Meta-Prediction of MTHFR Gene Polymorphisms and Air Pollution on the Risk of Hypertensive Disorders in Pregnancy Worldwide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Search Strategy
2.2. Selection Criteria and Study Identification
2.3. Characteristics of Included Studies
2.4. Quality Assessment
2.5. Data Synthesis and Analysis
3. Results
3.1. Pooled Meta-Analysis
3.1.1. MTHFR C677T
3.1.2. MTHFR A1298C
3.2. Subgroup Analyses by Countries and Regions
3.3. Subgroup-Analysis by HDP Disease Types
3.4. Meta-Prediction: MTHFR Polymorphisms and Air Pollution Associated with Risk of HDP
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Townsend, R.; O’Brien, P.; Khalil, A. Current best practice in the management of hypertensive disorders in pregnancy. Integr. Blood Press. Contr. 2016, 9, 79–94. [Google Scholar] [CrossRef]
- Hypertension in pregnancy. Report of the american college of obstetricians and gynecologists’ task force on hypertension in pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef]
- Umesawa, M.; Kobashi, G. Epidemiology of hypertensive disorders in pregnancy: Prevalence, risk factors, predictors and prognosis. Hypertens. Res. 2016, 40, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Backes, C.H.; Markham, K.; Moorehead, P.; Cordero, L.; Nankervis, C.A.; Giannone, P.J. Maternal preeclampsia and neonatal outcomes. J. Pregnancy 2011, 2011, 214365. [Google Scholar] [CrossRef] [PubMed]
- Behrens, I.; Basit, S.; Lykke, J.A.; Ranthe, M.F.; Wohlfahrt, J.; Bundgaard, H.; Melbye, M.; Boyd, H.A. Association between hypertensive disorders of pregnancy and later risk of cardiomyopathy. JAMA 2016, 315, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Say, L.; Chou, D.; Gemmill, A.; Tuncalp, O.; Moller, A.B.; Daniels, J.; Gulmezoglu, A.M.; Temmerman, M.; Alkema, L. Global causes of maternal death: A who systematic analysis. Lancet Glob. Health 2014, 2, e323–e333. [Google Scholar] [CrossRef]
- Gruslin, A.; Lemyre, B. Pre-eclampsia: Fetal assessment and neonatal outcomes. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Vogel, J.P.; Souza, J.P.; Mori, R.; Morisaki, N.; Lumbiganon, P.; Laopaiboon, M.; Ortiz-Panozo, E.; Hernandez, B.; Perez-Cuevas, R.; Roy, M.; et al. Maternal complications and perinatal mortality: Findings of the world health organization multicountry survey on maternal and newborn health. BJOG 2014, 121, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Fan, S.; Zhi, X.; Li, Y.; Liu, Y.; Wang, D.; He, M.; Hou, Y.; Zheng, Q.; Sun, G. Associations of MTHFR gene polymorphisms with hypertension and hypertension in pregnancy: A meta-analysis from 114 studies with 15411 cases and 21970 controls. PLoS ONE 2014, 9, e87497. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Alaniz, F.; Lumbreras-Marquez, M.I.; Sandoval-Carrillo, A.A.; Aguilar-Duran, M.; Mendez-Hernandez, E.M.; Barraza-Salas, M.; Castellanos-Juarez, F.X.; Salas-Pacheco, J.M. Association of comt G675A and MTHFR C677T polymorphisms with hypertensive disorders of pregnancy in mexican mestizo population. Pregnancy Hypertens. 2014, 4, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Wu, H.Y.; Qiu, X.J.; Wang, X.M.; Wu, H.Y.; Qiu, X.J. Methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism and risk of preeclampsia: An updated meta-analysis based on 51 studies. Arch. Med. Res. 2013, 44, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xu, J.; Zhang, Z.; Huang, X.; Zhang, A.; Wang, J.; Zheng, Q.; Fu, L.; Du, J. Association study between methylenetetrahydrofolate reductase polymorphisms and unexplained recurrent pregnancy loss: A meta-analysis. Gene 2013, 514, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Klai, S.; Fekih-Mrissa, N.; El Housaini, S.; Kaabechi, N.; Nsiri, B.; Rachdi, R.; Gritli, N. Association of MTHFR A1298C polymorphism (but not of MTHFR C677T) with elevated homocysteine levels and placental vasculopathies. Blood Coagul Fibrinolysis 2011, 22, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Liu, Y.; Li, Y.; Fan, S.; Zhi, X.; Lu, X.; Wang, D.; Zheng, Q.; Wang, Y.; Wang, Y. Geographical distribution of MTHFR C677T, A1298C and mtrr a66g gene polymorphisms in china: Findings from 15357 adults of han nationality. PLoS ONE 2013, 8, e57917. [Google Scholar] [CrossRef] [PubMed]
