Gender Difference and Spatial Heterogeneity in Local Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Spatial Dependence on Local Obesity Rates
3.2. The Associations between Community Characteristics and Local Obesity Rates
3.3. Spatially Varying Effects of Community Characteristics on Local Obesity Rates
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Locality | Women | Men | Locality | Women | Men | Locality | Women | Men |
---|---|---|---|---|---|---|---|---|
Jongno (Seoul) | 19.22 | 31.13 | Sungnam (Gyeonggi) | 23.24 | 29.94 | Taean (Chungcheongnam) | 26.51 | 28.13 |
Joong (Seoul) | 18.43 | 31.53 | Uijeongbu (Gyeonggi) | 23.35 | 33.59 | Jeonju (Jeollabuk) | 19.14 | 32.86 |
Yongsan (Seoul) | 19.03 | 31.59 | Anyang (Gyeonggi) | 17.50 | 34.56 | Gunsan (Jeollabuk) | 23.16 | 26.88 |
Seongdong (Seoul) | 16.70 | 31.19 | Bucheon (Gyeonggi) | 19.59 | 34.30 | Iksan (Jeollabuk) | 20.73 | 30.81 |
Gwangjin (Seoul) | 16.51 | 33.93 | Gwangmyung (Gyeonggi) | 19.16 | 31.49 | Jeongup (Jeollabuk) | 18.16 | 32.94 |
Dongdaemun (Seoul) | 20.12 | 31.52 | Pyeongtaek (Gyeonggi) | 26.90 | 37.01 | Namwon (Jeollabuk) | 18.24 | 27.61 |
Jungrang (Seoul) | 18.53 | 31.82 | Dongduchun (Gyeonggi) | 28.83 | 36.90 | Gimje (Jeollabuk) | 14.99 | 28.35 |
Seongbuk (Seoul) | 22.40 | 29.15 | Ansan (Gyeonggi) | 22.70 | 36.79 | Wanju (Jeollabuk) | 21.85 | 28.57 |
Gangbuk (Seoul) | 25.29 | 31.67 | Goyang (Gyeonggi) | 17.67 | 31.10 | Jinan (Jeollabuk) | 21.26 | 26.17 |
Dobong (Seoul) | 21.15 | 31.83 | Gwacheon (Gyeonggi) | 16.37 | 31.31 | Muju (Jeollabuk) | 17.78 | 27.88 |
Nowon (Seoul) | 16.80 | 31.58 | Guri (Gyeonggi) | 17.54 | 30.46 | Jangsu (Jeollabuk) | 22.38 | 25.77 |
Eunpyeong (Seoul) | 17.27 | 31.73 | Namyangju (Gyeonggi) | 20.29 | 34.11 | Imsil (Jeollabuk) | 15.34 | 21.41 |
Seodaemun (Seoul) | 17.38 | 31.80 | Osan (Gyeonggi) | 20.95 | 33.26 | Sunchang (Jeollabuk) | 16.33 | 26.02 |
Mapo (Seoul) | 21.15 | 31.72 | Siheung (Gyeonggi) | 23.54 | 35.44 | Gochang (Jeollabuk) | 16.25 | 33.16 |
Yangchun (Seoul) | 19.34 | 29.10 | Gunpo (Gyeonggi) | 16.63 | 33.42 | Buan (Jeollabuk) | 17.66 | 25.65 |
Gangseo (Seoul) | 16.56 | 32.95 | Uiwang (Gyeonggi) | 16.57 | 35.77 | Mokpo (Jeollanam) | 23.86 | 36.62 |
Gooro (Seoul) | 21.88 | 30.71 | Hanam (Gyeonggi) | 22.80 | 37.02 | Yeosu (Jeollanam) | 20.04 | 25.00 |
Geumcheon (Seoul) | 25.39 | 35.37 | Yongin (Gyeonggi) | 16.70 | 37.15 | Suncheon (Jeollanam) | 18.18 | 32.75 |
Yeongdeungpo (Seoul) | 17.61 | 37.18 | Paju (Gyeonggi) | 21.33 | 33.00 | Naju (Jeollanam) | 21.20 | 30.15 |
Dongjak (Seoul) | 19.59 | 31.86 | Icheon (Gyeonggi) | 23.83 | 27.49 | Gwangyang (Jeollanam) | 23.17 | 31.60 |
Gwanak (Seoul) | 21.36 | 32.18 | Ansung (Gyeonggi) | 22.81 | 35.05 | Damyang (Jeollanam) | 23.53 | 26.94 |
Seocho (Seoul) | 12.45 | 32.31 | Gimpo (Gyeonggi) | 20.50 | 32.04 | Gokseong (Jeollanam) | 17.18 | 24.38 |
Gangnam (Seoul) | 12.52 | 35.11 | Hwasung (Gyeonggi) | 22.27 | 36.89 | Gurye (Jeollanam) | 14.82 | 23.32 |
Songpa (Seoul) | 13.27 | 33.16 | Gwangju (Gyeonggi) | 23.21 | 33.11 | Goheung (Jeollanam) | 16.63 | 20.46 |
Gangdong (Seoul) | 16.10 | 32.93 | Yangju (Gyeonggi) | 20.72 | 33.17 | Boseong (Jeollanam) | 17.26 | 23.53 |
Joong (Busan) | 22.09 | 28.54 | Pocheon (Gyeonggi) | 26.16 | 29.16 | Hwasun (Jeollanam) | 19.05 | 21.83 |
