon gases in tertiary and quartenary sediments offshore Peru—Results and comparisons. Proc. Ocean Drill. Program Sci. Results 1990, 112, 505–515. [Google Scholar]
- Kvenvolden, K.A.; Golan-Bac, M.; McDonald, T.J.; Pflaum, R.C.; Brooks, J.M. Hydrocarbon Gases in Sediment of the Voring Plateau, Norwegian Sea. Proc. Ocean Drill. Program Sci. Results 1989, 104, 319–326. [Google Scholar] [CrossRef]
- Bernard, B.B.; Brooks, J.M.; Sackett, W.M. Light Hydrocarbons in Recent Texas Continental Shelf and Slope Sediments. J. Geophys. Res. Oceans 1978, 83, 4053–4061. [Google Scholar] [CrossRef]
- Vogel, T.M.; Oremland, R.S.; Kvenvolden, K.A. Low-Temperature Formation of Hydrocarbon Gases in San Francisco Bay Sediment (California, USA). Chem. Geol. 1982, 37, 289–298. [Google Scholar] [CrossRef]
- Bottenheim, J.W.; Boudries, H.; Brickell, P.C.; Atlas, E. Alkenes in the Arctic Boundary Layer at Alert, Nunavut, Canada. Atmos. Environ. 2002, 36, 2585–2594. [Google Scholar] [CrossRef]
- Swanson, A.L.; Blake, N.J.; Dibb, J.E.; Albert, M.R.; Blake, D.R.; Rowland, F.S. Photochemically Induced Production of CH3Br, CH3I, C2H5I, Ethene, and Propene within Surface Snow at Summit, Greenland. Atmos. Environ. 2002, 36, 2671–2682. [Google Scholar] [CrossRef]
- Helmig, D.; Stephens, C.R.; Caramore, J.; Hueber, J. Seasonal Behavior of Non-Methane Hydrocarbons in the Firn Air at Summit, Greenland. Atmos. Environ. 2014, 85, 234–246. [Google Scholar] [CrossRef]
- McKay, W.A.; Turner, M.F.; Jones, B.M.R.; Halliwell, C.M. Emissions of Hydrocarbons from Marine Phytoplankton—Some Results from Controlled Laboratory Experiments. Atmos. Environ. 1996, 30, 2583–2593. [Google Scholar] [CrossRef]
- Shaw, S.L. The Production of Non-Methane Hydrocarbons by Marine Plankton. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, CA, USA, 2001. [Google Scholar]
- Broadgate, W.J.; Malin, G.; Kupper, F.C.; Thompson, A.; Liss, P.S. Isoprene and Other Non-Methane Hydrocarbons from Seaweeds: A Source of Reactive Hydrocarbons to the Atmosphere. Mar. Chem. 2004, 88, 61–73. [Google Scholar] [CrossRef]
- Derendorp, L.; Holzinger, R.; Wishkerman, A.; Keppler, F.; Rockmann, T. Methyl Chloride and C2–C5 Hydrocarbon Emissions from Dry Leaf Litter and Their Dependence on Temperature. Atmos. Environ. 2011, 45, 3112–3119. [Google Scholar] [CrossRef]
- Derendorp, L.; Holzinger, R.; Rockmann, T. UV-Induced Emissions of C2–C5 Hydrocarbons from Leaf Litter. Environ. Chem. 2011, 8, 602–611. [Google Scholar] [CrossRef]
- Redeker, K.R.; Meinardi, S.; Blake, D.; Sass, R. Gaseous Emissions from Flooded Rice Paddy Agriculture. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Wang, R.; Wu, T.; Dai, W.H.; Liu, H.; Zhao, J.; Wang, X.M.; Huang, F.Y.; Wang, Z.; Shi, C.F. Effects of Straw Return on C2–C5 Non-Methane Hydrocarbon (NMHC) Emissions from Agricultural Soils. Atmos. Environ. 2015, 100, 210–217. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Wu, T.; Wang, X.M.; Dai, W.H.; Zhang, Y.J.; Wang, R.; Zhang, Y.G.; Shi, C.F. Volatile Organic Compound Emissions from Straw-Amended Agricultural Soils and Their Relations to Bacterial Communities: A Laboratory Study. J. Environ. Sci. 2016, 45, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Hodges, C.F.; Campbell, D.A. Gaseous Hydrocarbons Associated with Black Layer Induced by the Interaction of Cyanobacteria and Desulfovibrio Desulfuricans. Plant Soil 1998, 205, 77–83. [Google Scholar] [CrossRef]
- Van Ginkel, C.G.; Welten, H.G.J.; Debont, J.A.M. Oxidation of Gaseous and Volatile Hydrocarbons by Selected Alkene-Utilizing Bacteria. Appl. Environ. Microbiol. 1987, 53, 2903–2907. [Google Scholar] [PubMed]
- Fletcher, K.E.; Loffler, F.E.; Richnow, H.H.; Nijenhuis, I. Stable Carbon Isotope Fractionation of 1,2-Dichloropropane During Dichloroelimination by Dehalococcoides Populations. Environ. Sci. Technol. 2009, 43, 6915–6919. [Google Scholar] [CrossRef] [PubMed]
- Maness, A.D.; Bowman, K.S.; Yan, J.; Rainey, F.A.; Moe, W.M. Dehalogenimonas spp. Can Reductively Dehalogenate High Concentrations of 1,2-Dichloroethane, 1,2-Dichloropropane, and 1,1,2-Trichloroethane. AMB Express 2012, 2, 54. [Google Scholar] [CrossRef] [PubMed]
- McCoy, B.J.; Fischbeck, P.S.; Gerard, D. How Big Is Big? How Often Is Often? Characterizing Texas Petroleum Refining Upset Air Emissions. Atmos. Environ. 2010, 44, 4230–4239. [Google Scholar] [CrossRef]
- Allen, D.T.; Torres, V.M. TCEQ 2010 Flare Study; Texas Commission on Environmental Quality: Austin, TX, USA, 2011.