- Van Mil, N.H.; Oosterbaan, A.M.; Steegers-Theunissen, R.P. Teratogenicity and underlying mechanisms of homocysteine in animal models: A review. Reprod. Toxicol. 2010, 30, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Van Guldener, C.; Nanayakkara, P.W.; Stehouwer, C.D. Homocysteine and blood pressure. Curr. Hypertens. Rep. 2003, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Lykke, J.A.; Bare, L.A.; Olsen, J.; Lagier, R.; Arellano, A.R.; Tong, C.; Paidas, M.J.; Langhoff-Roos, J. Thrombophilias and adverse pregnancy outcomes: Results from the danish national birth cohort. J. Thromb. Haemost. 2012, 10, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Bergen, N.E.; Jaddoe, V.W.; Timmermans, S.; Hofman, A.; Lindemans, J.; Russcher, H.; Raat, H.; Steegers-Theunissen, R.P.; Steegers, E.A. Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: The generation R study. BJOG 2012, 119, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef]
- Wu, X.; Yang, K.; Tang, X.; Sa, Y.; Zhou, R.; Liu, J.; Luo, Y.; Tang, W. Folate metabolism gene polymorphisms MTHFR C677T and A1298C and risk for preeclampsia: A meta-analysis. J. Assisted Reprod. Genet. 2015, 32, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Luo, Y.L.; Zhang, Q.H.; Mao, C.; Wang, X.W.; Liu, S.; Chen, Q. Methylenetetrahydrofolate reductase gene C677T, A1298C polymorphisms and pre-eclampsia risk: A meta-analysis. Mol. Boil. Rep. 2014, 41, 5435–5448. [Google Scholar] [CrossRef] [PubMed]
- Zusterzeel, P.L.; Visser, W.; Blom, H.J.; Peters, W.H.; Heil, S.G.; Steegers, E.A. Methylenetetrahydrofolate reductase polymorphisms in preeclampsia and the hellp syndrome. Hypertens. Pregnancy 2000, 19, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, Z.; Malek-Khosravi, S.; Rahimi, Z.; Jalilvand, F.; Parsian, A. MTHFR C677T and eNOS G894T variants in preeclamptic women: Contribution to lipid peroxidation and oxidative stress. Clin. Biochem. 2013, 46, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Chedraui, P.; Salazar-Pousada, D.; Villao, A.; Escobar, G.S.; Ramirez, C.; Hidalgo, L.; Perez-Lopez, F.R.; Genazzani, A.; Simoncini, T. Polymorphisms of the methylenetetrahydrofolate reductase gene (C677T and A1298C) in nulliparous women complicated with preeclampsia. Gynecol. Endocrinol. 2014, 30, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Salimi, S.; Saravani, M.; Yaghmaei, M.; Fazlali, Z.; Mokhtari, M.; Naghavi, A.; Farajian-Mashhadi, F. The early-onset preeclampsia is associated with MTHFR and FVL polymorphisms. Arch. Gynecol. Obstet. 2015, 291, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, V.H.; Sirisena, N.D.; Weerasekera, L.Y.; Gammulla, C.G.; Seneviratne, H.R.; Jayasekara, R.W. Candidate gene study of genetic thrombophilic polymorphisms in pre-eclampsia and recurrent pregnancy loss in sinhalese women. J. Obstet. Gynaecol. Res. 2012, 38, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Deveer, R.; Engin-Ustun, Y.; Akbaba, E.; Halisdemir, B.; Cakar, E.; Danisman, N.; Mollamahmutoglu, L.; Yesilyurt, A.; Candemir, Z. Association between pre-eclampsia and inherited thrombophilias. Fetal Pediatr. Pathol. 2013, 32, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Lu, Z.; Tan, M.; Liu, H.; Lu, D. A meta-analysis of association between C677T polymorphism in the methylenetetrahydrofolate reductase gene and hypertension. Eur. J. Hum. Genet. 