Sex-Specific Association between Metabolic Abnormalities and Elevated Alanine Aminotransferase Levels in a Military Cohort: The CHIEF Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definitions
2.3. Statistical Analysis
2.4. Ethical Approval
3. Results
3.1. Descriptive Characteristics
3.2. Sex Differences
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar]
- Chen, C.-H.; Huang, M.-H.; Yang, J.-C.; Nien, C.-K.; Yang, C.-C.; Yeh, Y.-H.; Yueh, S.-K. Prevalence and Risk Factors of Nonalcoholic Fatty Liver Disease in an Adult Population of Taiwan: Metabolic Significance of Nonalcoholic Fatty Liver Disease in Nonobese Adults. J. Clin. Gastroenterol. 2006, 40, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, P.J.; Kuo, K.K.; Shin, S.J.; Yang, Y.H.; Lin, W.Y.; Yang, J.F.; Chiu, C.C.; Chuang, W.L.; Tsai, T.R.; Yu, M.L. Significant correlations between severe fatty liver and risk factors for metabolic syndrome. J. Gastroenterol. Hepatol. 2007, 22, 2118–2123. [Google Scholar] [CrossRef] [PubMed]
- Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic review: The epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 2011, 34, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Starley, B.Q.; Calcagno, C.J.; Harrison, S.A. Nonalcoholic fatty liver disease and hepatocellular carcinoma: A weighty connection. Hepatology 2010, 51, 1820–1832. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Jiang, C.Q.; Schooling, C.M.; Zhang, W.S.; Cheng, K.K.; Lam, T.H. Liver enzymes and incident diabetes in China: A prospective analysis of 10764 participants in the Guangzhou Biobank Cohort Study. J. Epidemiol. Community Health 2015, 69, 1040–1044. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Scherbakova, O.; Ford, I.; O’Reilly, D.S.J.; Stanley, A.; Forrest, E.; MacFarlane, P.W.; Packard, C.J.; Cobbe, S.M.; Shepherd, J. Elevated Alanine Aminotransferase Predicts New-Onset Type 2 Diabetes Independently of Classical Risk Factors, Metabolic Syndrome, and C-Reactive Protein in the West of Scotland Coronary Prevention Study. Diabetes 2004, 53, 2855–2860. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Burgert, T.S.; Taksali, S.E.; Dziura, J.; Goodman, T.R.; Yeckel, C.W.; Papademetris, X.; Constable, R.T.; Weiss, R.; Tamborlane, W.V.; Savoye, M.; et al. Alanine Aminotransferase Levels and Fatty Liver in Childhood Obesity: Associations with Insulin Resistance, Adiponectin, and Visceral Fat. J. Clin. Endocrinol. Metab. 2006, 91, 4287–4294. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.G.; Li, F.; Cai, X.B.; Peng, Y.D.; Ao, Q.H.; Gao, Y. Effects of nonalcoholic fatty liver disease on the development of metabolic disorders. J. Gastroenterol. Hepatol. 2007, 22, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Kubo, M.; Yonemoto, K.; Ninomiya, T.; Iwase, M.; Tanizaki, Y.; Shikata, K.; Iida, M.; Kiyohara, Y. Liver Enzymes as a Predictor for Incident Diabetes in a Japanese Population: The Hisayama Study. Obesity 2007, 15, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Carulli, L.; Lonardo, A.; Lombardini, S.; Marchesini, G.; Loria, P. Gender, fatty liver and GGT. Hepatology 2006, 44, 278–279. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, S.; Prud’homme, D.; Bouchard, C.; Tremblay, A.; Despres, J.P. Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am. J. Clin. Nutr. 1993, 58, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ko, Y.; Kwak, C.; Yim, E.-S. Gender differences in metabolic syndrome components among the Korean 66-year-old population with metabolic syndrome. BMC Geriatr. 2016, 16, 27. [Google Scholar]
- Gutierrez-Grobe, Y.; Ponciano-Rodriguez, G.; Ramos, M.H.; Uribe, M.; Mendez-Sanchez, N. Prevalence of nonalcoholic fatty liver disease in premenopausal, posmenopausal and polycystic ovary syndrome women. The role of estrogens. Ann. Hepatol. 2010, 9, 402–409. [Google Scholar] [PubMed]
- Lin, G.M.; Li, Y.H.; Lee, C.J.; Shiang, J.C.; Lin, K.H.; Chen, K.W.; Chen, Y.J.; Wu, C.F.; Lin, B.S.; Yu, Y.S.; et al. Rationale and design of the cardiorespiratory fitness and hospitalization events in armed forces study in Eastern Taiwan. World J. Cardiol. 2016, 8, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, C.E.; Everhart, J.E. Determinants of the association of overweight with elevated serum alanine aminotransferase activity in the United States. Gastroenterology 2003, 124, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Models Mechan. 2009, 2, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.Y.; Cheng, J.F.; Lai, Y.M. Prevalence of metabolic syndrome and related factors in Taiwanese high-tech industry workers. Clinics 2011, 66, 1531–1535. [Google Scholar] [CrossRef] [PubMed]
- Perera, S.; Lohsoonthorn, V.; Jiamjarasrangsi, W.; Lertmaharit, S.; Williams, M.A. Association Between Elevated Liver Enzymes and Metabolic Syndrome among Thai Adults. Diabetes Metab. Syndr. 2008, 2, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Choi, K.S.; Jang, Y.H.; Shin, H.W.; Kim, D.J. Normal serum aminotransferase levels and the metabolic syndrome: Korean National Health and Nutrition Examination Surveys. Yonsei Med. J. 2006, 47, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Sorbi, D.; Boynton, J.; Lindor, K.D. The ratio of aspartate aminotransferase to alanine aminotransferase: Potential value in differentiating nonalcoholic steatohepatitis from alcoholic liver disease. Am. J. Gastroenterol. 1999, 94, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Schmucker, D.L. Age-related changes in liver structure and function: Implications for disease? Exp. Gerontol. 2005, 40, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.H.; Bettencourt, R.; Brenner, D.A.; Barrett-Connor, E.; Loomba, R. Serum Levels of Alanine Aminotransferase Decrease with Age in Longitudinal Analysis. Clin. Gastroenterol. Hepatol. 2012, 10. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.-C.; Tsai, S.P.; Jhao, J.-Y.; Jiang, W.-K.; Tsao, C.K.; Chang, L.-Y. Liver Fat, Hepatic Enzymes, Alkaline Phosphatase and the Risk of Incident Type 2 Diabetes: A Prospective Study of 132,377 Adults. Sci. Rep. 2017, 7, 4649. [Google Scholar] [CrossRef] [PubMed]
