The Effect of PM2.5 from Household Combustion on Life Expectancy in Sub-Saharan Africa
Abstract
:1. Introduction
2. Methods
2.1. Data
2.2. Models
2.2.1. Two-Step System Generalized Method of Moments (GMM) Model
2.2.2. Panel Cointegration Regression Model
- Panel unit root tests: to check whether the variables are stationary or not at level; or whether they are stationary at their first difference (integrated of order one);
- Panel cointegration tests: to check whether there exists a long-run relationship between the variables.
3. Results
3.1. Results of the Two-Step System Generalized Method of Moments (GMM) Model
3.2. Results of Panel Cointegration Regression Model
3.2.1. Panel Unit Root Tests
3.2.2. Panel Cointegration Tests
3.2.3. Estimates of the Long-Run and Short-Run effects
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
PM2.5 | Particulate Matter with diameter smaller than 2.5 μm |
LEX | Life Expectancy |
ALEX | Aggregate Life Expectancy |
FLEX | Female Life Expectancy |
MLEX | Male Life Expectancy |
GDP | Gross Domestic Product |
HEXP | Health Expenditure Per Capita |
P-HIV/AIDS | Prevalence of HIV/AIDS |
PUNP | Prevalence of Undernourished People |
PUP | Proportion of Urban Population In Country |
PPS | Proportion of Population with Primary School Education |
GMM | Generalized Method of Moments |
SSA | Sub-Saharan Africa |
OLS | Ordinary Least Square |
DOLS | Dynamic Ordinary Least Square |
ECT | Error Correction Term |
References
- Kim, K.-H.; Jahan, S.A.; Kabir, E. A review of diseases associated with household air pollution due to the use of biomass fuels. J. Hazard. Mater. 2011, 192, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Jetter, J.J.; Kariher, P. Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass Bioenergy 2009, 33, 294–305. [Google Scholar] [CrossRef]
- Mehta, S.; Shahpar, C. The health benefits of interventions to reduce indoor air pollution from solid fuel use: A cost-effectiveness analysis. Energy Sustain. Dev. 2004, 8, 53–59. [Google Scholar] [CrossRef]
- Ezzati, M.; Kammen, D.M. Evaluating the health benefits of transitions in household energy technologies in Kenya. Energy Policy 2002, 30, 815–826. [Google Scholar] [CrossRef]
- Ezzati, M.; Mbinda, B.M.; Kammen, D.M. Comparison of emissions and residential exposure from traditional and improved cookstoves in Kenya. Environ. Sci. Technol. 2000, 34, 578–583. [Google Scholar] [CrossRef]
- Albalak, R.; Bruce, N.; McCracken, J.P.; Smith, K.R.; De Gallardo, T. Indoor respirable particulate matter concentrations from an open fire, improved cookstove, and LPG/open fire combination in a rural Guatemalan community. Environ. Sci. Technol. 2001, 35, 2650–2655. [Google Scholar] [CrossRef] [PubMed]
- Walsh, B. Blackout: 1 Billion Live without Electric Light. Time, 5 September 2013. [Google Scholar]
