Problematic Smartphone Use, Deep and Surface Approaches to Learning, and Social Media Use in Lectures †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Procedure
2.2. Explanations of Measures
2.2.1. General Socio-Demographics
2.2.2. The Revised Study Process Questionnaire (Estonian Adaptation)
2.2.3. Social Media Use in Lectures
2.2.4. The Estonian Smartphone Addiction Proneness Scale
2.3. Data Analysis
3. Results
3.1. Correlation Analysis
3.2. Mediation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Poushter, J. Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies. 2016. Available online: http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/ (accessed on 10 October 2017).
- Statista. Forecast of the Smartphone User Penetration Rate in Estonia from 2015 to 2022. 2017. Available online: https://www.statista.com/statistics/568089/predicted-smartphone-user-penetration-rate-in-estonia/ (accessed on 11 February 2017).
- Godwin-Jones, R. Mobile apps for language learning. Lang. Learn. Technol. 2011, 15, 2–11. [Google Scholar]
- Billieux, J.; Maurage, P.; Lopez-Fernandez, O.; Kuss, D.J.; Griffiths, M.D. Can disordered mobile phone use be considered a behavioral addiction? An update on current evidence and a comprehensive model for future research. Curr. Addict. Rep. 2015, 2, 156–162. [Google Scholar] [CrossRef]
- Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. J. Affect. Disord. 2017, 207, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Samaha, M.; Hawi, N.S. Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Comput. Hum. Behav. 2016, 57, 321–325. [Google Scholar] [CrossRef]
- Hawi, N.S.; Samaha, M. To excel or not to excel: Strong evidence on the adverse effect of smartphone addiction on academic performance. Comput. Educ. 2016, 98, 81–89. [Google Scholar] [CrossRef]
- Al-Menayes, J.J. Social Media Use, Engagement and Addiction as Predictors of Academic Performance. Int. J. Psychol. Stud. 2015, 7, 86–94. [Google Scholar] [CrossRef]
- Marton, F.; Säljö, R. On qualitative differences in learning: I—Outcome and process. Br. J. Educ. Psychol. 1976, 46, 4–11. [Google Scholar] [CrossRef]
- Kardefelt-Winther, D.; Heeren, A.; Schimmenti, A.; van Rooij, A.; Maurage, P.; Carras, M.; Edman, J.; Blaszczynski, A.; Khazaal, Y.; Billieux, J. How can we conceptualize behavioural addiction without pathologizing common behaviours? Addiction 2017, 112, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Sussman, S.; Rozgonjuk, D.; van den Eijnden, R. Substance and behavioral addictions may share a similar underlying process of dysregulation. Addiction 2017, 112, 1717–1718. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.D. Behavioural addiction and substance addiction should be defined by their similarities not their dissimilarities. Addiction 2017, 112, 1718–1720. [Google Scholar] [CrossRef] [PubMed]
- Elhai, J.D.; Levine, J.C.; Dvorak, R.D.; Hallde, B.J. Fear of missing out, need for touch, anxiety and depression are related to problematic smartphone use. Comput. Hum. Behav. 2016, 63, 509–516. [Google Scholar] [CrossRef]
- Demirci, K.; Akgonul, M.; Akpinar, A. Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. J. Behav. Addict. 2015, 4, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozgonjuk, D.; Rosenvald, B.; Janno, S.; Täht, K. Developing a shorter version of the Estonian Smartphone Addiction Proneness Scale (E-SAPS18). Cyberpsychol. J. Psychosoc. Res. Cyberspace 2016, 10, 4. [Google Scholar] [CrossRef]
- Kim, D.; Lee, Y.; Lee, J.; Nam, J.K.; Chung, Y. Development of Korean Smartphone addiction proneness scale for youth. PLoS ONE 2014, 9, e97920. [Google Scholar] [CrossRef] [PubMed]
