The Effect of Manufacturing Agglomeration on Haze Pollution in China
Abstract
:1. Introduction
2. Literature Review
3. Model Specification, Variables Description, and Data Sources
3.1. The Establishment of a Spatial Econometric Model
3.2. Variable Description
3.3. Data Sources
4. Empirical Results Analyses
4.1. Regression Results and Analysis
4.2. Analysis of Regional Regression Results
4.3. Robustness Test
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, W.F.; Li, X.L.; Xie, J.X.; Yin, L.R.; Wang, Y.L. Impact of human activities on haze in Beijing based on grey relational analysis. Rendiconti Lincei 2015, 26, 187–192. [Google Scholar] [CrossRef]
- Liu, H.M.; Fang, Z.L.; Zhang, X.L.; Wang, Z.Y.; Bao, C.; Li, F.Z. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. J. Clean. Prod. 2017, 165, 323–333. [Google Scholar] [CrossRef]
- Chen, L.W.; Watson, J.G.; Chow, J.C.; DuBois, D.W.; Herschberger, L. Chemical mass balance source apportionment for combined PM2.5 measurements from U.S. non-urban and urban long-term networks. Atmos. Environ. 2010, 44, 4908–4918. [Google Scholar] [CrossRef]
- Wang, T.J.; Jiang, F.; Deng, J.J.; Shen, Y.; Fu, Q.; Wang, Q.; Fu, Y.; Xu, J.H.; Zhang, D.N. Urban air quality and regional haze weather forecast for Yangtze River Delta region. Atmos. Environ. 2012, 58, 70–83. [Google Scholar] [CrossRef]
- Verhoef, E.T.; Nijkamp, P. Externalities in urban sustainability: Environmental versus localization-type agglomeration externalities in a general spatial equilibrium model of a single-sector monocentric industrial city. Ecol. Econ. 2002, 40, 157–179. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Wang, D.F. The interaction and spatial spillover between agglomeration and pollution. China’s Ind. Econ. 2014, 6, 70–82. (In Chinese) [Google Scholar]
- Sun, P.Y.; Yuan, Y. Industrial agglomeration and environmental degradation: Empirical evidence in Chinese cities. Pac. Econ. Rev. 2015, 20, 544–568. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Z.H.; Li, L.S. Industrial aggregation and environmental pollution. Sci. Res. Manag. 2016, 6, 134–140. (In Chinese) [Google Scholar]
- Liu, S.X.; Zhu, Y.M.; Du, K.Q. The impact of industrial agglomeration on industrial emission: Evidence from China under New Normal. Clean Technol. Environ. Policy 2017, 19, 2327–2334. [Google Scholar] [CrossRef]
- Hosoe, M.; Naito, T. Trans-boundary pollution transmission and regional agglomeration effects. Pap. Reg. Sci. 2006, 85, 99–120. [Google Scholar] [CrossRef]
- Chen, J.J.; Hu, C.G. The agglomeration effect of Industrial Agglomeration—The theoretical and empirical analysis of the Yangtze River Delta Region as an example. Manag. World 2008, 6, 68–83. (In Chinese) [Google Scholar]
- Zeng, D.Z.; Zhao, L.X. Pollution havens and industrial agglomeration. J. Environ. Econ. Manag. 2009, 58, 141–153. [Google Scholar] [CrossRef]
- Lu, M.; Feng, H. Agglomeration and emission reduction: Empirical Study on the impact of urban scale gap on industrial pollution intensity. World Econ. 2014, 7, 86–114. (In Chinese) [Google Scholar]