- Debbi, S.; Elisa, P.; Nigel, B.; Dan, P.; Eva, R. Factors influencing household uptake of improved solid fuel stoves in low-and middle-income countries: A qualitative systematic review. Int. J. Environ. Res. Public Health 2014, 11, 8228–8250. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Burning Opportunity: Clean Household Energy for Health, Sustainable Development, and Wellbeing of Women and Children; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Energy, A.R. Clean and Improved Cooking in Sub-Saharan Africa; The World Bank Group: Washington, DC, USA, 2014. [Google Scholar]
- World Health Organization. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Eisner, M.D.; Anthonisen, N.; Coultas, D.; Kuenzli, N.; Perez-Padilla, R.; Postma, D.; Romieu, I.; Silverman, E.K.; Balmes, J.R. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010, 182, 693–718. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, H.D., III; Wei, H.; Sapkota, A.; Choudhury, I.; Bruce, N.; Smith, K.R.; Rothman, N.; Lan, Q. Household coal use and lung cancer: Systematic review and meta-analysis of case–control studies, with an emphasis on geographic variation. Int. J. Epidemiol. 2011, 40, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Gauderman, W.J.; Urman, R.; Avol, E.; Berhane, K.; McConnell, R.; Rappaport, E.; Chang, R.; Lurmann, F.; Gilliland, F. Association of improved air quality with lung development in children. N. Engl. J. Med. 2015, 372, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A. Particulate matter air pollution and cardiovascular disease. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Dherani, M.; Pope, D.; Mascarenhas, M.; Smith, K.R.; Weber, M.; Bruce, N. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: A systematic review and meta-analysis. Bull. World Health Organ. 2008, 86, 390–398C. [Google Scholar] [PubMed]
- Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z.J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014, 383, 785–795. [Google Scholar] [CrossRef]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ. Health Perspect. 2012, 120, 965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A., III; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, F.E.; Heath, C.W., Jr. Particulate air pollution as a predictor of mortality in a prospective study of US adults. Am. J. Respir. Crit. Care Med. 1995, 151 Pt 1, 669–674. [Google Scholar] [CrossRef] [PubMed]
- De Keijzer, C.; Agis, D.; Ambrós, A.; Arévalo, G.; Baldasano, J.M.; Bande, S.; Barrera-Gómez, J.; Benach, J.; Cirach, M.; Dadvand, P. The association of air pollution and greenness with mortality and life expectancy in Spain: A small-area study. Environ. Int. 2017, 99, 1701–1776. [Google Scholar] [CrossRef] [PubMed]
- Dziubanek, G.; Spychała, A.; Marchwińska-Wyrwał, E.; Rusin, M.; Hajok, I.; Ćwieląg-Drabek, M.; Piekut, A. Long-term exposure to urban air pollution and the relationship with life expectancy in cohort of 3.5 million people in Silesia. Sci. Total Environ. 2017, 580, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhou, X.; Chen, R.; Duan, X.; Kuang, X.; Kan, H. Estimation of the effects of ambient air pollution on life expectancy of urban residents in China. Atmos. Environ. 2013, 80, 347–351. [Google Scholar] [CrossRef]