- Inal, E.E.; Demİrcİ, K.; Çetİntürk, A.; Akgönül, M.; Savaş, S. Effects of smartphone overuse on hand function, pinch strength, and the median nerve. Muscle Nerve 2015, 52, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Kim, J.H.; Fava, M.; Mischoulon, D.; Park, J.H.; Shim, E.J.; Lee, E.H.; Lee, J.H.; Jeon, H.J. Development and validation study of the Smartphone Overuse Screening Questionnaire. Psychiatry Res. 2017, 257, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liang, Y.; Mai, C.; Zhong, X.; Qu, C. General Deficit in Inhibitory Control of Excessive Smartphone Users: Evidence from an Event-Related Potential Study. Front. Psychol. 2016, 7, 511. [Google Scholar] [CrossRef] [PubMed]
- Billieux, J.; Van der Linden, M.; d’Acremont, M.; Ceschi, G.; Zermatten, A. Does impulsivity relate to perceived dependence on and actual use of the mobile phone? Appl. Cogn. Psychol. 2007, 21, 527–537. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.Y.; Li, W.H.; Dong, X.W.; Chi, G.B. Study on the mobile phone dependence syndrome and its distribution among 2213 college students in Guangzhou. Zhonghua Liu Xing Bing Xue Za Zhi 2013, 34, 949–952. [Google Scholar] [PubMed]
- Choliz, M. Mobile phone addiction: A point of issue. Addiction 2010, 105, 373–374. [Google Scholar] [PubMed]
- Pedrero Perez, E.J.; Rodriguez Monje, M.T.; Ruiz Sanchez De Leon, J.M. Mobile phone abuse or addiction. A review of the literature. Adicciones 2012, 24, 139–152. [Google Scholar] [PubMed]
- Elhai, J.D.; Tiamiyu, M.F.; Weeks, J.W. Depression and Social Anxiety in Relation to Problematic Smartphone Use: The Prominent Role of Rumination. Internet Res. 2017, in press. [Google Scholar]
- Biggs, J.; Kember, D.; Leung, D.Y. The revised two-factor Study Process Questionnaire: R-SPQ-2F. Br. J. Educ. Psychol. 2001, 71, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Biggs, J. Study Process Questionnaire Manual. Student Approaches to Learning and Studying; Australian Council for Educational Research: Hawthorn, Australia, 1987. [Google Scholar]
- Warburton, K. Deep learning and education for sustainability. Int. J. Sustain. High. Educ. 2003, 4, 44–56. [Google Scholar] [CrossRef]
- Chin, C.; Brown, D.E. Learning in science: A comparison of deep and surface approaches. J. Res. Sci. Teach. 2000, 37, 109–138. [Google Scholar] [CrossRef]
- Rogaten, J.; Moneta, G.B.; Spada, M.M. Academic performance as a function of approaches to studying and affect in studying. J. Happiness Stud. 2013, 14, 1751–1763. [Google Scholar] [CrossRef]
- Hoeksema, L.H. Learning Strategy as a Guide to Career Success in Organizations; DSWO Press, Leiden University: Leiden, The Netherlands, 1995. [Google Scholar]
- Arquero, J.L.; Fernández-Polvillo, C.; Hassall, T.; Joyce, J. Vocation, motivation and approaches to learning: A comparative study. Educ. Train. 2015, 57, 13–30. [Google Scholar] [CrossRef]
- Gynnild, V.; Myrhaug, D. Revisiting approaches to learning in science and engineering: A case study. Eur. J. Eng. Educ. 2012, 37, 458–470. [Google Scholar] [CrossRef]
- Heikkilä, A.; Lonka, K. Studying in higher education: Students’ approaches to learning, self-regulation, and cognitive strategies. Stud. High. Educ. 2006, 31, 99–117. [Google Scholar] [CrossRef]
- Malie, S.; Akir, O. Bridging the gaps between learning and teaching through recognition of students’ learning approaches: A case study. Res. Educ. 2012, 87, 75–94. [Google Scholar] [CrossRef]
- Salamonson, Y.; Weaver, R.; Chang, S.; Koch, J.; Bhathal, R.; Khoo, C.; Wilson, L. Learning approaches as predictors of academic performance in first year health and science students. Nurse Educ. Today 2013, 33, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Rocconi, L.M.; Ribera, A.K.; Laird, T.F.N. College Seniors’ Plans for Graduate School: Do Deep Approaches Learning and Holland Academic Environments Matter? Res. High. Educ. 2015, 56, 178–201. [Google Scholar] [CrossRef]
- Kirschner, P.A.; Karpinski, A.C. Facebook® and academic performance. Comput. Hum. Behav. 2010, 26, 1237–1245. [Google Scholar] [CrossRef]