- Wood, E.C.; Herndon, S.C.; Fortner, E.C.; Onasch, T.B.; Wormhoudt, J.; Kolb, C.E.; Knighton, W.B.; Lee, B.H.; Zavala, M.; Molina, L.; et al. Combustion and Destruction/Removal Efficiencies of In-Use Chemical Flares in the Greater Houston Area. Ind. Eng. Chem. Res. 2012, 51, 12685–12696. [Google Scholar] [CrossRef]
- Al-Fadhli, F.M.; Kimura, Y.; McDonald-Buller, E.C.; Allen, D.T. Impact of Flare Destruction Efficiency and Products of Incomplete Combustion on Ozone Formation in Houston, Texas. Ind. Eng. Chem. Res. 2012, 51, 12663–12673. [Google Scholar] [CrossRef]
- Yen, C.H.; Horng, J.J. Volatile Organic Compounds (VOCs) Emission Characteristics and Control Strategies for a Petrochemical Industrial Area in Middle Taiwan. J. Environ. Sci. Health A 2009, 44, 1424–1429. [Google Scholar] [CrossRef] [PubMed]
- Mellqvist, J.; Samuelsson, J.; Johansson, J.; Rivera, C.; Lefer, B.; Alvarez, S.; Jolly, J. Measurements of Industrial Emissions of Alkenes in Texas Using the Solar Occultation Flux Method. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Murphy, C.F.; Allen, D.T. Hydrocarbon Emissions from Industrial Release Events in the Houston-Galveston Area and Their Impact on Ozone Formation. Atmos. Environ. 2005, 39, 3785–3798. [Google Scholar] [CrossRef]
- Olaguer, E.P. Near-Source Air Quality Impacts of Large Olefin Flares. J. Air Waste Manag. Assoc. 2012, 62, 978–988. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Toxic Release Inventory Pollution Prevention Search. Propylene 115-07-1; Web Report l; Environmental Protection Agency, Envirofacts Database: Washington, DC, USA, 2017.
- Washenfelder, R.A.; Trainer, M.; Frost, G.J.; Ryerson, T.B.; Atlas, E.L.; de Gouw, J.A.; Flocke, F.M.; Fried, A.; Holloway, J.S.; Parrish, D.D.; et al. Characterization of NOx, SO2, Ethene, and Propene from Industrial Emission Sources in Houston, Texas. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Modrak, M.; Jozewicz, W.; Swett, G. Application of Optical Remote Sensing in the Petroleum and Petrochemical Industries; Arcadis: Research Triangle Park, NC, USA, 2009. [Google Scholar]
- Mo, Z.W.; Shao, M.; Lu, S.H.; Qu, H.; Zhou, M.Y.; Sun, J.; Gou, B. Process-Specific Emission Characteristics of Volatile Organic Compounds (VOCs) from Petrochemical Facilities in the Yangtze River Delta, China. Sci. Total Environ. 2015, 533, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Holman, C.D. Some Measurements of Low Molecular Weight Hydrocarbons in an Area with Petrochemical Industrialization. Environ. Technol. Lett. 1980, 1, 345–354. [Google Scholar] [CrossRef]
- Sather, M.E.; Cavender, K. Update of Long-Term Trends Analysis of Ambient 8-Hour Ozone and Precursor Monitoring Data in the South Central U.S.; Encouraging News. J. Environ. Monit. 2012, 14, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Yokelson, R.J.; Burling, I.R.; Urbanski, S.P.; Atlas, E.L.; Adachi, K.; Buseck, P.R.; Wiedinmyer, C.; Akagi, S.K.; Toohey, D.W.; Wold, C.E. Trace Gas and Particle Emissions from Open Biomass Burning in Mexico. Atmos. Chem. Phys. 2011, 11, 6787–6808. [Google Scholar] [CrossRef]
- Molto, J.; Font, R.; Galvez, A.; Rey, M.D.; Pequenin, A. Analysis of Dioxin-Like Compounds Formed in the Combustion of Tomato Plant. Chemosphere 2010, 78, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Barlow, A.; Contos, D.A.; Holdren, M.W.; Garrison, P.J.; Harris, L.R.; Janke, B. Development of Emission Factors for Polyethylene Processing. J. Air Waste Manag. Assoc. 1996, 46, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Molto, J.; Egea, S.; Conesa, J.A.; Font, R. Thermal Decomposition of Electronic Wastes: Mobile Phone Case and Other Parts. Waste Manag. 2011, 31, 2546–2552. [Google Scholar] [CrossRef] [PubMed]
- Ortuno, N.; Conesa, J.A.; Molto, J.; Font, R. Pollutant Emissions during Pyrolysis and Combustion of Waste Printed Circuit Boards, before and after Metal Removal. Sci. Total Environ. 2014, 499, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statheropoulos, M.; Agapiou, A.; Pallis, G. A Study of Volatile Organic Compounds Evolved in Urban Waste Disposal Bins. Atmos. Environ. 2005, 39, 4639–4645. [Google Scholar] [CrossRef]