Seo (Busan) | 19.61 | 32.16 | Yeoju (Gyeonggi) | 26.04 | 32.79 | Jangheung (Jeollanam) | 22.10 | 26.65 |
Dong (Busan) | 25.83 | 29.87 | Yeonchun (Gyeonggi) | 25.20 | 33.41 | Gangjin (Jeollanam) | 21.29 | 28.39 |
Youngdo (Busan) | 20.55 | 32.76 | Gapyeong (Gyeonggi) | 24.74 | 33.10 | Haenam (Jeollanam) | 10.96 | 27.06 |
Jin (Busan) | 19.53 | 31.20 | Yangpyeong (Gyeonggi) | 23.91 | 30.88 | Yeongam (Jeollanam) | 19.37 | 29.47 |
Dongrae (Busan) | 18.86 | 28.96 | Chuncheon (Gangwon) | 21.02 | 38.97 | Muan (Jeollanam) | 19.46 | 31.61 |
Nam (Busan) | 17.48 | 28.67 | Wonju (Gangwon) | 23.19 | 40.05 | Hampyeong (Jeollanam) | 21.94 | 30.24 |
Buk (Busan) | 19.30 | 31.22 | Gangneung (Gangwon) | 25.75 | 33.08 | Yeonggwang (Jeollanam) | 22.38 | 30.85 |
Haeundae (Busan) | 21.46 | 33.42 | Donghae (Gangwon) | 28.46 | 34.42 | Jangseong (Jeollanam) | 26.57 | 25.19 |
Saha (Busan) | 16.31 | 33.74 | Taebaek (Gangwon) | 25.86 | 33.01 | Pohang (Gyeongsangbuk) | 20.55 | 33.72 |
Geomjung (Busan) | 21.92 | 24.88 | Sokcho (Gangwon) | 24.71 | 34.13 | Gyeongju (Gyeongsangbuk) | 19.96 | 32.75 |
Gangseo (Busan) | 21.78 | 34.83 | Samcheok (Gangwon) | 24.57 | 39.01 | Gimcheon (Gyeongsangbuk) | 19.01 | 27.58 |
Yeonje (Busan) | 18.27 | 34.76 | Hongcheon (Gangwon) | 27.27 | 33.73 | Andong (Gyeongsangbuk) | 20.33 | 32.38 |
Suyoung (Busan) | 21.80 | 29.84 | Hoengseong (Gangwon) | 27.41 | 30.94 | Gumi (Gyeongsangbuk) | 22.66 | 32.93 |
Sasang (Busan) | 20.46 | 34.17 | Yeongwol (Gangwon) | 26.36 | 32.07 | Yeongju (Gyeongsangbuk) | 20.87 | 35.18 |
Gijang (Busan) | 22.46 | 33.58 | Pyeongchang (Gangwon) | 24.74 | 30.56 | Yeongcheon (Gyeongsangbuk) | 23.00 | 26.88 |
Joong (Daegu) | 18.38 | 33.50 | Jeongseon (Gangwon) | 28.18 | 33.09 | Sangju (Gyeongsangbuk) | 17.55 | 25.90 |
Dong (Daegu) | 16.13 | 34.12 | Cheorwon (Gangwon) | 19.29 | 26.25 | Mungyeong (Gyeongsangbuk) | 20.27 | 33.51 |
Seo (Daegu) | 21.22 | 29.81 | Hwacheon (Gangwon) | 27.52 | 37.15 | Gyeongsan (Gyeongsangbuk) | 16.35 | 33.10 |
Nam (Daegu) | 19.73 | 27.36 | Yanggu (Gangwon) | 25.77 | 36.53 | Gunwi (Gyeongsangbuk) | 18.65 | 27.08 |
Buk (Daegu) | 18.88 | 33.03 | Inje (Gangwon) | 27.00 | 39.40 | Uiseong (Gyeongsangbuk) | 14.79 | 25.07 |
Susung (Daegu) | 13.48 | 30.00 | Goseong (Gangwon) | 22.37 | 28.57 | Cheongsong (Gyeongsangbuk) | 17.54 | 25.69 |
Dalseo (Daegu) | 18.65 | 38.80 | Yangyang (Gangwon) | 28.39 | 34.16 | Yeongyang (Gyeongsangbuk) | 17.88 | 24.55 |
Dalsung (Daegu) | 21.01 | 32.59 | Chungju (Chungcheongbuk) | 25.00 | 32.45 | Yeongdeok (Gyeongsangbuk) | 20.04 | 27.49 |
Dong (Incheon) | 26.04 | 27.71 | Jeocheon (Chungcheongbuk) | 24.61 | 30.81 | Cheongdo (Gyeongsangbuk) | 23.94 | 25.88 |
Nam (Incheon) | 20.68 | 30.15 | Cheongju (Chungcheongbuk) | 20.92 | 31.14 | Goryeong (Gyeongsangbuk) | 20.79 | 27.36 |
Yeonsu (Incheon) | 19.19 | 37.95 | Boeun (Chungcheongbuk) | 19.10 | 29.30 | Seongju (Gyeongsangbuk) | 23.49 | 28.32 |
Namdong (Incheon) | 22.98 | 32.93 | Okcheon (Chungcheongbuk) | 17.02 | 27.25 | Chilgok (Gyeongsangbuk) | 20.79 | 30.94 |
Bupyeong (Incheon) | 21.49 | 32.53 | Youngdong (Chungcheongbuk) | 19.27 | 26.04 | Yecheon (Gyeongsangbuk) | 19.28 | 24.68 |