- Lazo, M.; Hernaez, R.; Eberhardt, M.S.; Bonekamp, S.; Kamel, I.; Guallar, E.; Koteish, A.; Brancati, F.L.; Clark, J.M. Prevalence of Nonalcoholic Fatty Liver Disease in the United States: The Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Epidemiol. 2013, 178, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Tiikkainen, M.; Tamminen, M.; Häkkinen, A.-M.; Bergholm, R.; Vehkavaara, S.; Halavaara, J.; Teramo, K.; Rissanen, A.; Yki-Järvinen, H. Liver-Fat Accumulation and Insulin Resistance in Obese Women with Previous Gestational Diabetes. Obesity Res. 2002, 10, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Foghsgaard, S.; Andreasen, C.; Vedtofte, L.; Andersen, E.S.; Bahne, E.; Strandberg, C.; Buhl, T.; Holst, J.J.; Svare, J.A.; Clausen, T.D.; et al. Nonalcoholic Fatty Liver Disease Is Prevalent in Women With Prior Gestational Diabetes Mellitus and Independently Associated With Insulin Resistance and Waist Circumference. Diabetes Care 2017, 40, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Levitzky, Y.S.; Pencina, M.J.; D’Agostino, R.B.; Meigs, J.B.; Murabito, J.M.; Vasan, R.S.; Fox, C.S. Impact of Impaired Fasting Glucose on Cardiovascular Disease. J. Am. Coll. Cardiol. 2008, 51, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Hwang, L.C.; Bai, C.H.; Chen, C.J. Prevalence of Obesity and Metabolic Syndrome in Taiwan. J. Formos. Med. Assoc. 2006, 105, 626–635. [Google Scholar] [CrossRef]
- Hamaguchi, M.; Kojima, T.; Ohbora, A.; Takeda, N.; Fukui, M.; Kato, T. Aging is a risk factor of nonalcoholic fatty liver disease in premenopausal women. World J. Gastroenterol. 2012, 18, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Brady, C.W. Liver disease in menopause. World J. Gastroenterol. 2015, 21, 7613–7620. [Google Scholar] [CrossRef] [PubMed]
- Völzke, H.; Schwarz, S.; Baumeister, S.E.; Wallaschofski, H.; Schwahn, C.; Jörgen Grabe, H.; Kohlmann, T.; John, U.; Dören, M. Menopausal status and hepatic steatosis in a general female population. Gut 2007, 56, 594–595. [Google Scholar] [CrossRef] [PubMed]
Overall | ALT < 40 | ALT ≥ 40 U/L | p-Value | |
---|---|---|---|---|
N = 7504 | N = 6632 | N = 872 | ||
Age (year) | 28.93 ± 6.04 | 28.69 ± 6.06 | 30.74 ± 28.35 | <0.0001 |
Specialty, % | <0.0001 | |||
Air forces | 19.75 | 1.66 | 0.34 | |
Army | 78.74 | 79.52 | 72.82 | |
Navy | 1.51 | 18.82 | 26.83 | |
SEX, % | <0.0001 | |||
Women | 10.21 | 11.31 | 1.83 | |
Men | 89.79 | 88.69 | 98.17 | |
BMI (kg/m2), % | 24.96 ± 3.72 | 24.52 ± 3.48 | 28.35 ± 3.77 | <0.0001 |
Underweight (<18.5) | 2.00 | 2.22 | 0.34 | <0.0001 |
Normal (18.5–24.9) | 51.88 | 56.35 | 17.89 | |
Overweight (25–29.9) | 37.34 | 35.13 | 54.13 | |
Obesity (≥30) | 8.78 | 6.30 | 27.64 | |
Current smoker, % | 33.81 | 32.78 | 41.63 | <0.0001 |
Current alcohol intake, % | 45.19 | 44.38 | 51.38 | <0.0001 |