- Jiang, Y.Q.; Zheng, J.H. Economic growth or environmental sustainability? Drivers of pollution in the Yangtze River Delta urban agglomeration in China. Emerg. Mark. Financ. Trade 2017, 53, 2625–2643. [Google Scholar] [CrossRef]
- Luo, Y.P.; Chen, H.; Zhu, Q.A.; Peng, C.H.; Yang, G.; Yang, Y.C.; Zhang, Y. Relationship between air pollutants and economic development of the provincial capital cities in China during the past decade. PLoS ONE 2014, 9, e104013. [Google Scholar] [CrossRef] [PubMed]
- He, C.F.; Huang, Z.J.; Ye, X.Y. Spatial heterogeneity of economic development and industrial pollution in urban China. Stoch. Environ. Res. Risk Assess. 2014, 28, 767–781. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B.Q. How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models. Energy Econ. 2015, 48, 188–202. [Google Scholar] [CrossRef]
- Li, X.L. An empirical analysis based on marketization, industrial agglomeration and environmental pollution. Stat. Res. 2014, 8, 39–45. (In Chinese) [Google Scholar]
- Yuan, Y.J.; Xie, R.H. Empirical research on the relationship of industrial agglomeration, technological innovation and environmental pollution. Stud. Sci. Sci. 2015, 33, 1340–1347. (In Chinese) [Google Scholar]
- Zheng, X.Y.; Yu, Y.H.; Wang, J. Identifying the determinants and spatial nexus of provincial carbon intensity in China: A dynamic spatial panel approach. Reg. Environ. Chang. 2014, 14, 1651–1661. [Google Scholar] [CrossRef]
- Cheng, Z.H. The spatial correlation and interaction between manufacturing agglomeration and environmental pollution. Ecol. Indic. 2016, 61, 1024–1032. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impacts of population growth. Science 1971, 7, 1212–1217. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Rethinking the environmental impacts of population, affluence and technology. Hum. Ecol. Rev. 1994, 2, 277–300. [Google Scholar]
- Ma, Y.R.; Ji, Q.; Fan, Y. Spatial linkage analysis of the impact of regional economic activities on PM2.5 pollution in China. J. Clean. Prod. 2016, 139, 1157–1167. [Google Scholar] [CrossRef]
- Wu, X.H.; Chen, Y.F.; Guo, J.; Wang, G.Z.; Gong, Y.M. Spatial concentration, impact factors and prevention-control measures of PM2.5 pollution in China. Nat. Hazards 2017, 86, 393–410. [Google Scholar] [CrossRef]
- Ciccone, A.; Hall, R.E. Productivity and the density of economic activity. Am. Econ. Rev. 1996, 86, 54–70. [Google Scholar]
- Wang, Y.; Han, R.; Jumpei, K. Is there an Environmental Kuznets Curve for SO2 emissions? A semi-parametric panel data analysis for China. Renew. Sustain. Energy Rev. 2016, 54, 1182–1188. [Google Scholar] [CrossRef]
- Xu, H.L.; Deng, Y.P. Does foreign direct investment lead to environmental pollution in China?—A spatial econometric study based on provincial panel data in China. Manag. World 2012, 2, 30–43. (In Chinese) [Google Scholar]
- Zheng, J.J.; Sheng, P.F. The impact of foreign direct investment on the environment: Market perspectives and evidence from China. Economies 2017, 5, 8. [Google Scholar] [CrossRef]