- Dewitte, S.; Schouwenburg, H.C. Procrastination, temptations, and incentives: The struggle between the present and the future in procrastinators and the punctual. Eur. J. Personal. 2002, 16, 469–489. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O.; Kuss, D.J.; Romo, L.; Morvan, Y.; Kern, L.; Graziani, P.; Rousseau, A.; Rumpf, H.J.; Bischof, A.; Gässler, A.K.; et al. Self-reported dependence on mobile phones in young adults: A European cross-cultural empirical survey. J. Behav. Addict. 2017, 6, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Oulasvirta, A.; Rattenbury, T.; Ma, L.; Raita, E. Habits make smartphone use more pervasive. Pers. Ubiquitous Comput. 2011, 16, 105–114. [Google Scholar] [CrossRef]
- Elhai, J.D.; Levine, J.C.; Dvorak, R.D.; Hall, B.J. Non-social features of smartphone use are most related to depression, anxiety and problematic smartphone use. Comput. Hum. Behav. 2017, 69, 75–82. [Google Scholar] [CrossRef]
- Elhai, J.D.; Hall, B.J.; Levine, J.C.; Dvorak, R.D. Types of smartphone usage and relations with problematic smartphone behaviors: The role of content consumption vs. social smartphone use. Cyberpsychol. J. Psychosoc. Res. Cyberspace 2017, 11, 3. [Google Scholar] [CrossRef]
- Rozgonjuk, D.; Täht, K. To what extent does Internet use affect academic performance? Using Evidence from the large-scale PISA study. Annu. Rev. Cyberther. Telemed. 2017, 15, 39–44. [Google Scholar]
- Jiang, Q. Internet addiction among young people in China. Internet Res. 2014, 24, 2–20. [Google Scholar] [CrossRef]
- Kwon, M.; Lee, J.Y.; Won, W.Y.; Park, J.W.; Min, J.A.; Hahn, C.; Gu, X.; Choi, J.H.; Kim, D.J. Development and validation of a smartphone addiction scale (SAS). PLoS ONE 2013, 8, e56936. [Google Scholar] [CrossRef] [PubMed]
- Valk, A.; Marandi, T. How to support deep learning at a university. In Proceedings of the International Conference on Education 2005, Beijing, China, 9–10 April 2015. [Google Scholar]
- Junco, R. The relationship between frequency of Facebook use, participation in Facebook activities, and student engagement. Comput. Educ. 2012, 58, 162–171. [Google Scholar] [CrossRef]
- Trochim, W.M.K.; Donnelly, J.P. The Research Methods Knowledge Base, 3rd ed.; Atomic Dog: Cincinnati, OH, USA, 2006. [Google Scholar]
- Gravetter, F.; Wallnau, L. Essentials of Statistics for the Behavioral Sciences, 8th ed.; Wadsworth: Belmont, CA, USA, 2014. [Google Scholar]
- Li, C.H. Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behav. Res. Methods 2016, 48, 936–949. [Google Scholar] [CrossRef] [PubMed]
- DiStefano, C.; Morgan, G.B. A Comparison of Diagonal Weighted Least Squares Robust Estimation Techniques for Ordinal Data. Struct. Equ. Model. Multidiscip. J. 2014, 21, 425–438. [Google Scholar] [CrossRef]
- MacKinnon, D.P. Introduction to Statistical Mediation Analysis; Routledge Academic: New York, NY, USA, 2008. [Google Scholar]
- Kuss, D.J.; Griffiths, M.D. Online social networking and addiction—A review of the psychological literature. Int. J. Environ. Res. Public Health 2011, 8, 3528–3552. [Google Scholar] [CrossRef] [PubMed]
- Grinols, A.B.; Rajesh, R. Multitasking with smartphones in the college classroom. Bus. Prof. Commun. Q. 2014, 77, 89–95. [Google Scholar] [CrossRef]
- Lim, S.; Shim, H. Who Multitasks on Smartphones? Smartphone Multitaskers’ Motivations and Personality Traits. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.L.; Fielder, R.L.; Carey, K.B.; Carey, M.P. Female college students’ media use and academic outcomes: Results from a longitudinal cohort study. Emerg. Adulthood 2013, 1, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Kononova, A.; Chiang, Y.H. Why do we multitask with media? Predictors of media multitasking among Internet users in the United States and Taiwan. Comput. Hum. Behav. 2015, 50, 31–41. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Boase, J.; Ling, R. Measuring Mobile Phone Use: Self-Report versus Log Data. J. Comput.-Mediat. Commun. 2013, 18, 508–519. [Google Scholar] [CrossRef]