ALT/AST ratio ≥ 1, % | 47.23 | 40.65 | 97.25 | <0.0001 |
Elevated blood pressure, % * | 25.61 | 23.21 | 43.92 | <0.0001 |
Waist circumference, % ∫ | 27.60 | 23.33 | 60.09 | <0.0001 |
Serum TG ≥ 150 mg/dL, % | 19.95 | 16.34 | 47.36 | <0.0001 |
FPG ≥ 100 mg/dL, % | 14.43 | 13.31 | 22.94 | <0.0001 |
Low serum HDL, % $ | 21.16 | 18.97 | 37.84 | <0.0001 |
Total cholesterol ≥ 200 mg/dL, % | 20.26 | 17.84 | 38.65 | <0.0001 |
Metabolic syndrome (ATPIII), % | 13.58 | 10.12 | 39.91 | 0.0001 |
Metabolic syndrome (IDF), % | 11.06 | 7.89 | 35.21 | <0.0001 |
Variables | Women | Men | p-Value |
---|---|---|---|
N = 766 | N = 6738 | ||
Age (year) | 28.03 ± 6.61 | 29.03 ± 5.97 | <0.0001 |
Specialty, % | <0.0001 | ||
Air forces | 1.04 | 1.56 | |
Army | 85.51 | 77.98 | |
Navy | 13.45 | 20.47 | |
BMI (kg/m2), % | 22.59 ± 3.11 | 25.23 ± 3.69 | <0.0001 |
Underweight (<18.5) | 6.01 | 1.54 | <0.0001 |
Normal (18.5–24.9) | 72.98 | 49.48 | |
Overweight (25–29.9) | 18.80 | 39.45 | |
Obesity (≥30) | 2.22 | 9.53 | |
Current smoker, % | 10.18 | 36.49 | <0.0001 |
Current alcohol intake, % | 21.80 | 47.85 | <0.0001 |
ALT, % | <0.0001 | ||
<40 U/L | 97.91 | 87.30 | |
≥40 U/L | 2.09 | 12.70 | |
ALT/AST ratio ≥ 1, % | 14.75 | 50.92 | <0.0001 |
Elevated blood pressure, % * | 6.01 | 27.84 | <0.0001 |
Waist circumference, % ∫ | 23.37 | 28.08 | 0.0057 |
Serum TG ≥ 150 mg/dL, % | 6.14 | 21.52 | <0.0001 |
FPG ≥ 100 mg/dL, % | 5.22 | 15.48 | <0.0001 |
Low serum HDL, % $ | 25.98 | 20.61 | 0.0006 |
Total cholesterol ≥ 200 mg/dL, % | 14.36 | 20.93 | <0.0001 |
Metabolic syndrome (ATPIII), % | 4.05 | 14.66 | <0.0001 |
Metabolic syndrome (IDF), % | 3.52 | 11.92 | <0.0001 |
Variables | Overall | p-Value | Women | p-Value | Men | p-Value |
---|---|---|---|---|---|---|
N = 7504 | N = 766 | N = 6738 | ||||
OR (95% CI) | OR (95% CI) | OR (95% CI) | ||||
Age (by five-year increment) | 1.31 (1.24–1.39) | <0.0001 | 1.36 (0.97–1.89) | 0.074 | 1.30 (1.23–1.38) | <0.0001 |
BMI (kg/m2) | ||||||
25–29.9 | 2.18 (1.89–2.51) | <0.0001 | 2.66 (0.95–7.45) | 0.062 | 2.01 (1.74–2.32) | <0.0001 |
≥30 | 5.68 (4.75–6.79) | <0.0001 | 7.00 (1.46–33.6) | 0.015 | 5.27 (4.40–6.31) | <0.0001 |
Elevated blood pressure * | 2.59 (2.24–3.00) | <0.0001 | 2.29 (0.51–10.4) | 0.28 | 2.36 (2.03–2.73) | <0.0001 |
Waist circumference ∫ | 4.95 (4.27–5.73) | <0.0001 | 4.39 (1.61–12.0) | 0.0038 | 4.94 (4.26–5.74) | <0.0001 |
Serum TG ≥ 150 mg/dL | 4.61 (3.97–5.34) | <0.0001 | 3.70 (1.02–13.5) | 0.047 | 4.28 (3.68–4.97) | <0.0001 |
FPG ≥ 100 mg/dL | 1.94 (1.63–2.30) | <0.0001 | 12.64 (4.34–36.8) | <0.0001 | 1.74 (1.46–2.07) | <0.0001 |
Low serum HDL $ | 2.60 (2.24–3.02) | <0.0001 | 2.93 (1.08–7.91) | 0.034 | 2.72 (2.33–3.17) | <0.0001 |
Total cholesterol ≥ 200 mg/dL | 2.90 (2.50–3.37) | <0.0001 | 1.39 (0.39–4.95) | 0.61 | 2.86 (2.45–3.33) | <0.0001 |
Current alcohol intake | 1.32 (1.15–1.53) | <0.0001 | 1.20 (0.38–3.77) | 0.75 | 1.20 (1.04–1.39) | 0.012 |
Metabolic syndrome (ATPIII) | 5.90 (5.04–6.91) | <0.0001 | 23.53 (8.09–68.5) | <0.0001 | 5.36 (4.57–6.28) | <0.0001 |
