Reduced Lean Body Mass and Cardiometabolic Diseases in Adult Males with Overweight and Obesity: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Silver, H.J.; Welch, E.B.; Avison, M.J.; Niswender, K.D. Imaging body composition in obesity and weight loss: Challenges and opportunities. Diabetes Metab. Syndr. Obes. 2010, 3, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K. Body composition measurement in severe obesity. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Hioki, H.; Miura, T.; Motoki, H.; Kobayashi, H.; Kobayashi, M.; Nakajima, H.; Kimura, H.; Mawatari, E.; Akanuma, H.; Sato, T.; et al. Lean body mass index prognostic value for cardiovascular events in patients with coronary artery disease. Heart Asia 2015, 7, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, R.R.; Tra, Y.; Egan, J.M.; Ferrucci, L.; Brancati, F. Hyperglycemia is associated with relatively lower lean body mass in older adults. J. Nutr. Health Aging 2014, 18, 737–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Park, S.M. Association of muscle mass and fat mass with insulin resistance and the prevalence of metabolic syndrome in Korean adults: A cross-sectional study. Sci. Rep. 2018, 8, 2703. [Google Scholar] [CrossRef] [PubMed]
- Pichard, C.; Kyle, U.G.; Morabia, A.; Perrier, A.; Vermeulen, B.; Unger, P. Nutritional assessment: Lean body mass depletion at hospital admission is associated with an increased length of stay. Am. J. Clin. Nutr. 2004, 79, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Szulc, P.; Munoz, F.; Marchand, F.; Chapurlat, R.; Delmas, P.D. Rapid loss of appendicular skeletal muscle mass is associated with higher all-cause mortality in older men: The prospective MINOS study. Am. J. Clin. Nutr. 2010, 91, 1227–1236. [Google Scholar] [CrossRef]
- Srikanthan, P.; Horwich, T.B.; Tseng, C.H. Relation of Muscle Mass and Fat Mass to Cardiovascular Disease Mortality. Am. J. Cardiol. 2016, 117, 1355–1360. [Google Scholar] [CrossRef]
- Fukushima, Y.; Kurose, S.; Shinno, H.; Cao Thu, H.; Takao, N.; Tsutsumi, H.; Kimura, Y. Importance of Lean Muscle Maintenance to Improve Insulin Resistance by Body Weight Reduction in Female Patients with Obesity. Diabetes Metab. J. 2016, 40, 147–153. [Google Scholar] [CrossRef]
- Kreidieh, D.; Itani, L.; El Masri, D.; Tannir, H.; Citarella, R.; El Ghoch, M. Association between Sarcopenic Obesity, Type 2 Diabetes, and Hypertension in Overweight and Obese Treatment-Seeking Adult Women. J. Cardiovasc. Dev. Dis. 2018, 5, 51. [Google Scholar] [CrossRef]
- Peppa, M.; Koliaki, C.; Boutati, E.; Garoflos, E.; Papaefstathiou, A.; Siafakas, N.; Katsilambros, N.; Raptis, S.A.; Hadjidakis, D.I.; Dimitriadis, G.D. Association of lean body mass with cardiometabolic risk factors in healthy postmenopausal women. Obesity 2014, 22, 828–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barazzoni, R.; Bischoff, S.; Boirie, Y.; Busetto, L.; Cederholm, T.; Dicker, D.; Toplak, H.; Van Gossum, A.; Yumuk, V.; Vettor, R. Sarcopenic Obesity: Time to Meet the Challenge. Obes. Facts 2018, 11, 294–305. [Google Scholar] [CrossRef] [PubMed]