- Correia, A.W.; Pope, C.A., III; Dockery, D.W.; Wang, Y.; Ezzati, M.; Dominici, F. The effect of air pollution control on life expectancy in the United States: An analysis of 545 US counties for the period 2000 to 2007. Epidemiology 2013, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Krewski, D. Evaluating the Effects of Ambient Air Pollution on Life Expectancy; Massachusetts Medical Society: Waltham, MA, USA, 2009. [Google Scholar]
- Chen, Y.; Ebenstein, A.; Greenstone, M.; Li, H. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. USA 2013, 110, 12936–12941. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, J.; Pekkanen, J. The effect of particulate air pollution on life expectancy. Sci. Total Environ. 1998, 217, 137–141. [Google Scholar] [CrossRef]
- Jonker, M.; Van Lenthe, F.; Donkers, B.; Mackenbach, J.; Burdorf, A. The effect of urban green on small-area (healthy) life expectancy. J. Epidemiol. Community Health 2014, 68, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Shamy, M.; Alghamdi, M.; Khoder, M.I.; Mohorjy, A.M.; Alkhatim, A.A.; Alkhalaf, A.K.; Brocato, J.; Chen, L.C.; Thurston, G.D.; Lim, C.C. Association between Exposure to Ambient Air Particulates and Metabolic Syndrome Components in a Saudi Arabian Population. Int. J. Environ. Res. Public Health 2017, 15, 27. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; Xu, J.; Liu, X.; Wu, Y.; Zhou, L.; Cheng, J.; Ma, H.; Zheng, J.; Lin, D. The Association between Air Pollution and Outpatient and Inpatient Visits in Shenzhen, China. Int. J. Environ. Res. Public Health 2018, 15, 178. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-L.; Yang, H.-L.; Shiao, S.P.K. Meta-prediction of MTHFR gene polymorphisms and air pollution on the risk of hypertensive disorders in pregnancy worldwide. Int. J. Environ. Res. Public Health 2018, 15, 326. [Google Scholar] [CrossRef] [PubMed]
- Mackenbach, J.P.; Stirbu, I.; Roskam, A.-J.R.; Schaap, M.M.; Menvielle, G.; Leinsalu, M.; Kunst, A.E. Socioeconomic inequalities in health in 22 European countries. N. Engl. J. Med. 2008, 358, 2468–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deaton, A. Health, inequality, and economic development. J. Econ. Lit. 2003, 41, 113–158. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Breitung, J. The local power of some unit root tests for panel data. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels; Emerald Group Publishing Limited: Bingley, UK, 2001; pp. 161–177. [Google Scholar]
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999, 61 (Suppl. 1), 653–670. [Google Scholar] [CrossRef]
- Pope, C.A., III; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 2009, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Ezzati, M.; Dockery, D.W. Tradeoffs between income, air pollution and life expectancy: Brief report on the US experience, 1980–2000. Environ. Res. 2015, 142, 5915–5993. [Google Scholar] [CrossRef] [PubMed]
Variables | ALEX | FLEX | MLEX |
---|---|---|---|
ALEX(−1) | −0.791 * (0.084) | ||
FLEX(−1) | −0.835 * (0.056) | ||
MLEX(−1) | −0.773 *(0.079) | ||
ln (PM2.5H) × 10 | −0.214 *** (0.007) | −0.326 *** (0.000) | −0.201 ** (0.015) |