Gyeyang (Incheon) | 24.26 | 31.58 | Jincheon (Chungcheongbuk) | 24.94 | 32.20 | Bonghw (Gyeongsangbuk) | 20.20 | 27.59 |
Seo (Incheon) | 18.66 | 32.69 | Goesan (Chungcheongbuk) | 22.52 | 24.60 | Uljin (Gyeongsangbuk) | 21.19 | 26.60 |
Dong (Gwangju) | 19.16 | 33.18 | Eumseong (Chungcheongbuk) | 25.12 | 36.79 | Jinju (Gyeongsangnam) | 17.12 | 27.21 |
Seo (Gwangju) | 13.67 | 31.77 | Danyang (Chungcheongbuk) | 27.99 | 33.42 | Tongyeong (Gyeongsangnam) | 22.11 | 34.90 |
Nam (Gwangju) | 18.77 | 31.25 | Jeungpyeong (Chungcheongnam) | 24.46 | 28.93 | Sacheon (Gyeongsangnam) | 19.84 | 28.33 |
Buk (Gwangju) | 19.18 | 30.59 | Cheonan (Chungcheongnam) | 20.00 | 34.07 | Gimhae (Gyeongsangnam) | 21.18 | 34.68 |
Gwangsan (Gwangju) | 17.83 | 30.30 | Gongju (Chungcheongnam) | 23.99 | 29.72 | Miryang (Gyeongsangnam) | 18.90 | 29.80 |
Dong (Daejeon) | 24.03 | 34.58 | Boryong (Chungcheongnam) | 25.29 | 33.25 | Yangsan (Gyeongsangnam) | 20.16 | 36.17 |
Joong (Daejeon) | 19.60 | 33.98 | Asan (Chungcheongnam) | 18.00 | 34.53 | Changwon (Gyeongsangnam) | 17.36 | 32.47 |
Seo (Daejeon) | 14.84 | 31.53 | Seosan (Chungcheongnam) | 15.95 | 27.79 | Uiryeong (Gyeongsangnam) | 16.10 | 27.37 |
Yusung (Daejeon) | 15.29 | 32.74 | Nonsan (Chungcheongnam) | 23.27 | 29.30 | Haman (Gyeongsangnam) | 17.61 | 28.35 |
Daedeok (Daejeon) | 20.99 | 36.74 | Gyeryong (Chungcheongnam) | 18.11 | 34.82 | Changnyeong (Gyeongsangnam) | 15.85 | 29.46 |
Joong (Ulsan) | 19.45 | 25.00 | Dangjin (Chungcheongnam) | 18.74 | 34.11 | Goseong (Gyeongsangnam) | 19.10 | 29.50 |
Nam (Ulsan) | 21.40 | 33.80 | Geumsan (Chungcheongnam) | 20.37 | 25.00 | Hadong (Gyeongsangnam) | 16.86 | 26.05 |
Dong (Ulsan) | 21.15 | 28.76 | Buyeo (Chungcheongnam) | 21.48 | 29.82 | Sancheong (Gyeongsangnam) | 12.62 | 24.16 |
Buk (Ulsan) | 16.21 | 35.84 | Seocheon (Chungcheongnam) | 24.55 | 34.53 | Hamyang (Gyeongsangnam) | 12.74 | 25.67 |
Ulju (Ulsan) | 17.00 | 34.37 | Cheongyang (Chungcheongnam) | 22.24 | 27.93 | Geochang (Gyeongsangnam) | 17.00 | 27.23 |
Sejong (Sejong) | 17.45 | 33.87 | Hongsung (Chungcheongnam) | 20.36 | 31.51 | Hapcheon (Gyeongsangnam) | 13.76 | 20.32 |
Suwon (Gyeonggi) | 18.07 | 34.07 | Yesan (Chungcheongnam) | 23.27 | 30.23 |
Variables | N | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
Local obesity rate for women | 218 | 20.415 | 3.566 | 10.959 | 28.834 |
Local obesity rate for men | 218 | 31.092 | 3.771 | 20.317 | 40.049 |
Population density (log) | 218 | 4087.330 | 6287.769 | 19.855 | 28,260.740 |
Level of land-use mix | 218 | 0.337 | 0.157 | 0.073 | 0.763 |
Area of parks per person | 218 | 21.120 | 22.225 | 0.397 | 172.342 |
Number of doctors per 1000 people | 218 | 2.536 | 2.317 | 0.810 | 22.010 |
Number of sports facilities per 1000 people | 218 | 2.080 | 6.353 | 0.368 | 94.951 |
Number of fast food restaurants per 1000 people | 218 | 0.510 | 0.271 | 0.019 | 2.353 |
Fiscal self-reliance ratio | 218 | 28.368 | 12.275 | 10.230 | 64.510 |
Percentage of college graduates | 218 | 33.843 | 16.469 | 8.355 | 179.409 |
Percentage of basic living recipients | 218 | 3.762 | 1.806 | 0.681 | 9.101 |
Percentage of elderly | 218 | 23.191 | 10.738 | 7.953 | 50.061 |
References