- Christian, T.J.; Yokelson, R.J.; Cardenas, B.; Molina, L.T.; Engling, G.; Hsu, S.C. Trace Gas and Particle Emissions from Domestic and Industrial Biofuel Use and Garbage Burning in Central Mexico. Atmos. Chem. Phys. 2010, 10, 565–584. [Google Scholar] [CrossRef]
- Woodall, B.D.; Yamamoto, D.P.; Gullett, B.K.; Touati, A. Emissions from Small-Scale Burns of Simulated Deployed U.S. Mil. Waste Environ. Sci. Technol. 2012, 46, 10997–11003. [Google Scholar] [CrossRef] [PubMed]
- Statheropoulos, M.; Spiliopouiou, C.; Agapiou, A. A Study of Volatile Organic Compounds Evolved from the Decaying Human Body. Forensic Sci. Int. 2005, 153, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Scheutz, C.; Bogner, J.; Chanton, J.P.; Blake, D.; Morcet, M.; Aran, C.; Kjeldsen, P. Atmospheric Emissions and Attenuation of Non-Methane Organic Compounds in Cover Soils at a French Landfill. Waste Manag. 2008, 28, 1892–1908. [Google Scholar] [CrossRef] [PubMed]
- Tassi, F.; Capecchiacci, F.; Cabassi, J.; Calabrese, S.; Vaselli, O.; Rouwet, D.; Pecoraino, G.; Chiodini, G. Geogenic and Atmospheric Sources for Volatile Organic Compounds in Fumarolic Emissions from Mt. Etna and Vulcano Island (Sicily, Italy). J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Leech, J.A.; Nelson, W.C.; Burnett, R.T.; Aaron, S.; Raizenne, M.E. It’s About Time: A Comparison of Canadian and American Time-Activity Patterns. J. Expo. Anal. Environ. Epidemiol. 2002, 12, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Regina Indoor Air Quality Study (2007): Data Summary for Volatile Organic Compond Sampling; Water, Air and Climate Change Bureau, Health Canada: Ottawa, ON, Canada, 2007.
- Lofroth, G.; Burton, R.M.; Forehand, L.; Hammond, S.K.; Seila, R.L.; Zweidinger, R.B.; Lewtas, J. Characterization of Environmental Tobacco Smoke. Environ. Sci. Technol. 1989, 23, 610–614. [Google Scholar] [CrossRef]
- Persson, K.A.; Berg, S.; Tornqvist, M.; Scaliatomba, G.P.; Ehrenberg, L. Note on Ethene and Other Low-Molecular Weight Hydrocarbons in Environmental Tobacco Smoke. Acta Chem. Scand. B. 1988, 42, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, G.N.; Pandit, G.G.; Rao, A.M.M.; Mishra, U.C. Determination of Ethylene and Other Reactive Hydrocarbons in Tobacco Smoke and Evaluation of Risk from Their Inhalation. Sci. Total Environ. 1988, 74, 67–73. [Google Scholar] [CrossRef]
- Filipiak, W.; Ruzsanyi, V.; Mochalski, P.; Filipiak, A.; Bajtarevic, A.; Ager, C.; Denz, H.; Hilbe, W.; Jamnig, H.; Hackl, M.; et al. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants. J. Breath Res. 2012, 6, 036008. [Google Scholar] [CrossRef] [PubMed]
- Mochalski, P.; King, J.; Unterkofler, K.; Hinterhuber, H.; Amann, A. Emission Rates of Selected Volatile Organic Compounds from Skin of Healthy Volunteers. J. Chromatogr. B 2014, 959, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Mochalski, P.; King, J.; Klieber, M.; Unterkofler, K.; Hinterhuber, H.; Baumann, M.; Amann, A. Blood and Breath Levels of Selected Volatile Organic Compounds in Healthy Volunteers. Analyst 2013, 138, 2134–2145. [Google Scholar] [CrossRef] [PubMed]
- Bari, M.A.; Kindzierski, W.B.; Wheeler, A.J.; Heroux, M.E.; Wallace, L.A. Source Apportionment of Indoor and Outdoor Volatile Organic Compounds at Homes in Edmonton, Canada. Build. Environ. 2015, 90, 114–124. [Google Scholar] [CrossRef]
- Graham, L.A.; Noseworthy, L.; Fugler, D.; O’Leary, K.; Karman, D.; Grande, C. Contribution of Vehicle Emissions from an Attached Garage to Residential Indoor Air Pollution Levels. J. Air Waste Manag. Assoc. 2004, 54, 563–584. [Google Scholar] [CrossRef] [PubMed]
- Van Winkle, M.R.; Scheff, P.A. Volatile Organic Compounds, Polycyclic Aromatic Hydrocarbons and Elements in the Air of Ten Urban Homes. Indoor Air 2001, 11, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Windsor Exposure Assessment Study (2005–2006): Data Summary for Volatile Organic Compond Sampling; Water, Air and Climate Change Bureau, Health Canada: Ottawa, ON, Canada, 2010.