2007, 15, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Van den Hooven, E.H.; de Kluizenaar, Y.; Pierik, F.H.; Hofman, A.; van Ratingen, S.W.; Zandveld, P.Y.; Mackenbach, J.P.; Steegers, E.A.; Miedema, H.M.; Jaddoe, V.W. Air pollution, blood pressure, and the risk of hypertensive complications during pregnancy. Hypertension 2011, 57, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Stayner, L.; Slama, R.; Sørensen, M.; Figueras, F.; Nieuwenhuijsen, M.J.; Raaschou-Nielsen, O.; Dadvand, P. Ambient air pollution and pregnancy-induced hypertensive disorders. Hypertension 2014, 64, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-C.; Roberts, J.M.; Catov, J.M.; Talbott, E.O.; Ritz, B. First trimester exposure to ambient air pollution, pregnancy complications and adverse birth outcomes in allegheny county, pa. Matern. Child Health J. 2013, 17, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Figueras, F.; Basagana, X.; Beelen, R.; Martinez, D.; Cirach, M.; Schembari, A.; Hoek, G.; Brunekreef, B.; Nieuwenhuijsen, M.J. Ambient air pollution and preeclampsia: A spatiotemporal analysis. Environ. Health Perspect. 2013, 121, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; Haggar, F.; Shand, A.W.; Bower, C.; Cook, A.; Nassar, N. Association between pre-eclampsia and locally derived traffic-related air pollution: A retrospective cohort study. J. Epidemiol. Commun. Health 2013, 67, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Olsson, D.; Mogren, I.; Forsberg, B. Air pollution exposure in early pregnancy and adverse pregnancy outcomes: A register-based cohort study. BMJ Open 2013, 3, e001955. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hu, H.; Ha, S.; Roth, J. Ambient air pollution and hypertensive disorder of pregnancy. J. Epidemiol. Commun. Health 2014, 68, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Mobasher, Z.; Salam, M.T.; Goodwin, T.M.; Lurmann, F.; Ingles, S.A.; Wilson, M.L. Associations between ambient air pollution and hypertensive disorders of pregnancy. Environ. Res. 2013, 123, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Negi, R.; Pande, D.; Karki, K.; Khanna, R.S.; Khanna, H. Oxidative stress and preeclampsia. Adv. Life Sci. 2011, 1, 20–23. [Google Scholar] [CrossRef]
- Baccarelli, A.; Cassano, P.A.; Litonjua, A.; Park, S.K.; Suh, H.; Sparrow, D.; Vokonas, P.; Schwartz, J. Cardiac autonomic dysfunction: Effects from particulate air pollution and protection by dietary methyl nutrients and metabolic polymorphisms. Circulation 2008, 117, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of observational studies in epidemiology (moose) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Cook, D.J.; Eastwood, S.; Olkin, I.; Rennie, D.; Stroup, D.F. Improving the quality of reports of meta-analyses of randomised controlled trials: The quorom statement. Onkologie 2000, 23, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Prasmusinto, D.; Skrablin, S.; Hofstaetter, C.; Fimmers, R.; van der Ven, K. The methylenetetrahydrofolate reductase 677 C→T polymorphism and preeclampsia in two populations. Obstet. Gynecol. 2002, 99, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency. Air Quality Index Basics. Available online: https://www.airnow.gov/index.cfm?action=aqibasics.aqi (accessed to 18 January 2018).
- Kenworthy, J.; Laube, F. Urban transport patterns in a global sample of cities and their linkages to transport infrastructure, land use, economics and environment. World Transp. Policy Pract. 2002, 8, 5–19. [Google Scholar]
- World Health Organization. Deaths Attributable to Urban Air Pollution. 2004. Available online: http://www.who.int/heli/risks/urban/en/uapmap.1.pdf?ua¼1 (accessed to 18 January 2018).
- World Health Organization. Global Health Risks. 2009. Available online: http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf (accessed to 18 January 2018).
- World Health Organization. Global Health Risks. 2012. Available online: https://commons.wikimedia.org/wiki/File:Deaths_from_air_pollution.png (accessed to 18 January 2018).
- World Health Organization. The Urban Environment. 2015. Available online: http://www.who.int/heli/risks/urban/urbanenv/en/ (accessed to 18 January 2018).