- Kang, H.-T.; Lee, H.-R.; Lee, Y.-J.; Linton, J.A.; Shim, J.-Y. Relationship between employment status and obesity in a Korean elderly population, based on the 2007–2009 Korean National Health and Nutrition Examination Survey (KNHANES). Arch. Gerontol. Geriatr. 2013, 57, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Flegal, K.M.; Carroll, M.D.; Ogden, C.L.; Johnson, C.L. Prevalence and trends in obesity among US adults, 1999–2000. JAMA 2002, 288, 1723–1727. [Google Scholar] [CrossRef] [PubMed]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [PubMed]
- Allison, D.B.; Fontaine, K.R.; Manson, J.E.; Stevens, J.; VanItallie, T.B. Annual deaths attributable to obesity in the United States. JAMA 1999, 282, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.G.; Hummer, R.A.; Krueger, P.M. The effect of obesity on overall, circulatory disease- and diabetes-specific mortality. J. Biosoc. Sci. 2003, 35, 107–129. [Google Scholar] [CrossRef] [PubMed]
- Sturm, R. The effects of obesity, smoking, and drinking on medical problems and costs. Health Aff. 2002, 21, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, E.A.; Khavjou, O.A.; Thompson, H.; Trogdon, J.G.; Pan, L.; Sherry, B.; Dietz, W. Obesity and severe obesity forecasts through 2030. Am. J. Prev. Med. 2012, 42, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Swinburn, B.; Egger, G.; Raza, F. Dissecting obesogenic environments: The development and application of a framework for identifying and prioritizing environmental interventions for obesity. Prev. Med. 1999, 29, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shon, C.; Yi, S. The relationship between obesity and urban environment in Seoul. Int. J. Environ. Res. Public Health 2017, 14, 898. [Google Scholar] [CrossRef] [PubMed]
- Christman, Z.; Pruchno, R.; Cromley, E.; Wilson-Genderson, M.; Mir, I. A spatial analysis of body mass index and neighborhood factors in community-dwelling older men and women. Int. J. Aging Hum. Dev. 2016, 83, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Myers, C.A.; Slack, T.; Martin, C.K.; Broyles, S.T.; Heymsfield, S.B. Regional disparities in obesity prevalence in the United States: A spatial regime analysis. Obesity 2015, 23, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.S.; Oh, S.W.; Park, H.S. Socioeconomic status in relation to obesity and abdominal obesity in Korean adults: A focus on sex differences. Obesity 2006, 14, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.W.; Hillier, A.E.; Mehta, N.K. Neighborhood racial isolation, disorder and obesity. Soc. Forces 2009, 87, 2063–2092. [Google Scholar] [CrossRef] [PubMed]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Pouliou, T.; Elliott, S.J. An exploratory spatial analysis of overweight and obesity in Canada. Prev. Med. 2009, 48, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Michimi, A.; Wimberly, M.C. Spatial patterns of obesity and associated risk factors in the conterminous US. Am. J. Prev. Med. 2010, 39, e1–e12. [Google Scholar] [CrossRef] [PubMed]
- Gartner, D.R.; Taber, D.R.; Hirsch, J.A.; Robinson, W.R. The spatial distribution of gender differences in obesity prevalence differs from overall obesity prevalence among US adults. Ann. Epidemiol. 2016, 26, 293–298. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. Health Resources and Services Administration, Maternal and Child Health Bureau; Women’s Health USA 2011; U.S. Department of Health and Human Services: Rockville, MD, USA, 2011.