ln (PM2.5TR) × 10 | −0.127 ** (0.036) | −0.095 ** (0.042) | −0.182 ** (0.021) |
ln (PM2.5MC) × 10 | −0.921 (0.584) | −0.110 (0.192) | −0.139 (0.403) |
ln (PM2.5OT) × 10 | −0.083 (0.617) | −0.065 (0.235) | −0.086 (0.148) |
GDP | 0.022 ** (0.011) | 0.028 *** (0.001) | 0.017 ** (0.029) |
ln HEXP | 0.038 *** (0.003) | 0.044 *** (0.001) | 0.029 *** (0.008) |
P-HIV/AIDS | −0.206 *** (0.000) | −0.183 *** (0.000) | −0.213 *** (0.004) |
PUNP | −0.067 ** (0.031) | −0.045 ** (0.024) | −0.038 *** (0.001) |
PUP | 0.021 ** (0.025) | 0.016 ** (0.014) | 0.024 ** (0.047) |
PPS | 0.001 (0.304) | 0.009 (0.712) | 0.013 (0.459) |
Validity Tests | |||
Countries | 43 | 43 | 43 |
AR(1) (p-value) | 0.008 | 0.029 | 0.041 |
AR(2) (p-value) | 0.427 | 0.266 | 0.489 |
Hansen-J test (p-value) | 0.321 | 0.186 | 0.218 |
Variables | Breitungt-Test | IPS Test |
---|---|---|
ALEX | 0.488 (0.211) | 0.081 (0.365) |
ΔALEX | −3.047 ** (0.027) | −5.131 *** (0.001) |
FLEX | 0.269 (0.638) | 0.106 (0.411) |
ΔFLEX | −1.935 *** (0.000) | −6.064 *** (0.005) |
MLEX | 2.071 (0.519) | −0.822 (0.396) |
ΔMLEX | 0.759 ** (0.012) | 0.741 ** (0.036) |
ln PM2.5H | 0.0258 (0.417) | −0.8233 (0.862) |
Δln PM2.5H | −2.380 ** (0.026) | −4.751 *** (0.000) |
ln PM2.5TR | 0.609 (0.473) | 0.0185 (0.781) |
Δln PM2.5TR | −3.774 *** (0.008) | −5.136 ** (0.042) |
ln PM2.5MC | −1.021 (0.849) | 2.104 (0.137) |
Δln PM2.5MC | −4.265 *** (0.002) | −4.791 *** (0.000) |
ln PM2.5OT | 0.936 (0.473) | 1.480 (0.805) |
Δln PM2.5OT | −1.294 *** (0.009) | −3.151 ** (0.042) |
GDP | 2.811 (0.863) | −0.602 (0.158) |
ΔGDP | −2.507 ** (0.019) | −8.446 ** (0.025) |
ln HEXP | 0.543 (0.618) | 3.104 (0.107) |
Δln HEXP | −5.192 *** (0.001) | −6.425 *** (0.000) |
P-HIV/AIDS | 1.806 (0.274) | 0.923 (0.405) |
ΔP-HIV/AIDS | −3.188 ** (0.031) | −4.209 *** (0.000) |
PUNP | 0.529 (0.148) | 0.174 (0.362) |
ΔPUNP | −0.328 ** (0.027) | −1.566 ** (0.018) |
PUP | 6.106 (0.593) | 2.078 (0.494) |
ΔPUP | −1.355 *** (0.006) | −3.921 *** (0.002) |
PPS | 2.602 (0.346) | 0.917 (0.496) |
ΔPPS | −4.180 ** (0.040) | −5.621 ** (0.029) |
Pedroni’s Test Statistics | ALEX | FLEX | MLEX |
---|---|---|---|
Panel v-statistics | −0.953 ** (0.038) | −4.0618 *** (0.003) | −2.373 *** (0.000) |
Panel rho-statistics | −3.420 ** (0.014) | −1.171 ** (0.028) | −2.851 *** (0.000) |
Panel pp-statistics | −2.337 *** (0.000) | −0.853 ** (0.016) | −0.522 ** (0.036) |
Panel ADF-statistics | −1.592 ** (0.023) | −0.649 *** (0.000) | −3.116 ** (0.017) |
Group rho-statistics | −1.368 *** (0.001) | −1.796 *** (0.006) | −1.527 *** (0.009) |
Group pp-statistics | −3.205 *** (0.002) | −2.057 ** (0.046) | −1.384 ** (0.025) |
Group ADF-statistics | −2.141 *** (0.008) | −2.005 ** (0.023) | −3.469 ** (0.011) |
Long-Run Coefficients | ||||||
---|---|---|---|---|---|---|
Variables | ALEX | FLEX | MLEX | |||
Panel OLS | Panel DOLS | Panel OLS | Panel DOLS | Panel OLS | Panel DOLS | |
ln (PM2.5H) × 10 | −0.216 *** (0.001) | −0.218 *** (0.000) | −0.324 *** (0.004) | −0.323 *** (0.009) | −0.206 *** (0.000) | −0.204 ** (0.023) |
ln (PM2.5TR) × 10 | −0.128 *** (0.008) | −0.129 ** (0.034) | −0.097 ** (0.021) | −0.095 ** (0.027) | −0.178 ** (0.044) | −0.181 ** (0.016) |