- Waring, M.S. Secondary Organic Aerosol in Residences: Predicting Its Fraction of Fine Particle Mass and Determinants of Formation Strength. Indoor Air 2014, 24, 376–389. [Google Scholar] [CrossRef] [PubMed]
- MDEQ. Typical Indoor Air Concentrations of Volatile Organic Compounds in Non-Smoking Montana Residences Not Impacted by Vapor Intrusion; Montana Department of Environmental Quality: Helena, MT, USA, 2012.
- Wang, Y.C.; Lin, C.; Lin, Y.K.; Wang, Y.F.; Weng, W.H.; Kuo, Y.M. Characteristics and Determinants of Ambient Volatile Organic Compounds in Primary Schools. Environ. Sci. Process Impacts 2016, 18, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, S.; Ellenson, W.D.; Lewis, R.G.; Stevens, R.K.; Somerville, M.C.; Shadwick, D.S.; Willis, R.D. An Environmental Scoping Study in the Lower Rio Grande Valley of Texas. 3. Residential Microenvironmental Monitoring for Air, House Dust, and Soil. Environ. Int. 1997, 23, 657–673. [Google Scholar] [CrossRef]
- Drakou, G.; Zerefos, C.; Ziomas, I.; Voyatzaki, M. Measurements and Numerical Simulations of Indoor O3 and NOx in Two Different Cases. Atmos. Environ. 1998, 32, 595–610. [Google Scholar] [CrossRef]
- Health Canada. Halifax Indoor Air Quality Study (2009): Volatile Organic Componds (VOC) Data Summary; Water, Air and Climate Change Bureau, Health Canada: Ottawa, ON, Canada, 2009.
- Health Canada. Edmonton Indoor Air Quality Study (2010): Volatile Organic Componds (VOC) Data Summary; Water, Air and Climate Change Bureau, Health Canada: Ottawa, ON, Canada, 2010.
- Al-Khulaifi, N.M.; Al-Mudhaf, H.F.; Alenezi, R.; Abu-Shady, A.-S.I.; Selim, M.I. Seasonal and Tempoal Variations in Volatile Organic Compounds in Indoor and Outdoor Air in Al-Jahra City, Kuwait. J. Environ. Prot. 2014, 5, 310–326. [Google Scholar] [CrossRef]
- Duan, H.; Liu, X.; Yan, M.; Wu, Y.; Liu, Z. Characteristics of Carbonyls and Volatile Organic Compounds (VOCs) in Residences in Beijing, China. Front. Environ. Sci. Eng. 2014. [Google Scholar] [CrossRef]
- Sarwar, G.; Corsi, R.; Kimura, Y.; Allen, D.; Weschler, C.J. Hydroxyl Radicals in Indoor Environments. Atmos. Environ. 2002, 36, 3973–3988. [Google Scholar] [CrossRef]
- Huang, Y.; Ho, S.S.H.; Ho, K.F.; Lee, S.C.; Yu, J.Z.; Louie, P.K.K. Characteristics and Health Impacts of VOCs and Carbonyls Associated with Residential Cooking Activities in Hong Kong. J. Hazard. Mater. 2011, 186, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Shao, M.; Lu, S.H. The Emission Characteristics of Hydrocarbon from Chinese Cooking under Smoke Control. Int. J. Environ. Anal. Chem. 2010, 90, 708–721. [Google Scholar] [CrossRef]
- Mugica, V.; Vega, E.; Chow, J.; Reyes, E.; Sanchez, G.; Arriaga, J.; Egami, R.; Watson, J. Speciated Non-Methane Organic Compounds Emissions from Food Cooking in Mexico. Atmos. Environ. 2001, 35, 1729–1734. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of Emissions from Air Pollution Sources. 1. C1 through C29 Organic Compounds from Meat Charbroiling. Environ. Sci. Technol. 1999, 33, 1566–1577. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Wang, G.; Lang, J.L.; Wen, W.; Wang, X.Q.; Yao, S. Characterization of Volatile Organic Compounds from Different Cooking Emissions. Atmos. Environ. 2016, 145, 299–307. [Google Scholar] [CrossRef]
- Olsson, M.; Petersson, G. Benzene Emitted from Glowing Charcoal. Sci. Total Environ. 2003, 303, 215–220. [Google Scholar] [CrossRef]
- Tsai, S.M.; Zhang, J.F.; Smith, K.R.; Ma, Y.Q.; Rasmussen, R.A.; Khalil, M.A.K. Characterization of Non-Methane Hydrocarbons Emitted from Various Cookstoves Used in China. Environ. Sci. Technol. 2003, 37, 2869–2877. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.X.; Wei, W.; Du, L.; Li, G.H.; Hao, J.M. Characteristics of Gaseous Pollutants from Biofuel-Stoves in Rural China. Atmos. Environ. 2009, 43, 4148–4154. [Google Scholar] [CrossRef]
- Olsson, M.; Kjallstrand, J. Low Emissions from Wood Burning in an Ecolabelled Residential Boiler. Atmos. Environ. 2006, 40, 1148–1158. [Google Scholar] [CrossRef]