- Shiao, S.; Yu, C. Meta-prediction of MTHFR gene polymorphism mutations and associated risk for colorectal cancer. Biol. Res. Nurs. 2016, 18, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Lien, S.A.; Young, L.; Gau, B.S.; Shiao, S.P.K. Meta-prediction of MTHFR gene polymorphism-mutations, air pollution, and risks of leukemia among world populations. Oncotarget 2016, 5, 4387–4398. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, M.C.; Yu, P.; Shiao, S.P.K. MTHFR gene polymorphism-mutations and air pollution as risk factors for breast cancer: A metaprediction study. Nurs. Res. 2017, 66, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Sha, Q.; Zhang, S. A test of hardy-weinberg equilibrium in structured populations. Genet. Epidemiol. 2011, 35, 671–678. [Google Scholar] [CrossRef] [PubMed]
- How AICR Recommendations Cuts Colorectal Cancer Risk for Both Men and Women. Available online: http://www.aicr.org/cancer-research-update/2016/11_02/cru-how-AICR-recommendations-cuts-colorectal-cancer-risk-for-men-and-women.html (accessed to 18 January 2018).
- Viera, A.J. Odds ratios and risk ratios: What’s the difference and why does it matter? South. Med. J. 2008, 101, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Higgins, J.; Altman, D.G. Analysing Data and Undertaking Meta-Analyses. In Cochrane handbook for Systematic Reviews of Interventions; Higgins, J., Green, S., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2008; pp. 243–296. [Google Scholar] [CrossRef]
- Albrecht, J. Key Concepts and Techniques in GIS; Sage: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- Vanitha, A.; Niraimathi, S. Study on decision tree competent data classification. Int. J. Comp. Sci. Mob. Comp. 2013, 2, 365–370. [Google Scholar]
- Faraway, J.J. Extending the Linear Model with R (Texts in Statistical Science); Chapman & Hall/CRC: Boca Raton, FL, USA, 2005. [Google Scholar]
- Deng, W.; Wang, Y.; Liu, Z.; Cheng, H.; Xue, Y. Hemi: A toolkit for illustrating heatmaps. PLoS ONE 2014, 9, e111988. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Ghosh, S. Environmental exposures, epigenetics and cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 323. [Google Scholar] [CrossRef] [PubMed]
HDP Types | ALL | PE-E | GH | Mixed |
---|---|---|---|---|
Number of Studies | 71 Studies | 57 Studies | 4 Studies | 10 Studies |
(n Case/n Control) | (8064/13,232) | (5873/11,545) | (336/327) | (1855/1360) |
Overall (71 Studies) | Risk Type: TT and TT+CT Protective: CC and CC+CT | Risk Type: TT and TT+CT Protective: CC and CC+CT | Risk Type: TT Protective: CC and CC+CT | Risk Type: CT and TT+CT Protective: CC |
Subgroups | ||||
Caucasian | 27 Studies (3648/7138) Risk Type: TT and TT+CT Protective: CC | 25 Studies (2818/6860) Risk Type: TT | -- | 2 Studies (830/278) Risk Type: CT and TT+CT Protective: CC |
Hispanic | 7 Studies (765/1115) NS | 6 Studies (577/921) NS | -- | 1 Study (188/194) |