- Yoo, S.; Cho, H.-J.; Khang, Y.-H. General and abdominal obesity in South Korea, 1998–2007: Gender and socioeconomic differences. Prev. Med. 2010, 51, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-operation and Development (OECD). Obesity Update 2017. Available online: https://www.oecd.org/els/health-systems/Obesity-Update-2017.pdf (accessed on 5 January 2017).
- Crane, J. The epidemic theory of ghettos and neighborhood effects on dropping out and teenage childbearing. Am. J. Sociol. 1991, 96, 1226–1259. [Google Scholar] [CrossRef]
- Jencks, C.; Mayer, S.E. The social consequences of growing up in a poor neighborhood. In Inner-City Poverty in the United States; National Academies Press: Washington, DC, USA, 1990; pp. 111–186. [Google Scholar]
- Boardman, J.D.; Onge, J.M.S.; Rogers, R.G.; Denney, J.T. Race differentials in obesity: The impact of place. J. Health Soc. Behav. 2005, 46, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Graziano, W.G.; Jensen-Campbell, L.A.; Shebilske, L.J.; Lundgren, S.R. Social influence, sex differences, and judgments of beauty: Putting the interpersonal back in interpersonal attraction. J. Personal. Soc. Psychol. 1993, 65, 522–531. [Google Scholar] [CrossRef]
- Son, C.W. Obesity in Seoul; Policy Report of the Seoul Institute; The Seoul Institute: Seoul, Korea, 2017. [Google Scholar]
- Mujahid, M.S.; Roux, A.V.D.; Shen, M.; Gowda, D.; Sanchez, B.; Shea, S.; Jacobs, D.R.; Jackson, S.A. Relation between neighborhood environments and obesity in the Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2008, 167, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Stafford, M.; Brunner, E.J.; Head, J.; Ross, N.A. Deprivation and the development of obesity: A multilevel, longitudinal study in England. Am. J. Prev. Med. 2010, 39, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.W.; Christakis, N.A. Income inequality and weight status in US metropolitan areas. Soc. Sci. Med. 2005, 61, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Robert, S.A.; Reither, E.N. A multilevel analysis of race, community disadvantage, and body mass index among adults in the US. Soc. Sci. Med. 2004, 59, 2421–2434. [Google Scholar] [CrossRef] [PubMed]
- Grafova, I.B.; Freedman, V.A.; Kumar, R.; Rogowski, J. Neighborhoods and obesity in later life. Am. J. Public Health 2008, 98, 2065–2071. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.; Bean, K.; Thomas, F.; Chaix, B. Multicollinearity in associations between multiple environmental features and body weight and abdominal fat: Using matching techniques to assess whether the associations are separable. Am. J. Epidemiol. 2012, 175, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Maloney, T.N. Latino residential isolation and the risk of obesity in Utah: The role of neighborhood socioeconomic, built-environmental, and subcultural context. J. Immigr. Minor. Health 2011, 13, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.S.; Knight, K.M. Race and self-regulatory health behaviors: The role of the stress response and the HPA axis in physical and mental health disparities. In Social Structures, Aging, and Self-Regulation in the Elderly; Springer: New York, NY, USA, 2006; pp. 189–239. [Google Scholar]