- Carteret, M.; Pauwels, J.F.; Hanoune, B. Emission Factors of Gaseous Pollutants from Recent Kerosene Space Heaters and Fuels Available in France in 2010. Indoor Air 2012, 22, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Tissari, J.; Hytonen, K.; Lyyranen, J.; Jokiniemi, J. A Novel Field Measurement Method for Determining Fine Particle and Gas Emissions from Residential Wood Combustion. Atmos. Environ. 2007, 41, 8330–8344. [Google Scholar] [CrossRef]
- Pettersson, E.; Boman, C.; Westerholm, R.; Bostrom, D.; Nordin, A. Stove Performance and Emission Characteristics in Residential Wood Log and Pellet Combustion, Part 2: Wood Stove. Energy Fuels 2011, 25, 315–323. [Google Scholar] [CrossRef]
- Boman, C.; Pettersson, E.; Westerholm, R.; Bostrom, D.; Nordin, A. Stove Performance and Emission Characteristics in Residential Wood Log and Pellet Combustion, Part 1: Pellet Stoves. Energy Fuels 2011, 25, 307–314. [Google Scholar] [CrossRef]
- Olsson, M.; Ramnas, O.; Petersson, G. Specific Volatile Hydrocarbons in Smoke from Oxidative Pyrolysis of Softwood Pellets. J. Anal. Appl. Pyrolysis 2004, 71, 847–854. [Google Scholar] [CrossRef]
- Olsson, M. Wheat Straw and Peat for Fuel Pellets—Organic Compounds from Combustion. Biomass Bioenergy 2006, 30, 555–564. [Google Scholar] [CrossRef]
- Perzon, M. Emissions of Organic Compounds from the Combustion of Oats—A Comparison with Softwood Pellets. Biomass Bioenergy 2010, 34, 828–837. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of Emissions from Air Pollution Sources. 3. C1–C29 Organic Compounds from Fireplace Combustion of Wood. Environ. Sci. Technol. 2001, 35, 1716–1728. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.D.; Zielinska, B.; Fujita, E.M.; Sagebiel, J.C.; Chow, J.C.; Watson, J.G. Fine Particle and Gaseous Emission Rates from Residential Wood Combustion. Environ. Sci. Technol. 2000, 34, 2080–2091. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, C.; Mu, Y.; Liu, J.; Zhang, Y. Emission of Volatile Organic Compounds from Domestic Coal Stove with the Actual Alternation of Flaming and Smoldering Combustion Processes. Environ. Pollut. 2016, 221, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Geng, C.M.; Lu, S.H.; Chen, W.T.; Shao, M. Emission Factors of Gaseous Carbonaceous Species from Residential Combustion of Coal and Crop Residue Briquettes. Front. Environ. Sci. Eng. 2013, 7, 66–76. [Google Scholar] [CrossRef]
- Park, K.J.; Seo, T.; Jung, D. Performance of Alternative Refrigerants for Residential Air-Conditioning Applications. Appl. Energy 2007, 84, 985–991. [Google Scholar] [CrossRef]
- Yu, T.H.; Wu, C.M.; Liou, Y.C. Volatile Compounds from Garlic. J. Agric. Food Chem. 1989, 37, 725–730. [Google Scholar] [CrossRef]
- Zeger, S.L.; Thomas, D.; Dominici, F.; Samet, J.M.; Schwartz, J.; Dockery, D.; Cohen, A. Exposure Measurement Error in Time-Series Studies of Air Pollution: Concepts and Consequences. Environ. Health Perspect. 2000, 108, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Gulliver, J.; Briggs, D.J. Time-Space Modeling of Journey-Time Exposure to Traffic-Related Air Pollution Using GIS. Environ. Res. 2005, 97, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Wilson, J.G.; Zhan, F.B.; Zeng, Y.N. Air Pollution Exposure Assessment Methods Utilized in Epidemiological Studies. J. Environ. Monit. 2009, 11, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, G.; Barregard, L.; Holmberg, E.; Sallsten, G. Cancer Incidence in a Petrochemical Industry Area in Sweden. Sci. Total Environ. 2010, 408, 4482–4487. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.H.; Wang, J.L.; Chuang, K.J.; Chan, C.C. Traffic-Related Air Pollution and Cardiovascular Mortality in Central Taiwan. Sci. Total Environ. 2010, 408, 1818–1823. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Sree, U.; Tseng, S.H.; Chiu, K.H.; Wu, C.H.; Lo, J.G. Volatile Organic Compound Concentrations in Ambient Air of Kaohsiung Petroleum Refinery in Taiwan. Atmos. Environ. 2004, 38, 4111–4122. [Google Scholar] [CrossRef]