- El Ghoch, M.; Rossi, A.P.; Calugi, S.; Rubele, S.; Soave, F.; Zamboni, M.; Chignola, E.; Mazzali, G.; Bazzani, P.V.; Dalle Grave, R. Physical performance measures in screening for reduced lean body mass in adult females with obesity. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Batsis, J.A.; Mackenzie, T.A.; Lopez-Jimenez, F.; Bartels, S.J. Sarcopenia, sarcopenic obesity, and functional impairments in older adults: National Health and Nutrition Examination Surveys 1999–2004. Nutr. Res. 2015, 35, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E.; Crimmins, E.M. The impact of insulin resistance and inflammation on the association between sarcopenic obesity and physical functioning. Obesity 2012, 20, 2101–2106. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.; Jho, S.; No, J.K.; Kim, H.S. Body composition changes were related to nutrient intakes in elderly men but elderly women had a higher prevalence of sarcopenic obesity in a population of Korean adults. Nutr. Res. 2015, 35, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Bredella, M.A.; Ghomi, R.H.; Thomas, B.J.; Torriani, M.; Brick, D.J.; Gerweck, A.V.; Misra, M.; Klibanski, A.; Miller, K.K. Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity 2010, 18, 2227–2233. [Google Scholar] [CrossRef]
- Johnson Stoklossa, C.A.; Sharma, A.M.; Forhan, M.; Siervo, M.; Padwal, R.S.; Prado, C.M. Prevalence of Sarcopenic Obesity in Adults with Class II/III Obesity Using Different Diagnostic Criteria. J. Nutr. Metab. 2017, 2017, 7307618. [Google Scholar] [CrossRef]
- Rothney, M.P.; Brychta, R.J.; Schaefer, E.V.; Chen, K.Y.; Skarulis, M.C. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity 2009, 17, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Coppini, L.Z.; Waitzberg, D.L.; Campos, A.C. Limitations and validation of bioelectrical impedance analysis in morbidly obese patients. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 329–332. [Google Scholar] [CrossRef] [PubMed]
Total Sample N = 110 | Normal Weight N = 38 | Overweight and Obesity N = 72 | p-Value | |
---|---|---|---|---|
Age (Years) | 32.26 (13.28) | 31.26 (12.68) | 32.79 (13.65) | 0.560 |
BMI | 29.76 ± 7.28 | 22.31 ± 1.83 | 33.69 ± 5.85 | p < 0.0001 |
Marital status | 0.694 | |||
Unmarried | 69 (63.3) | 25 (65.8) | 44 (62.0) | |
Married | 40 (36.7) | 13 (34.2) | 27 (38.0) | |
Employment | 0.446 | |||
Unemployed | 43 (39.1) | 13 (34.2) | 30 (41.7) | |
Employed | 67 (60.9) | 25 (65.8) | 42 (58.3) |
Definition of Low LBM | Reference | Cut-Off Point | Low LBM | Mean Values | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Normal Weight N = 38 | Overweight and Obesity N = 72 | p-Value | Normal Weight N = 38 | Overweight and Obesity N = 72 | p-Value | |||||
Normal LBM | Low LBM | Normal LBM | Low LBM | |||||||
ALM/BMI | Batsis et al. [14] | <0.789 | 38 (100.0) | 0 (0.0) | 50 (69.4) | 22 (30.6) | <0.01 | 1.11 ± 0.14 | 0.85 ± 0.14 | <0.01 |
ALM/Weight × 100% | Levine and Crimmins [15] | <25.72 | 38 (100.0) | 0 (0.0) | 55 (76.4) | 17 (23.6) | <0.01 | 36.09 ± 2.48 | 27.86 ± 3.34 | <0.01 |
Oh et al. [16] | <29.60 | 38 (100.0) | 0 (0.0) | 22 (30.6) | 50 (69.4) | <0.01 | 36.09 ± 2.48 | 27.86 ± 3.34 | <0.01 |
Total Sample N = 110 | Normal Weight N = 38 | Overweight and Obesity N = 72 | p-Value | Overweight and Obesity N = 72 | p-Value | ||
---|---|---|---|---|---|---|---|
Disease | Normal LBM | Low LBM * | |||||
Type 2 diabetes | p = 0.144 | p = 0.804 | |||||
No | 105 (96.3) | 37 (100.0) | 68 (94.4) | 21 (95.5) | 47 (94.0) | ||
Yes | 4 (3.7) | 0 (0.0) | 4 (5.6) | 1 (4.5) | 3 (6.0) | ||
Dyslipidemia | p = 0.008 | p = 0.012 | |||||
No | 97 (89.0) | 37(100.0) | 60 (83.3) | 22 (100.0) | 38 (76.0) | ||
Yes | 12 (11.0) | 0 (0.0) | 12 (16.7) | 0 (0.0) | 12 (24.0) | ||
Cardiovascular Disease and Hypertension | p = 0.012 | p = 0.093 | |||||