- Williams, D.R. The health of men: Structured inequalities and opportunities. Am. J. Public Health 2008, 98 (Suppl. S1), S150–S157. [Google Scholar] [CrossRef] [PubMed]
- Korean Statistical Information System (KOSIS). 2017. Available online: http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_2KAA301_OECD (accessed on 20 December 2017).
- Wen, T.-H.; Chen, D.-R.; Tsai, M.-J. Identifying geographical variations in poverty-obesity relationships: Empirical evidence from Taiwan. Geospat. Health 2010, 4, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Chi, S.-H.; Grigsby-Toussaint, D.S.; Bradford, N.; Choi, J. Can geographically weighted regression improve our contextual understanding of obesity in the US? Findings from the USDA Food Atlas. Appl. Geogr. 2013, 44, 134–142. [Google Scholar] [CrossRef]
- Guettabi, M.; Munasib, A. “Space obesity”: The effect of remoteness on county obesity. Growth Chang. 2014, 45, 518–548. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kwak, J.M.; Seo, E.W.; Lee, K.S. Analysing the effects of regional factors on the regional variation of obesity rates using the geographically weighted regression. Health Policy Manag. 2016, 26, 271–278. [Google Scholar] [CrossRef]
- World Health Organization. BMI Classification. 2000. Available online: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html (accessed on 20 December 2017).
- Bhat, C.R.; Guo, J.Y. A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels. Transp. Res. Part B Methodol. 2007, 41, 506–526. [Google Scholar] [CrossRef]
- Anselin, L. SpaceStat Tutorial: A Workbook for Using SpaceStat in the Analysis of Spatial Data; National Center for Geographic Information and Analysis: Santa Barbara, CA, USA, 1992. [Google Scholar]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: Chichester, UK, 2002. [Google Scholar]
- Summerbell, C.D.; Waters, E.; Edmunds, L.; Kelly, S.; Brown, T.; Campbell, K.J. Interventions for preventing obesity in children. Cochrane Database Syst. Rev. 2005, 3. [Google Scholar] [CrossRef]
- Kaplan, D. Promoting weight loss in the obese patient. Patient Care 2000, 34, 204. [Google Scholar]
- Must, A.; Spadano, J.; Coakley, E.H.; Field, A.E.; Colditz, G.; Dietz, W.H. The disease burden associated with overweight and obesity. JAMA 1999, 282, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
Weight Matrix | Women | Men |
---|---|---|
Rook criterion | 0.37 | 0.35 |
Queen criterion | 0.36 | 0.35 |
4-nearest neighbors | 0.35 | 0.31 |
5-nearest neighbors | 0.35 | 0.29 |
6-nearest neighbors | 0.34 | 0.28 |
Variables | Women | Men | ||
---|---|---|---|---|
Mean | Number of Significant Locality | Mean | Number of Significant Locality | |
Intercept | 24.652 | 218 | 35.885 | 218 |
Population density (log) | −0.070 | 157 | −0.008 | 28 |
Level of land-use mix | 0.028 | 0 | 0.104 | 0 |
Area of parks per person | −0.013 | 34 | −0.005 | 8 |
Number of doctors per 1000 people | −0.243 | 107 | 0.001 | 0 |
Number of sports facilities per 1000 people | 0.004 | 3 | 0.018 | 0 |
Number of fast food restaurants per 1000 people | 0.159 | 77 | −0.027 | 0 |