South American | 4 Studies (378/555) Risk Type: TT Protective: CC and CC+CT | 4 Studies (378/1255) Risk Type: TT | -- | -- |
East Asian | 17 Studies (1255/2030) Risk Type: TT and TT+CT Protective: CC and CC+CT | 8 Studies (531/2177) Risk Type: TT and TT+CT Protective: CT, CC and CC+CT | 3 Studies (236/225) Risk Type: TT Protective: CC+CT | 6 Studies (488/550) Risk Type: TT+CT Protective: CC |
South Asian | 4 Studies (561/991) Protective: CT | 4 Studies (561/991) Protective: CT | -- | -- |
Middle East | 7 Studies (744/628) NS | 6 Studies (644/526) NS | 1 Study (100/102) | -- |
African | 5 Studies (713/775) Risk Type: TT and TT+CT Protective: CC and CC+CT | 4 Studies (364/874) Risk Type: TT | -- | 1 Study (349/338) |
Genotype (Number of Studies) | HDP N = 8064 n (%) | Control N = 13,232 n (%) | Test of Association | ||
---|---|---|---|---|---|
Model Tested | Risk Ratio (95% CI) | p | |||
TT (71) | 1087 (13.48) | 1410 (10.66) | Random | 1.28 (1.15–1.43) | <0.0001 |
Caucasian (27) | 425 (11.65) | 700 (9.81) | Fixed | 1.14 (1.00–1.30) | 0.0474 |
Hispanic (7) | 215 (28.10) | 325 (29.15) | Fixed | 0.97 (0.84–1.12) | 0.6566 |
South American (4) | 62 (16.40) | 66 (11.89) | Fixed | 1.40 (1.01–1.93) | 0.0405 |
East Asian (17) | 296 (23.59) | 240 (11.82) | Fixed | 1.75 (1.50–2.05) | <0.0001 |
South Asian (4) | 15 (2.67) | 31 (3.13) | Fixed | 0.94 (0.49–1.81) | 0.8606 |
Middle East (7) | 54 (7.26) | 46 (7.32) | Fixed | 0.99 (0.67–1.45) | 0.9482 |
African (5) | 20 (2.81) | 2 (0.26) | Fixed | 5.82 (2.06–16.5) | 0.0009 |
CT (71) | 3142 (38.96) | 5166 (39.04) | Random | 1.01 (0.96–1.06) | 0.7256 |
Caucasian (27) | 1564 (42.87) | 3001 (42.04) | Fixed | 1.04 (0.98–1.10) | 0.1913 |
Hispanic (7) | 360 (47.06) | 524 (47.00) | Fixed | 1.00 (0.91–1.11) | 0.9383 |
South American (4) | 173 (45.77) | 258 (46.49) | Fixed | 0.94 (0.81–1.08) | 0.3468 |
East Asian (17) | 548 (43.67) | 828 (40.79) | Random | 1.00 (0.86–1.17) | 0.9846 |
South Asian (4) | 94 (16.76) | 199 (20.08) | Fixed | 0.77 (0.61–0.98) | 0.0335 |
Middle East (7) | 267 (35.89) | 206 (32.80) | Fixed | 1.07 (0.92–1.23) | 0.3742 |
African (5) | 136 (19.07) | 150 (19.35) | Fixed | 1.08 (0.88–1.32) | 0.4717 |
CC (71) | 3835 (47.56) | 6656 (50.30) | Random | 0.94 (0.90–0.98) | 0.0017 |
Caucasian (27) | 1659 (45.48) | 3437 (48.15) | Fixed | 0.94 (0.89–0.99) | 0.0121 |
Hispanic (7) | 190 (24.84) | 266 (23.86) | Fixed | 1.03 (0.88–1.21) | 0.7027 |
South American (4) | 143 (37.83) | 231 (41.62) | Fixed | 0.96 (0.81–1.13) | 0.6263 |
East Asian (17) | 411 (32.75) | 962 (47.39) | Random | 0.76 (0.67–0.87) | <0.0001 |
South Asian (4) | 452 (80.57) | 761 (76.79) | Random | 1.06 (0.95–1.17) | 0.3296 |
Middle East (7) | 423 (56.85) | 376 (59.87) | Fixed | 0.96 (0.88–1.05) | 0.4077 |
African (5) | 557 (78.12) | 623 (80.39) | Fixed | 0.95 (0.91–1.00) | 0.0441 |
TT+CT (71) | 4229 (52.44) | 6576 (49.70) | Random | 1.07 (1.03–1.11) | 0.0002 |
Caucasian (27) | 1989 (54.52) | 3701 (51.85) | Fixed | 1.06 (1.01–1.11) | 0.0116 |