- Bostrom, C.E.; Almen, J.; Steen, B.; Westerholm, R. Human Exposure to Urban Air Pollution. Environ. Health Perspect. 1994, 102, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Kulka, R.; Belisle, P.; Joseph, L.; Dubeau, A.; Martin, C.; Wang, D.; Dales, R. Personal Exposure to Specific Volatile Organic Compounds and Acute Changes in Lung Function and Heart Rate Variability Among Urban Cyclists. Environ. Res. 2012, 118, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Barrefors, G.; Petersson, G. Exposure to Volatile Hydrocarbons in Commuter Trains and Diesel Buses. Environ. Technol. 1996, 17, 643–647. [Google Scholar] [CrossRef]
- Lin, C.S.; Liou, N.W.; Chang, P.E.; Yang, J.C.; Sun, E. Fugitive Coke Oven Gas Emission Profile by Continuous Line Averaged Open-Path Fourier Transform Infrared Monitoring. J. Air Waste Manag. Assoc. 2007, 57, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Fang, H.Y.; Shu, C.M. Mapping and Profile of Emission Sources for Airborne Volatile Organic Compounds from Process Regions at a Petrochemical Plant in Kaohsiung, Taiwan. J. Air Waste Manag. Assoc. 2006, 56, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Fang, H.Y.; Shu, C.M. Source Location and Characterization of Volatile Organic Compound Emissions at a Petrochemical Plant in Kaohsiung, Taiwan. J. Air Waste Manag. Assoc. 2005, 55, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, L.M.; Witter, R.Z.; Newman, L.S.; Adgate, J.L. Human Health Risk Assessment of Air Emissions from Development of Unconventional Natural Gas Resources. Sci. Total Environ. 2012, 424, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Simpson, I.J.; Marrero, J.E.; Batterman, S.; Meinardi, S.; Barletta, B.; Blake, D.R. Air Quality in the Industrial Heartland of Alberta, Canada and Potential Impacts on Human Health. Atmos. Environ. 2013, 81, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Ostermark, U. Characterization of Volatile Hydrocarbons Emitted to Air from a Cat-Cracking Refinery. Chemosphere 1995, 30, 1813–1817. [Google Scholar] [CrossRef]
- Wei, W.; Cheng, S.Y.; Li, G.H.; Wang, G.; Wang, H.Y. Characteristics of Volatile Organic Compounds (VOCs) Emitted from a Petroleum Refinery in Beijing, China. Atmos. Environ. 2014, 89, 358–366. [Google Scholar] [CrossRef]
- Su, Y.C.; Chen, S.P.; Tong, Y.H.; Fan, C.L.; Chen, W.H.; Wang, J.L.; Chang, J.S. Assessment of Regional Influence from a Petrochemical Complex by Modeling and Fingerprint Analysis of Volatile Organic Compounds (VOCs). Atmos. Environ. 2016, 141, 394–407. [Google Scholar] [CrossRef]
- Schade, G.W.; Roest, G. Analysis of Non-Methane Hydrocarbon Data from a Monitoring Station Affected by Oil and Gas Development in the Eagle Ford Shale, Texas. Elementa 2016, 4, 1–17. [Google Scholar] [CrossRef]
- Jankovic, J.; Jones, W.; Burkhart, J.; Noonan, G. Environmental Study of Firefighters. Ann. Occup. Hyg. 1991, 35, 581–602. [Google Scholar] [PubMed]
- Austin, C.C.; Wang, D.; Ecobichon, D.J.; Dussault, G. Characterization of Volatile Organic Compounds in Smoke at Municipal Structural Fires. J. Toxicol. Environ. Health A 2001, 63, 437–458. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.W.; Evans, D.E. Assessing the Risk to Firefighters from Chemical Vapors and Gases during Vehicle Fire Suppression. J. Environ. Monit. 2011, 13, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.W.; Evans, D.E.; Booher, D.; Pleil, J.D.; Stiegel, M.A.; Horn, G.P.; Dalton, J. Volatile Organic Compounds Off-Gassing from Firefighters’ Personal Protective Equipment Ensembles after Use. J. Occup. Environ. Hyg. 2015, 12, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Purohit, V.; Orzel, R.A. Polypropylene—A Literature Review of the Thermal Decomposition Products and Toxicity. J. Am. Coll. Toxicol. 1988, 7, 221–242. [Google Scholar] [CrossRef]
- Blais, M.; Carpenter, K. Flexible Polyurethane Foams: A Comparative Measurement of Toxic Vapors and Other Toxic Emissions in Controlled Combustion Environments of Foams with and without Fire Retardants. Fire Technol. 2015, 51, 3–18. [Google Scholar] [CrossRef]