Fiscal self-reliance ratio | 0.025 | 17 | 0.042 | 83 |
Percentage of college graduates | −0.110 | 134 | −0.044 | 50 |
Percentage of basic living recipients | 0.459 | 107 | 0.267 | 149 |
Percentage of elderly | −0.072 | 157 | −0.241 | 218 |
Women | Mean | Standard Deviation | Min | Max | Range |
Intercept | 24.652 | 4.884 | 18.520 | 35.237 | 16.717 |
Population density (log) | −0.070 | 0.092 | −1.227 | 0.017 | 1.243 |
Level of land-use mix | 0.028 | 1.931 | −3.345 | 3.405 | 6.749 |
Area of parks per person | −0.013 | 0.026 | −0.071 | 0.023 | 0.094 |
Number of doctors per 1000 people | −0.243 | 0.261 | −1.205 | 0.056 | 1.262 |
Number of sports facilities per 1000 people | 0.004 | 0.024 | −0.052 | 0.155 | 0.207 |
Number of fast food restaurants per 1000 people | 0.159 | 0.258 | −0.673 | 1.008 | 1.682 |
Fiscal self-reliance ratio | 0.025 | 0.039 | −0.098 | 0.089 | 0.188 |
Percentage of college graduates | −0.110 | 0.087 | −0.290 | −0.012 | 0.278 |
Percentage of basic living recipients | 0.459 | 0.379 | −0.089 | 1.183 | 1.272 |
Percentage of elderly | −0.072 | 0.138 | −0.277 | 0.202 | 0.479 |
N | 218 | ||||
AIC | 1099.23 | Global regression AIC | 1164.64 | ||
GWR R2 | 0.52 | Global regression R2 | 0.14 | ||
GWR Adj-R2 | 0.40 | Global regression Adj-R2 | 0.09 | ||
Men | Mean | Standard Deviation | Min | Max | Range |
Intercept | 35.885 | 1.500 | 33.860 | 40.260 | 6.400 |
Population density (log) | −0.008 | 0.018 | −0.053 | 0.008 | 0.061 |
Level of land-use mix | 0.104 | 1.345 | −1.488 | 3.583 | 5.071 |
Area of parks per person | −0.005 | 0.014 | −0.034 | 0.020 | 0.055 |
Number of doctors per 1000 people | 0.001 | 0.102 | −0.121 | 0.179 | 0.300 |
Number of sports facilities per 1000 people | 0.018 | 0.012 | −0.006 | 0.047 | 0.053 |
Number of fast food restaurants per 1000 people | −0.027 | 0.042 | −0.173 | 0.068 | 0.241 |
Fiscal self-reliance ratio | 0.042 | 0.027 | −0.043 | 0.075 | 0.118 |
Percentage of college graduates | −0.044 | 0.016 | −0.077 | −0.026 | 0.051 |
Percentage of basic living recipients | 0.267 | 0.193 | −0.214 | 0.479 | 0.693 |
Percentage of elderly | −0.241 | 0.042 | −0.302 | −0.183 | 0.119 |
N | 218 | ||||
AIC | 1095.64 | Global regression AIC | 1105.07 | ||
GWR R2 | 0.52 | Global regression R2 | 0.41 | ||
GWR Adj-R2 | 0.44 | Global regression Adj-R2 | 0.38 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jun, H.-J.; Namgung, M. Gender Difference and Spatial Heterogeneity in Local Obesity. Int. J. Environ. Res. Public Health 2018, 15, 311. https://doi.org/10.3390/ijerph15020311
Jun H-J, Namgung M. Gender Difference and Spatial Heterogeneity in Local Obesity. International Journal of Environmental Research and Public Health. 2018; 15(2):311. https://doi.org/10.3390/ijerph15020311
Chicago/Turabian StyleJun, Hee-Jung, and Mi Namgung. 2018. "Gender Difference and Spatial Heterogeneity in Local Obesity" International Journal of Environmental Research and Public Health 15, no. 2: 311. https://doi.org/10.3390/ijerph15020311
APA StyleJun, H. -J., & Namgung, M. (2018). Gender Difference and Spatial Heterogeneity in Local Obesity. International Journal of Environmental Research and Public Health, 15(2), 311. https://doi.org/10.3390/ijerph15020311