Hispanic (7) | 575 (75.16) | 849 (76.14) | Fixed | 0.99 (0.94–1.04) | 0.6557 |
South American (4) | 235 (62.17) | 324 (58.38) | Fixed | 1.03 (0.93–1.14) | 0.6174 |
East Asian (17) | 844 (67.25) | 1068 (52.61) | Random | 1.17 (1.08–1.27) | 0.0002 |
South Asian (4) | 109 (19.43) | 230 (23.21) | Random | 0.83 (0.56–1.22) | 0.3382 |
Middle East (7) | 321 (43.15) | 252 (40.13) | Fixed | 1.05 (0.93–1.19) | 0.4069 |
African (5) | 156 (21.88) | 152 (19.61) | Fixed | 1.21 (1.01–1.46) | 0.0418 |
CC+CT (71) | 6977 (86.52) | 11,822(89.34) | Random | 0.98 (0.96–0.99) | 0.0023 |
Caucasian (27) | 3223 (88.35) | 6438 (90.19) | Fixed | 0.98 (0.97–1.00) | 0.0547 |
Hispanic (7) | 550 (71.90) | 790 (70.85) | Fixed | 1.01 (0.96–1.07) | 0.6426 |
South American (4) | 316 (83.60) | 489 (88.11) | Fixed | 0.95 (0.90–0.99) | 0.0475 |
East Asian (17) | 959 (76.41) | 1790 (88.18) | Random | 0.89 (0.85–0.94) | <0.0001 |
South Asian (4) | 546 (97.33) | 960 (96.87) | Fixed | 1.00 (0.98–1.02) | 0.8593 |
Middle East (7) | 690 (92.74) | 582 (92.68) | Fixed | 1.00 (0.97–1.03) | 0.9471 |
African (5) | 693 (97.19) | 773 (99.74) | Random | 0.98 (0.96–0.99) | 0.0013 |
Subgroups | |||||
TT risk > 1 | 4575 (56.74) | 8472 (64.03) | |||
TT+CT (49) | 2527 (55.23) | 4289 (50.63) | Random | 1.10 (1.05–1.15) | <0.0001 |
CC+CT (49) | 3893 (80.09) | 7675 (90.59) | Random | 0.95 (0.93–0.97) | <0.0001 |
TT risk < 1 | 784 (9.72) | 2529 (19.11) | |||
TT+CT (8) | 309 (39.41) | 1115 (44.09) | Fixed | 0.90 (0.80–1.01) | 0.0615 |
CC+CT (8) | 728 (92.86) | 2293 (90.67) | Fixed | 1.03 (1.00–1.06) | 0.0415 |
TT risk vary | 2705 (33.54) | 2231 (16.86) | |||
TT+CT (14) | 1393 (51.50) | 1172 (52.53) | Fixed | 1.03 (0.98–1.09) | |
CC+CT (14) | 2356 (87.10) | 1854 (83.10) | Fixed | 1.01 (0.98–1.03) | 0.211 |
0.6066 |
Partition Tree | Tukey Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | AICc | AP Death | Count | Mean | SD | Levels Compared | Difference | SE Difference | Lower CI | Upper CI | p |
TT+CT % ct | 610.933 | 2 and 3 | 42 | 48.445 | 19.033 | 4/3 | 6.064 | 5.335 | −6.718 | 18.846 | 0.495 |
4 | 29 | 54.167 | 14.505 | 4/2 | 5.490 | 4.766 | −5.931 | 16.910 | 0.486 | ||
2/3 | 0.547 | 5.490 | −12.580 | 13.729 | 0.994 | ||||||
TT+CT% HDP | 614.225 | 2 and 3 | 42 | 50.942 | 19.961 | 4/2 | 11.955 | 4.872 | 0.281 | 23.629 | 0.044 |
4 | 29 | 61.951 | 13.875 | 4/3 | 9.618 | 5.453 | −3.449 | 22.684 | 0.190 | ||
3/2 | 2.338 | 5.612 | −11.110 | 15.785 | 0.909 | ||||||
CC% ct | 610.933 | 2 and 3 | 42 | 51.555 | 19.033 | 3/4 | 6.064 | 5.335 | −6.718 | 18.846 | 0.495 |
4 | 29 | 45.833 | 14.505 | 2/4 | 5.490 | 4.766 | −5.931 | 16.910 | 0.486 | ||
3/2 | 0.574 | 5.490 | −12.580 | 13.729 | 0.994 | ||||||
CC% HDP | 616.292 | 2 and 3 | 42 | 49.058 | 19.961 | 2/4 | 11.955 | 4.872 | 0.281 | 23.629 | 0.044 |
4 | 29 | 38.049 | 13.875 | 3/4 | 9.618 | 5.453 | −3.449 | 22.684 | 0.190 | ||
2/3 | 2.338 | 5.612 | −11.110 | 15.785 | 0.909 | ||||||
CT% ct | 569.758 | 2 and 3 | 42 | 36.369 | 13.835 | 4/3 | 6.444 | 3.989 | −3.114 | 16.002 | 0.246 |