- Asghari, M. Does FDI promote MENA region’s environment quality? Pollution halo or pollution haven hypothesis. Int. J. Sci. Res. Environ. Sci. 2013, 1, 92–100. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Li, L.S.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Shao, S.; Li, X.; Cao, J.H.; Yang, L.L. China’s economic policy choices for governing smog pollution based on spatial spillover effects. Econ. Res. J. 2016, 9, 73–88. (In Chinese) [Google Scholar]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data Models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Elhorst, J.R. Unconditional maximum likelihood estimation of linear and log-Linear dynamic models for spatial panels. Geogr. Anal. 2005, 37, 85–106. [Google Scholar] [CrossRef]
- Kukenova, M.; Monteiro, J. Spatial Dynamic Panel Model and System GMM: A Monte Carlo Investigation; IRENE Working Papers 09-01; Irene Institute of Economic Research: Neuchâtel, Switzerland, 2009. [Google Scholar]
- Donoghue, D.; Gleave, B. A note on methods for measuring industrial agglomeration. Reg. Stud. 2004, 38, 419–427. [Google Scholar] [CrossRef]
Variable | Sample Size | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
lnI | 2850 | 3.705 | 0.553 | 1.708 | 4.687 |
lnAgglo | 2850 | 1.687 | 1.526 | −3.811 | 6.450 |
lnPop | 2850 | 5.838 | 0.691 | 2.795 | 8.115 |
lnPgdp | 2850 | 9.823 | 0.785 | 4.595 | 12.12 |
lnTech | 2850 | 3.401 | 0.784 | −0.541 | 5.536 |
lnStru | 2850 | 3.894 | 0.282 | 2.086 | 4.511 |
lnTrans | 2850 | 2.487 | 1.171 | −6.742 | 12.746 |
lnFDI | 2850 | −6.556 | 1.471 | −12.995 | −3.092 |
lnGreen | 2850 | 3.494 | 0.458 | −1.022 | 5.957 |
Heat | 2850 | 0.435 | 0.496 | 0 | 1 |
VIF | lnI | lnAgglo | lnPop | lnPgdp | lnTech | lnStru | lnTrans | lnFDI | lnGreen | Heat | |
---|---|---|---|---|---|---|---|---|---|---|---|
lnI | 1.000 | ||||||||||
lnAgglo | 2.57 | 0.448 | 1.000 | ||||||||
lnPop | 2.43 | 0.444 | 0.228 | 1.000 | |||||||
lnPgdp | 5.15 | 0.109 | 0.533 | −0.089 | 1.000 | ||||||
lnTech | 2.50 | 0.246 | 0.136 | 0.069 | 0.670 | 1.000 | |||||
lnStru | 1.30 | 0.219 | 0.350 | −0.097 | 0.356 | 0.178 | 1.000 | ||||
lnTrans | 3.38 | 0.291 | 0.455 | 0.528 | 0.587 | 0.485 | 0.103 | 1.000 | |||
lnFDI | 1.66 | 0.238 | 0.534 | 0.220 | 0.392 | 0.246 | 0.097 | 0.344 | 1.000 | ||
lnGreen | 1.34 | 0.184 | 0.347 | 0.089 | 0.414 | 0.285 | 0.233 | 0.281 | 0.392 | 1.000 | |
Heat | 1.27 | −0.079 | −0.159 | −0.140 | 0.109 | −0.024 | 0.069 | 0.091 | −0.241 | −0.100 | 1.000 |
Type | Ordinary Dynamic Panel Models | Static Space Panel Models | Dynamic Space Panel Models | |||
---|---|---|---|---|---|---|
Equation (1) | Equation (2) | Equation (3) | Equation (4) | Equation (5) | Equation (6) | |
0.734 *** (9.30) | 0.741 *** (9.52) | 0.175 *** (5.16) | 0.182 *** (5.39) | |||
0.314 *** (8.76) | 0.311 *** (8.42) | 1.93 × 10−6 *** (3.60) | 1.90 × 10−6 *** (3.54) | |||
lnAgglo | 0.068 *** (4.03) | 0.082 *** (4.26) | 0.056 *** (6.11) | 0.052 *** (4.52) | 0.131 *** (10.09) | 0.139 *** (10.28) |
(lnAgglo)2 | 0.005 (0.92) | 0.002 (0.85) | −0.003 (−0.98) | |||
lnPgdp | −0.023 *** (−2.73) | −0.030 *** (−3.32) | −0.024 *** (−2.72) | −0.029 *** (−3.22) | −0.291 *** (−10.01) | −0.296 *** (−10.12) |
(lnPgdp)2 | −0.012 (−1.27) | 0.011 (1.21) | 0.004 (0.58) | |||
lnPop | 0.090 ** (2.22) | 0.111 ** (2.59) | 0.057 * (1.83) | 0.061 * (1.95) | 0.157 *** (9.90) | 0.156 *** (9.72) |