No | 98 (89.0) | 37 (100.0) | 61 (84.7) | 21 (95.5) | 40 (80.0) | ||
Yes | 11 (10.1) | 0 (0.0) | 11 (15.3) | 1 (4.5) | 10 (20.0) | ||
Cardiometabolic Disease | p = 0.0004 | p = 0.019 | |||||
No | 89 (81.7) | 37 (100.0) | 52 (72.2) | 20 (90.9) | 32 (64.0) | ||
Yes | 20 (18.3) | 0 (0.0) | 20 (27.8) | 2 (9.1) | 18 (36.0) |
Overweight and Obesity | |||||||
---|---|---|---|---|---|---|---|
Total N = 110 | Normal Weight N = 38 | Overweight and Obesity N = 72 | p-Value | Normal LBM N = 49 | Low LBM * N = 23 | p-Value | |
BMI | 29.76 ± 7.28 | 22.31 ± 1.83 | 33.69 ± 5.85 | p < 0.0001 | 28.70 ± 2.45 | 35.88 ± 5.57 | p < 0.0001 |
Waist to hip ratio | 0.92 ± 0.06 | 0.86 ± 0.03 | 0.95 ± 0.04 | p < 0.0001 | 0.92 ± 0.02 | 0.97 ± 0.03 | p < 0.0001 |
Total fat mass | 26.44 ± 16.20 | 11.02 ± 3.40 | 34.58 ± 14.22 | p < 0.0001 | 21.28 ± 4.98 | 40.43 ± 12.97 | p < 0.0001 |
% Body fat | 27.00 ± 10.68 | 16.03 ± 4.57 | 32.79 ± 8.11 | p < 0.0001 | 23.94 ± 4.30 | 36.68 ± 6.06 | p < 0.0001 |
Fat free mass | 64.10 ± 11.75 | 56.83 ± 9.93 | 67.93 ± 10.83 | p < 0.0001 | 67.18 ± 8.02 | 68.26 ± 11.91 | p > 0.05 |
% Fat-free mass | 72.54 ± 11.47 | 82.63 ± 10.07 | 67.21 ± 8.11 | p < 0.0001 | 76.05 ± 4.30 | 63.32 ± 6.07 | p < 0.0001 |
Visceral fat mass | 9.77 ± 5.73 | 3.97 ± 1.65 | 12.83 ± 4.64 | p < 0.0001 | 8.23 ± 2.05 | 14.86 ± 3.96 | p < 0.0001 |
Total body water | 47.19 ± 8.02 | 42.39 ± 5.69 | 49.72 ± 7.94 | p < 0.0001 | 49.15 ± 5.83 | 49.97 ± 8.75 | p > 0.05 |
ALM/weight × 100% | 30.70 ± 4.98 | 36.09 ± 2.48 | 27.86 ± 3.34 | p < 0.0001 | 31.65 ± 1.66 | 26.19 ± 2.37 | p < 0.0001 |
ALM/weight × 100% < 29.6 | p < 0.0001 | ||||||
Normal LBM | 60 (54.5) | 38 (100) | 22 (30.6) | ||||
Low LBM | 50 (45.5) | 0 (0.0) | 50 (69.4) |
ALM/BMI < 0.789 | ALM/weight × 100% < 25.72 | ALM/weight × 100% < 29.6 | |
---|---|---|---|
Cardio-Metabolic Diseases | Odds (95% CI) | ||
LBM | |||
No low LBM | 1.00 | 1.00 | 1.00 |
Low LBM | 0.998 (0.840–1.185) | 0.969 (0.816–1.150) | 5.463 (1.131–26.399) |
Percent visceral fat from total fat | 2.204 (0.656–7.408) | 1.421 (0.377–5.359) | 0.976 (0.832–1.145) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khazem, S.; Itani, L.; Kreidieh, D.; El Masri, D.; Tannir, H.; Citarella, R.; El Ghoch, M. Reduced Lean Body Mass and Cardiometabolic Diseases in Adult Males with Overweight and Obesity: A Pilot Study. Int. J. Environ. Res. Public Health 2018, 15, 2754. https://doi.org/10.3390/ijerph15122754
Khazem S, Itani L, Kreidieh D, El Masri D, Tannir H, Citarella R, El Ghoch M. Reduced Lean Body Mass and Cardiometabolic Diseases in Adult Males with Overweight and Obesity: A Pilot Study. International Journal of Environmental Research and Public Health. 2018; 15(12):2754. https://doi.org/10.3390/ijerph15122754
Chicago/Turabian StyleKhazem, Shirine, Leila Itani, Dima Kreidieh, Dana El Masri, Hana Tannir, Roberto Citarella, and Marwan El Ghoch. 2018. "Reduced Lean Body Mass and Cardiometabolic Diseases in Adult Males with Overweight and Obesity: A Pilot Study" International Journal of Environmental Research and Public Health 15, no. 12: 2754. https://doi.org/10.3390/ijerph15122754
APA StyleKhazem, S., Itani, L., Kreidieh, D., El Masri, D., Tannir, H., Citarella, R., & El Ghoch, M. (2018). Reduced Lean Body Mass and Cardiometabolic Diseases in Adult Males with Overweight and Obesity: A Pilot Study. International Journal of Environmental Research and Public Health, 15(12), 2754. https://doi.org/10.3390/ijerph15122754