ln (PM2.5MC) × 10 | −0.901 (0.306) | −1.004 (0.850) | −0.108 (0.763) | −0.114 (0.333) | −0.133 (0.995) | −0.142 (0.617) |
ln (PM2.5OT) × 10 | −0.095 (0.621) | −0.089 (0.144) | −0.061 (0.291) | −0.069 (0.804) | −0.083 (0.104) | −0.087 (0.571) |
GDP | 0.023 ** (0.015) | 0.022 ** (0.041) | 0.026 ** (0.035) | 0.027 ** (0.018) | 0.018 *** (0.009) | 0.019 *** (0.000) |
ln HEXP | 0.037 ** (0.027) | 0.037 ** (0.011) | 0.048 *** (0.000) | 0.043 *** (0.003) | 0.027 *** (0.001) | 0.029 ** (0.012) |
P-HIV/AIDS | −0.210 ** (0.033) | −0.205 *** (0.004) | −0.187 *** (0.001) | −0.184 *** (0.002) | −0.209 *** (0.007) | −0.211 *** (0.000) |
PUNP | −0.067 ** (0.019) | −0.068 ** (0.025) | −0.043 ** (0.016) | −0.045 *** (0.000) | −0.037 ** (0.021) | −0.038 ** (0.017) |
PUP | 0.020 ** (0.043) | 0.022 ** (0.012) | 0.013 ** (0.039) | 0.014 ** (0.022) | 0.024 ** (0.011) | 0.025 ** (0.038) |
PPS | 0.008 (0.172) | 0.004 (0.532) | 0.011 (0.466) | 0.006 (0.395) | 0.018 (0.275) | 0.017 (0.611) |
Short-Run Coefficients | |||
---|---|---|---|
ALEX | FLEX | MLEX | |
Δln (PM2.5H) × 10 | −0.037 (0.659) | −0.029 (0.147) | −0.036 (0.638) |
Δln (PM2.5TR) × 10 | −0.015 (0.276) | −0.020 (0.821) | −0.014 (0.253) |
Δln (PM2.5MC) × 10 | 0.125 (0.360) | 0.153 (0.268) | 0.205 (0.406) |
Δln (PM2.5OT) × 10 | −0.058 (0.204) | −0.049 (0.610) | −0.073 (0.120) |
ΔGDP | 0.054 (0.192) | 0.083 (0.654) | 0.061 (0.149) |
Δln HEXP | 0.046 (0.781) | 0.137 (0.115) | 0.183 (0.404) |
ΔP-HIV/AIDS | 0.108 (0.429) | 0.216 (0.233) | 0.195 (0.723) |
ΔPUNP | 0.021 (0.953) | 0.018 (0.379) | 0.024 (0.152) |
ΔPUP | 0.009 (0.357) | 0.015 (0.162) | 0.028 (0.337) |
ΔPPS | 0.037 (0.144) | 0.061 (0.728) | 0.049 (0.506) |
ΔGDPt−1 | 0.019 ** (0.016) | 0.021 ** (0.027) | 0.012 ** (0.040) |
Δln HEXPt−1 | 0.026 *** (0.000) | 0.034 ** (0.013) | 0.023 ** (0.037) |
ECTt−1 | −0.118 ** (0.039) | −0.126 ** (0.018) | −0.112 ** (0.045) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboubacar, B.; Deyi, X.; Abdoul Razak, M.Y.; Hamidou Leyla, B. The Effect of PM2.5 from Household Combustion on Life Expectancy in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2018, 15, 748. https://doi.org/10.3390/ijerph15040748
Aboubacar B, Deyi X, Abdoul Razak MY, Hamidou Leyla B. The Effect of PM2.5 from Household Combustion on Life Expectancy in Sub-Saharan Africa. International Journal of Environmental Research and Public Health. 2018; 15(4):748. https://doi.org/10.3390/ijerph15040748
Chicago/Turabian StyleAboubacar, Badamassi, Xu Deyi, Mahaman Yacoubou Abdoul Razak, and Boubacar Hamidou Leyla. 2018. "The Effect of PM2.5 from Household Combustion on Life Expectancy in Sub-Saharan Africa" International Journal of Environmental Research and Public Health 15, no. 4: 748. https://doi.org/10.3390/ijerph15040748
APA StyleAboubacar, B., Deyi, X., Abdoul Razak, M. Y., & Hamidou Leyla, B. (2018). The Effect of PM2.5 from Household Combustion on Life Expectancy in Sub-Saharan Africa. International Journal of Environmental Research and Public Health, 15(4), 748. https://doi.org/10.3390/ijerph15040748