lnTech | 0.089 *** (2.73) | 0.107 *** (3.05) | 0.095 *** (15.45) | 0.100 *** (15.89) | 0.221 *** (12.44) | 0.219 *** (12.23) |
lnStru | 0.056 (1.29) | 0.059 (1.14) | 0.064 *** (5.31) | 0.066 *** (5.43) | 0.182 *** (6.76) | 0.176 *** (6.32) |
lnTrans | 0.044 ** (1.87) | 0.046 ** (2.06) | 0.069 *** (5.81) | 0.070 *** (5.71) | 0.034 *** (2.93) | 0.033 *** (2.80) |
lnFDI | −0.002 (−0.40) | −0.006 (−0.86) | −0.010 (−1.47) | −0.009 (−1.41) | −0.013 ** (−1.57) | −0.014 ** (−1.16) |
lnGreen | −0.008 (−0.71) | −0.006 (−0.42) | −0.024 (−1.29) | −0.024 (−1.25) | −0.030 ** (−1.94) | −0.031 ** (−2.00) |
Heat | 0.032 *** (3.28) | 0.028 ** (2.18) | 0.038 *** (3.42) | 0.027 ** (2.20) | 0.033 *** (3.36) | 0.028 ** (2.20) |
Adj-R2 | 0.487 | 0.489 | ||||
Obs | 2565 | 2565 | 2850 | 2850 | 2565 | 2565 |
LM_Lag test | 3410.68 | 3413.17 | 4235.21 | 4264.14 | ||
Robust LM_Lag test | 550.65 | 546.43 | 929.65 | 953.06 | ||
LM_Error test | 3052.70 | 3034.99 | 3772.64 | 3744.14 | ||
Robust LM_Error test | 467.08 | 433.07 | 908.64 | 924.61 | ||
AR(1) test | (0.016) | (0.019) | (0.010) | (0.012) | ||
AR(2) test | (0.251) | (0.243) | (0.273) | (0.284) | ||
Hansen test | (0.998) | (0.998) | (0.999) | (0.999) |
Type | East Areas | Central Areas | West Areas | |||
---|---|---|---|---|---|---|
Equation (7) | Equation (8) | Equation (9) | Equation (10) | Equation (11) | Equation (12) | |
0.467 *** (9.58) | 0.461 *** (10.40) | 0.329 *** (5.25) | 0.358 *** (5.75) | 0.062 * (1.54) | 0.068 * (1.67) | |
1.50 × 10−5 *** (3.30) | 1.33 × 10−5 *** (2.98) | 7.07 × 10−6 *** (1.62) | 7.38 × 10−6 *** (1.23) | 6.03 × 10−6 *** (1.53) | 7.61 × 10−6 *** (1.31) | |
lnAgglo | 0.144 *** (9.88) | 0.151 *** (10.16) | 0.155 *** (10.27) | 0.171 *** (12.17) | 0.161 *** (11.10) | 0.175 *** (12.32) |
(lnAgglo)2 | −0.011 (−1.87) | −0.006 (−1.62) | −0.002 (−0.08) | |||
lnPgdp | −0.197 *** (−5.35) | −0.186 *** (−4.85) | −0.104 *** (−4.24) | −0.102 *** (−4.16) | −0.094 ** (−2.29) | −0.074 * (−1.90) |
(lnPgdp)2 | 0.016 (1.24) | 0.015 (1.20) | −0.009 (−0.75) | |||
lnPop | 0.058 *** (2.91) | 0.060 *** (3.34) | 0.051 *** (3.33) | 0.047 *** (3.02) | 0.287 *** (9.25) | 0.295 *** (9.21) |
lnTech | 0.301 *** (10.92) | 0.308 *** (11.40) | 0.088 *** (4.88) | 0.082 *** (4.53) | 0.214 *** (5.26) | 0.220 *** (5.41) |
lnStru | 0.030 * (1.16) | 0.041 * (1.49) | 0.235 *** (4.65) | 0.215 *** (4.33) | 0.104 * (1.77) | 0.127 ** (2.15) |
lnTrans | 0.060 ** (2.45) | 0.054 ** (2.17) | 0.018 * (1.86) | 0.018 * (1.93) | 0.147 *** (6.38) | 0.169 *** (7.25) |
lnFDI | −0.062 *** (−4.72) | −0.068 *** (−5.30) | −0.031 *** (−4.03) | −0.030 *** (−3.83) | −0.023 ** (−2.00) | −0.029 ** (−2.55) |
lnGreen | −0.006 (−0.17) | −0.009 (−0.40) | −0.026 * (−1.25) | −0.026 * (−1.10) | −0.017 (−0.80) | −0.016 (−0.67) |
Heat | 0.484 *** (10.17) | 0.403 *** (8.28) | 0.200 *** (7.52) | 0.183 *** (6.78) | 0.050 (0.83) | 0.053 (0.91) |
logL | 76.65 | 82.19 | 314.87 | 307.60 | 251.01 | 252.29 |
Obs | 909 | 909 | 900 | 900 | 756 | 756 |
Type | National Level | East Areas | Central Areas | West Areas | ||||
---|---|---|---|---|---|---|---|---|