Metabolic syndrome (IDF) | 6.35 (5.38–7.49) | <0.0001 | 20.83 (6.93–62.64) | <0.0001 | 5.81 (4.92–6.87) | <0.0001 |
Variables | Overall | p-Value | Women | p-Value | Men | p-Value |
---|---|---|---|---|---|---|
N = 7504 | N = 766 | N = 6738 | ||||
OR (95% CI) | OR (95% CI) | OR (95% CI) | ||||
Sex (men vs. women) | 3.86 (2.31–6.46) | <0.0001 | N/A | N/A | ||
Age (by five-year increment) | 1.03 (0.96–1.10) | 0.46 | 1.16 (0.79–1.72) | 0.46 | 1.02 (0.95–1.10) | 0.53 |
BMI (kg/m2) | ||||||
25–29.9 | 2.53 (2.03–3.15) | <0.0001 | 1.24 (0.30–5.17) | 0.77 | 2.58 (2.06–3.22) | <0.0001 |
≥30 | 4.46 (3.32–5.99) | <0.0001 | 2.24 (0.27–18.84) | 0.46 | 4.54 (3.37–6.13) | <0.0001 |
Serum TG ≥ 150 mg/dL | 1.99 (1.67–2.37) | <0.0001 | 1.31 (0.30–5.79) | 0.73 | 2.00 (1.68–2.39) | <0.0001 |
FPG ≥ 100 mg/dL | 1.10 (0.90–1.33) | 0.35 | 7.59 (2.35–24.51) | 0.001 | 1.05 (0.86–1.28) | 0.62 |
Elevated blood pressure * | 1.40 (1.19–1.64) | <0.0001 | 1.15 (0.20–6.74) | 0.87 | 1.40 (1.19–1.65) | <0.0001 |
Waist circumference ∫ | 1.69 (1.39–2.05) | <0.0001 | 2.37 (0.62–9.15) | 0.21 | 1.68 (1.38–2.04) | <0.0001 |
Low serum HDL $ | 1.61 (1.35–1.92) | <0.0001 | 1.71 (0.52–5.60) | 0.37 | 1.59 (1.34–1.90) | <0.0001 |
Total cholesterol ≥ 200 mg/dL | 1.81 (1.53–2.16) | <0.0001 | 0.95 (0.21–4.20) | 0.94 | 1.84 (1.55–2.19) | <0.0001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-W.; Meng, F.-C.; Shih, Y.-L.; Su, F.-Y.; Lin, Y.-P.; Lin, F.; Lin, J.-W.; Chang, W.-K.; Lee, C.-J.; Li, Y.-H.; et al. Sex-Specific Association between Metabolic Abnormalities and Elevated Alanine Aminotransferase Levels in a Military Cohort: The CHIEF Study. Int. J. Environ. Res. Public Health 2018, 15, 545. https://doi.org/10.3390/ijerph15030545
Chen K-W, Meng F-C, Shih Y-L, Su F-Y, Lin Y-P, Lin F, Lin J-W, Chang W-K, Lee C-J, Li Y-H, et al. Sex-Specific Association between Metabolic Abnormalities and Elevated Alanine Aminotransferase Levels in a Military Cohort: The CHIEF Study. International Journal of Environmental Research and Public Health. 2018; 15(3):545. https://doi.org/10.3390/ijerph15030545
Chicago/Turabian StyleChen, Kai-Wen, Fan-Chun Meng, Yu-Lueng Shih, Fang-Ying Su, Yen-Po Lin, Felicia Lin, Jia-Wei Lin, Wei-Kuo Chang, Chung-Jen Lee, Yi-Hwei Li, and et al. 2018. "Sex-Specific Association between Metabolic Abnormalities and Elevated Alanine Aminotransferase Levels in a Military Cohort: The CHIEF Study" International Journal of Environmental Research and Public Health 15, no. 3: 545. https://doi.org/10.3390/ijerph15030545
APA StyleChen, K. -W., Meng, F. -C., Shih, Y. -L., Su, F. -Y., Lin, Y. -P., Lin, F., Lin, J. -W., Chang, W. -K., Lee, C. -J., Li, Y. -H., Hsieh, C. -B., & Lin, G. -M. (2018). Sex-Specific Association between Metabolic Abnormalities and Elevated Alanine Aminotransferase Levels in a Military Cohort: The CHIEF Study. International Journal of Environmental Research and Public Health, 15(3), 545. https://doi.org/10.3390/ijerph15030545