- Austin, C.C.; Wang, D.; Ecobichon, D.J.; Dussault, G. Characterization of Volatile Organic Compounds in Smoke at Experimental Fires. J. Toxicol. Environ. Health A 2001, 63, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Bogner, J.E.; Chanton, J.P.; Blake, D.; Abichou, T.; Powelson, D. Effectiveness of a Florida Landfill Biocover for Reduction of CH4 and NMHC Emissions. Environ. Sci. Technol. 2010, 44, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, A. Assessment of Spatial Variation of Ambient VOCs Levels at a Power Station in Kuwait. J. Air Waste Manag. Assoc. 2017, 67, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Chen, K.S.; Wang, H.K. Measurements and PCA/APCS Analyses of Volatile Organic Compounds in Kaohsiung Municipal Sewer Systems, Southern Taiwan. Aerosol Air Qual. Res. 2012, 12, 1315–1326. [Google Scholar] [CrossRef]
- Singh, A.; Spak, S.N.; Stone, E.A.; Downard, J.; Bullard, R.L.; Pooley, M.; Kostle, P.A.; Mainprize, M.W.; Wichman, M.D.; Peters, T.M.; et al. Uncontrolled Combustion of Shredded Tires in a Landfill—Part 2: Population Exposure, Public Health Response, and an Air Quality Index for Urban Fires. Atmos. Environ. 2015, 104, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Trabue, S.; Scoggin, K.; Li, H.; Burns, R.; Xin, H.W.; Hatfield, J. Speciation of Volatile Organic Compounds from Poultry Production. Atmos. Environ. 2010, 44, 3538–3546. [Google Scholar] [CrossRef]
Type of Fire | Emission Factor (mg/kg) | Standard Deviation |
---|---|---|
tropical forest | 640 | 430 |
savanna | 790 | 560 |
crop residue | 680 | 370 |
pasture maintenance | 850 | 660 |
boreal forest | 1130 | 600 |
temperate forest | 950 | 540 |
peat land | 2300 | 740 |
chaparral | 380 | 130 |
semiarid shrub land | 532 | 216 |
pine forest understory | 405 | 277 |
coniferous canopy | 497 | 228 |
deforestation | 500 | NR * |
pasture maintenance | 840 | NR |
Fuel Type | No. of Samples | Emission Factor (mg/kg) | Standard Deviation (mg/kg) | Fuel Type | No. of Samples | Emission Factor (mg/kg) | Standard Deviation (mg/kg) |
---|---|---|---|---|---|---|---|
African grass | 7 | 86.0 | 25.8 | Indonesian peat | 4 | 1352.7 | 829.2 |
Organic alfalfa | 5 | 1238.1 | 358.9 | U.S. peat | 3 | 1421.1 | 502.6 |
Black spruce | 5 | 545.3 | 218.9 | Ponderosa pine | 9 | 1332.6 | 381.6 |
Chamise | 7 | 583.5 | 306.8 | Rice straw | 9 | 457.2 | 305.4 |
Giant cutgrass | 7 | 176.0 | 103.2 | Saw grass | 12 | 140.9 | 108.6 |
Organic hay | 7 | 498.5 | 141.6 | Sugar cane | 4 | 681.9 | 163.5 |
Juniper | 3 | 268.6 | 171.1 | Conventional wheat straw | 5 | 177.5 | 57.5 |
Manzanita | 1 | 494.8 | NR * | Organic wheat straw | 5 | 225.4 | 83.2 |
Canadian peat | 1 | 484.7 | NR | Wiregrass | 5 | 69.8 | 38.0 |
Location | Inlet Conc. (ppbv) | Outlet Conc. (ppbv) | Emission Factor (mg/km) | Salient Conditions | Reference |
---|---|---|---|---|---|
Taipei, Taiwan | NR | NR | 11.61 ± 2.04 | 0.8 km two bore tunnel with two lanes per bore; two blowers enhance the natural ventilation; light and heavy-duty gasoline and diesel-powered vehicles | [80] |
Gubrist, Switzerland | NR NR | NR NR | 13.93 ± 3.81 (gas) 22.43 ± 19.38 (diesel) | 3.4 km single bore tunnel with two lanes per bore; light and heavy-duty gasoline and diesel-powered vehicles | [81] |
Hong Kong, China | 4.5 ±1.1 | 6.9 ± 1.9 | 5.3 ±1.5 | 1.6 km two bore tunnel with exhaust fans but no mechanical ventilation; 47% diesel, 43% gasoline and 10% LPG powered vehicles | [82] |
Monterrey, Mexico | NR NR | NR NR | 13.66 ± 2.09 ≈ (bore 1) 6.63 ± 2.56 ≈ (bore 2) | 0.53 km two bore tunnel with 4 lanes per bore; moderate traffic density; 97% gasoline and 3% diesel fueled vehicles, trucks, buses and motorcycles | [83] |
Paris, France | NR | 40.3 ± 9.2 * | 38.03 ± 14.29 | 0.6 km two bore tunnel with 2 lanes per bore; mechanical ventilation not used; 94% light-duty and 6% heavy duty vehicles | [84] |
Baltimore, Maryland | NR NR | NR NR | 8.33 ± 0.67 (LD) 15.04 ± 3.51 (HD) | 2.7 km 4 bore tunnel with 2 lanes per bore; LD vehicles included cars, pickup trucks, motorcycles and utility vehicles; HD vehicles included buses and tractor trailers | [85] |
Tuscarora, Pennsylvania | NR NR | NR NR | 5.76 ± 0.65 (LD) 9.95 ± 2.13 (HD) | 1.8 km 2 bore tunnel with 2 lanes per bore; LD vehicles included cars, pickup trucks, motorcycles and utility vehicles; HD vehicles included buses and tractor trailers | [85] |