Equation (13) | Equation (14) | Equation (15) | Equation (16) | Equation (17) | Equation (18) | Equation (19) | Equation (20) | |
0.272 *** (7.20) | 0.277 *** (7.45) | 0.571 *** (11.49) | 0.592*** (12.09) | 0.434 *** (6.65) | 0.446 *** (6.86) | 0.119 *** (2.63) | 0.115 *** (2.48) | |
2.35 × 10−6 *** (4.16) | 2.29 × 10−6 *** (4.05) | 1.65 × 10−5 *** (3.72) | 1.69 × 10−5 *** (3.58) | 8.07 × 10−6 *** (8.13) | 8.46 × 10−6 *** (8.29) | 3.03 × 10−6 (0.74) | 3.13 × 10−6 (0.77) | |
lnAgglo | 0.067 *** (2.98) | 0.060 *** (2.84) | 0.077 *** (3.19) | 0.076 *** (3.17) | 0.149 *** (3.26) | 0.147 *** (3.20) | 0.164 *** (3.38) | 0.159 *** (3.17) |
(lnAgglo)2 | −0.004 (−0.40) | −0.003 (−0.39) | −0.017 (−0.91) | −0.014 (−0.86) | ||||
lnPgdp | −0.072 *** (−3.55) | −0.076 *** (−3.22) | −0.099 *** (−2.94) | −0.093 ** (−2.83) | −0.092 ** (−2.79) | −0.085 ** (−2.29) | −0.076 * (−1.87) | −0.073 * (−1.73) |
(lnPgdp)2 | 0.001 (0.01) | 0.002 (0.09) | 0.023 (1.62) | −0.011 (−0.09) | ||||
lnPop | 0.158 *** (9.73) | 0.163 *** (9.98) | 0.109 *** (3.62) | 0.074 ** (2.46) | 0.077 *** (4.44) | 0.076 *** (4.23) | 0.328 *** (9.53) | 0.337 *** (9.74) |
lnTech | 0.117 *** (6.84) | 0.113 *** (6.61) | 0.211 *** (8.17) | 0.202 *** (7.93) | 0.044 ** (2.42) | 0.043 *** (2.33) | 0.046 (1.16) | 0.037 (0.91) |
lnStru | 0.239 *** (8.67) | 0.244 *** (8.83) | 0.232 *** (4.39) | 0.271 *** (5.19) | 0.054 * (1.86) | 0.051 * (1.74) | 0.226 *** (3.62) | 0.209 *** (3.30) |
lnTrans | 0.171 *** (3.57) | 0.161 *** (3.29) | 0.107 *** (4.44) | 0.092 *** (3.86) | 0.037 *** (3.39) | 0.036 *** (3.37) | 0.124 *** (4.97) | 0.125 *** (4.90) |
lnFDI | −0.051 * (−1.92) | −0.042 * (−1.55) | −0.049 *** (−3.69) | −0.030 ** (−2.27) | −0.014 * (−1.61) | −0.016 * (−1.84) | −0.007 (−0.54) | −0.007 (−0.56) |
lnGreen | −0.046 *** (−3.01) | −0.044 *** (−2.84) | −0.003 (−0.09) | −0.024 (−0.67) | −0.008 (−0.33) | −0.002 (−0.06) | −0.037 (−1.45) | −0.037 (−1.46) |
Heat | 0.094 *** (10.03) | 0.094 *** (9.96) | 0.473 *** (9.34) | 0.426 *** (8.35) | 0.136 *** (4.42) | 0.124 *** (4.02) | 0.106 *** (3.92) | 0.104 *** (3.86) |
logL | 496.56 | 493.36 | 197.13 | 202.19 | 243.21 | 239.64 | 298.00 | 295.65 |
Obs | 2565 | 2565 | 909 | 909 | 900 | 900 | 756 | 756 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhao, Y.; Cheng, Z.; Zhang, H. The Effect of Manufacturing Agglomeration on Haze Pollution in China. Int. J. Environ. Res. Public Health 2018, 15, 2490. https://doi.org/10.3390/ijerph15112490
Liu J, Zhao Y, Cheng Z, Zhang H. The Effect of Manufacturing Agglomeration on Haze Pollution in China. International Journal of Environmental Research and Public Health. 2018; 15(11):2490. https://doi.org/10.3390/ijerph15112490
Chicago/Turabian StyleLiu, Jun, Yuhui Zhao, Zhonghua Cheng, and Huiming Zhang. 2018. "The Effect of Manufacturing Agglomeration on Haze Pollution in China" International Journal of Environmental Research and Public Health 15, no. 11: 2490. https://doi.org/10.3390/ijerph15112490
APA StyleLiu, J., Zhao, Y., Cheng, Z., & Zhang, H. (2018). The Effect of Manufacturing Agglomeration on Haze Pollution in China. International Journal of Environmental Research and Public Health, 15(11), 2490. https://doi.org/10.3390/ijerph15112490