- Kobayashi, T.; Boase, J. No Such Effect? The Implications of Measurement Error in Self-Report Measures of Mobile Communication Use. Commun. Methods Meas. 2012, 6, 126–143. [Google Scholar] [CrossRef]
- Elhai, J.D.; Tiamiyu, M.F.; Weeks, J.W.; Levine, J.C.; Picard, K.J.; Hall, B.J. Depression and emotion regulation predict objective smartphone use measured over one week. Personal. Individ. Differ. 2017. [Google Scholar] [CrossRef]
Variable | 1 | 2 | 3 | Min | Max | M | SD | α | |
---|---|---|---|---|---|---|---|---|---|
1 | PSU | 18 | 76 | 35.52 | 10.73 | 0.86 | |||
2 | SMUL | 0.326 *** | 2 | 10 | 5.92 | 2.10 | 0.85 | ||
3 | DA | −0.109 * | −0.304 *** | 11 | 39 | 26.80 | 4.62 | 0.78 | |
4 | SA | 0.177 *** | 0.297 *** | −0.425 *** | 8 | 34 | 20.12 | 4.93 | 0.75 |
Model 1 (Outcome DA) | ||||
Covariates | Bivariate B (SE) | t | Multivariate B (SE) | t |
PSU | 0.001 (0.079) | 0.016 | 0.001 (0.061) | 0.016 |
SMUL | −0.345 (0.060) | −5.751 *** | −0.417 (0.063) | −6.630 *** |
PSU -> SMUL | 0.547 (0.098) | 5.573 *** | 0.348 (0.059) | 5.874 *** |
Age -> SMUL | −0.095 (0.012) | −7.799 *** | −0.440 (0.053) | −8.349 *** |
Gender -> SMUL | 0.103 (0.139) | 0.744 | 0.046 (0.061) | 0.754 |
PSU -> SMUL -> DA | −0.189 (0.050) | −3.757 *** | −0.145 (0.035) | −4.115 *** |
Model 2 (Outcome SA) | ||||
Covariates | Bivariate B (SE) | t | Multivariate B (SE) | t |
PSU | 0.088 (0.061) | 1.457 | 0.093 (0.061) | 1.513 |
SMUL | 0.205 (0.050) | 4.136 *** | 0.336 (0.076) | 4.410 *** |
PSU -> SMUL | 0.548 (0.094) | 5.820 *** | 0.350 (0.056) | 6.247 *** |
Age -> SMUL | −0.082 (0.011) | −7.369 *** | −0.382 (0.047) | −8.055 *** |
Gender -> SMUL | 0.103 (0.124) | 0.829 | 0.046 (0.055) | 0.839 |
PSU -> SMUL -> SA | 0.112 (0.035) | 3.193 *** | 0.118 (0.035) | 3.340 *** |
Model 3 (Outcomes DA and SA) | ||||
Covariates | Bivariate B (SE) | t | Multivariate B (SE) | t |
PSU -> DA | 0.002 (0.084) | 0.024 | 0.001 (0.060) | 0.024 |
SMUL -> DA | −0.361 (0.060) | −6.008 *** | −0.419 (0.064) | −6.604 *** |
PSU -> SA | 0.112 (0.071) | 1.572 | 0.097 (0.061) | 1.594 |
SMUL -> SA | 0.243 (0.057) | 4.261 *** | 0.336 (0.074) | 4.569 *** |
PSU -> SMUL | 0.562 (0.102) | 5.526 *** | 0.353 (0.060) | 5.848 *** |
Age -> SMUL | −0.097 (0.013) | −7.609 *** | −0.447 (0.053) | −8.364 *** |
Gender -> SMUL | 0.053 (0.146) | 0.365 | 0.024 (0.064) | 0.370 |
PSU -> SMUL -> DA | −0.203 (0.055) | −3.668 *** | −0.148 (0.037) | −3.969 *** |
PSU -> SMUL -> SA | 0.137 (0.044) | 3.095 ** | 0.119 (0.037) | 3.222 *** |
DA <-> SA | −0.228 (0.037) | −6.094 *** | −0.526 (0.051) | −10.365 *** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozgonjuk, D.; Saal, K.; Täht, K. Problematic Smartphone Use, Deep and Surface Approaches to Learning, and Social Media Use in Lectures. Int. J. Environ. Res. Public Health 2018, 15, 92. https://doi.org/10.3390/ijerph15010092
Rozgonjuk D, Saal K, Täht K. Problematic Smartphone Use, Deep and Surface Approaches to Learning, and Social Media Use in Lectures. International Journal of Environmental Research and Public Health. 2018; 15(1):92. https://doi.org/10.3390/ijerph15010092
Chicago/Turabian StyleRozgonjuk, Dmitri, Kristiina Saal, and Karin Täht. 2018. "Problematic Smartphone Use, Deep and Surface Approaches to Learning, and Social Media Use in Lectures" International Journal of Environmental Research and Public Health 15, no. 1: 92. https://doi.org/10.3390/ijerph15010092
APA StyleRozgonjuk, D., Saal, K., & Täht, K. (2018). Problematic Smartphone Use, Deep and Surface Approaches to Learning, and Social Media Use in Lectures. International Journal of Environmental Research and Public Health, 15(1), 92. https://doi.org/10.3390/ijerph15010092