Milwaukee, Wisconsin | NR NR | NR NR | 7.03 ± 2.28 # (bore 1) 9.38 ± 1.65 # (bore 2) | 2 separate tunnels of unknown length; the first has a single bore single lane with forced mechanical ventilation; the second tunnel has two bores with three lanes per bore and no mechanical ventilation; over 90% of the vehicles were automobiles or LD vans, pickup trucks and SUVs | [77] |
Oakland, California | NR NR | NR NR | 11.5 ^ (gas) 9.2 ^ (diesel) | 1.1 km four bore tunnel with 2 lanes per bore; weekday traffic density of about 200 light duty and 30–140 medium and heavy duty das and diesel-powered vehicles per hour | [86] |
Southern Taiwan | NR NR | 5.8 ± 5.1 ‡ (bore 1) 10.9 ± 7.7 ‡ (bore 2) | 10.36 | 1.8 km two bore tunnel with 3 lanes per bore; natural ventilation caused by traffic flow; LD vehicles 85%. HD vehicles 15% | [87] |
Sydney, Australia | NR | 83.2 ± 18.4 † | ND | 2.3 km single bore with 4 lanes; ventilated with 14 air supply fans; 73.7% passenger vehicles, 9.9% tractor trailers, 11% utility vehicles and vans, 5.4% motorcycles and buses. | [88] |
Seoul, Korea | ND ND ND | 25.0 ± 3.3 † (Sp) 18.8 ± 15.4 † (Su) 15.3 ± 6.6 † (Wi) | ND | 566 m two bore tunnel with 2 lanes per bore; natural ventilation; gasoline fueled 50–70%, diesel fueled (20–30%) and butane fueled (10–20%) vehicles | [89] |
Yilan, Taiwan | 5.5 ± 2.5 (bore 1) 7.7 ± 4.3 (bore 2) | 44.2 ± 11.6 (bore 1) 41.4 ± 12.8 (bore 2) | ND | 12.9 km 2 bore with 2 lanes per bore; forced air ventilation at three locations; 95% LD vehicles, 5% HD vehicles | [90] |
Kaohsiung, Taiwan | NR NR NR | 68.7 ± 19.6 † (tunnel 1) 147.4 ± 48.2 † (tunnel 2) 15.8 ± 7.2 † (tunnel 3) | ND | 3 separate single bore tunnels with 2 lanes per bore; tunnel 1–0.4 km with 85% LD gasoline vehicles, tunnel 2–0.5 km with 52% motorcycles, tunnel 3–1.0 km with 35% LD gasoline and 39% motorcycles | [91] |
Berkley, California | NR | 23.8 (17.5–31.8) | ND | 1.1 km 3 bore tunnel with 2 lanes per bore; exhaust ventilation; mostly LD gasoline powered vehicles | [92] |
Seoul, Korea | 15.3 ± 9.1 | 27.3 ± 13.3 ‡ | ND | 0.56 km two bore tunnel with 2 lanes per bore; natural ventilation via traffic flow; | [93] |
Goteborg, Sweden | NR | 46.7 ± 30.9 † | ND | 0.45 km two bore tunnel with 3 lanes per bore; natural ventilation from traffic flow; 50% passenger cars with catalytic converters and 10% HD vehicles | [94] |
Location | Year | Sampling Sites | Indoor Conc. (ppbv) | Outdoor Conc. (ppbv) | I/O Ratio | Reference |
---|---|---|---|---|---|---|
Brownsville, Texas | 1993 | living room/outside residence | NR | NR | 2.75 | [191] |
Athens, Greece | 1994 | research labs/building perimeter | 13.0 | 6.6 | 1.97 | [192] |
Chicago, Illinois ‡ | 1994–1995 | kitchens/local background sites | 4.12 | 0.50 | 8.33 | [186] |
Windsor, Ontario † | 2005 | living room/backyard | 0.90 | 0.31 | 2.93 | [187] |
Regina, Saskatchewan † | 2007 | living room/backyard | 0.43 | 0.15 | 2.80 | [177] |
Halifax, Nova Scotia † | 2009 | living room/backyard | 1.72 | 0.21 | 8.13 | [193] |
Edmonton, Alberta † | 2010 | living room/backyard | 0.63 | 0.28 | 2.28 | [194] |
Al-Jahara, Kuwait | 2010–2011 | office area/near air supply unit | 12.4 | 5.5 | 2.30 | [195] |
Beijing, China | 2011–2012 | living room/roof of the building | 3.49 | 2.22 | 1.57 | [196] |
Atlanta, Georgia | NR | NR | 0.50 | 0.17 | 2.94 | [197] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgott, D.A. The Human Exposure Potential from Propylene Releases to the Environment. Int. J. Environ. Res. Public Health 2018, 15, 66. https://doi.org/10.3390/ijerph15010066
Morgott DA. The Human Exposure Potential from Propylene Releases to the Environment. International Journal of Environmental Research and Public Health. 2018; 15(1):66. https://doi.org/10.3390/ijerph15010066
Chicago/Turabian StyleMorgott, David A. 2018. "The Human Exposure Potential from Propylene Releases to the Environment" International Journal of Environmental Research and Public Health 15, no. 1: 66. https://doi.org/10.3390/ijerph15010066
APA StyleMorgott, D. A. (2018). The Human Exposure Potential from Propylene Releases to the Environment. International Journal of Environmental Research and Public Health, 15(1), 66. https://doi.org/10.3390/ijerph15010066