4 | 29 | 42.024 | 11.599 | 4/2 | 5.118 | 3.564 | −3.421 | 13.658 | 0.328 | ||
2/3 | 1.326 | 4.105 | −8.511 | 11.162 | 0.944 | ||||||
CT% HDP | 557.778 | 2 and 3 | 42 | 36.335 | 13.353 | 4/2 | 7.937 | 3.223 | 0.213 | 15.660 | 0.043 |
4 | 29 | 43.339 | 8.922 | 4/3 | 5.634 | 3.608 | −3.010 | 14.279 | 0.269 | ||
3/2 | 2.302 | 3.713 | −6.594 | 11.198 | 0.810 | ||||||
TT% ct | 517.829 | 2 | 25 | 11.771 | 10.535 | 3/2 | 0.753 | 2.850 | −6.074 | 7.581 | 0.962 |
3 and 4 | 46 | 12.285 | 8.062 | 3/4 | 0.380 | 2.769 | −6.254 | 7.014 | 0.990 | ||
4/2 | 0.373 | 2.474 | −5.554 | 6.301 | 0.988 | ||||||
TT% HDP | 553.728 | 2 and 3 | 42 | 14.607 | 12.459 | 4/2 | 4.019 | 3.186 | −3.615 | 11.653 | 0.422 |
4 | 29 | 18.611 | 10.183 | 4/3 | 3.982 | 3.566 | −4.562 | 12.527 | 0.507 | ||
3/2 | 0.037 | 3.670 | −8.756 | 8.831 | 0.999 | ||||||
RR TT+CT | 4.424 | 2 and 3 | 42 | 1.075 | 0.228 | 4/2 | 0.131 | 0.066 | −0.028 | 0.289 | 0.128 |
4 | 29 | 1.184 | 0.261 | 4/3 | 0.078 | 0.074 | −0.100 | 0.256 | 0.546 | ||
3/2 | 0.052 | 0.076 | −0.131 | 0.235 | 0.774 | ||||||
RR CC | −28.007 | 2 | 25 | 0.988 | 0.177 | 2/4 | 0.152 | 0.052 | 0.026 | 0.277 | 0.014 |
3 and 4 | 46 | 0.864 | 0.201 | 2/3 | 0.079 | 0.060 | −0.066 | 0.224 | 0.395 | ||
3/4 | 0.073 | 0.059 | −0.068 | 0.213 | 0.436 | ||||||
RR CT | 49.064 | 2 and 3 | 42 | 1.006 | 0.277 | 4/2 | 0.113 | 0.090 | −0.102 | 0.328 | 0.423 |
4 | 29 | 1.106 | 0.388 | 4/3 | 0.081 | 0.100 | −0.160 | 0.322 | 0.701 | ||
3/2 | 0.032 | 0.103 | −0.216 | 0.280 | 0.948 | ||||||
RR TT | 143.232 | 2 and 3 | 36 | 1.193 | 0.661 | 4/3 | 0.547 | 0.229 | −0.003 | 1.097 | 0.051 |
4 | 29 | 1.587 | 0.755 | 4/2 | 0.296 | 0.199 | −0.182 | 0.774 | 0.304 | ||
2/3 | 0.251 | 0.241 | −0.327 | 0.829 | 0.552 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-L.; Yang, H.-L.; Shiao, S.P.K. Meta-Prediction of MTHFR Gene Polymorphisms and Air Pollution on the Risk of Hypertensive Disorders in Pregnancy Worldwide. Int. J. Environ. Res. Public Health 2018, 15, 326. https://doi.org/10.3390/ijerph15020326
Yang Y-L, Yang H-L, Shiao SPK. Meta-Prediction of MTHFR Gene Polymorphisms and Air Pollution on the Risk of Hypertensive Disorders in Pregnancy Worldwide. International Journal of Environmental Research and Public Health. 2018; 15(2):326. https://doi.org/10.3390/ijerph15020326
Chicago/Turabian StyleYang, Ya-Ling, Hsiao-Ling Yang, and S. Pamela K. Shiao. 2018. "Meta-Prediction of MTHFR Gene Polymorphisms and Air Pollution on the Risk of Hypertensive Disorders in Pregnancy Worldwide" International Journal of Environmental Research and Public Health 15, no. 2: 326. https://doi.org/10.3390/ijerph15020326
APA StyleYang, Y.-L., Yang, H.-L., & Shiao, S. P. K. (2018). Meta-Prediction of MTHFR Gene Polymorphisms and Air Pollution on the Risk of Hypertensive Disorders in Pregnancy Worldwide. International Journal of Environmental Research and Public Health, 15(2), 326. https://doi.org/10.3390/ijerph15020326