Association of Anthropometric Indices of Obesity with Hypertension in Chinese Elderly: An Analysis of Age and Gender Differences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Data Collection
2.2. Dependent Variable
2.3. Anthropometric Measurements
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BMI | body mass index |
HC | hip circumference |
CVD | cardiovascular disease |
WC | waist circumference |
WHR | waist-to-hip ratio |
WHtR | waist-to-height |
HI | hip index |
ABSI | body shape index |
PSUs | primary sampling units |
SSUs | secondary sampling units |
ADL | activities of daily living |
ADLs | activities of daily living scale |
IADL | instrumental activities of daily living scale |
PSMS | physical self-maintenance scale |
IADL | activities of daily living scale |
ORs | odds ratios |
References
- Global Burden of Metabolic Risk Factors for Chronic Diseases, C. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment. Lancet Diabetes Endocrinol. 2014, 2, 634–647. [Google Scholar]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef]
- He, J.; Gu, D.; Chen, J.; Wu, X.; Kelly, T.N.; Huang, J.F.; Chen, J.C.; Chen, C.S.; Bazzano, L.A.; Reynolds, K.; et al. Premature deaths attributable to blood pressure in China: A prospective cohort study. Lancet 2009, 374, 1765–1772. [Google Scholar] [CrossRef]
- Lu, J.; Lu, Y.; Wang, X.; Li, X.; Linderman, G.C.; Wu, C.; Cheng, X.; Mu, L.; Zhang, H.; Liu, J.; et al. Prevalence, awareness, treatment, and control of hypertension in china: Data from 1.7 million adults in a population-based screening study (China peace million persons project). Lancet 2017, 390, 2549–2558. [Google Scholar] [CrossRef]
- Haslam, D.W.; James, W.P. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Obesity and Overweight. Available online: http://www.Who.Int/mediacentre/factsheets/fs311/en/ (accessed on 20 February 2018).
- Genelhu, V.A.; Celoria, B.M.; Duarte, S.F.; Cabello, P.H.; Francischetti, E.A. Not all obese subjects of multiethnic origin are at similar risk for developing hypertension and type 2 diabetes. Eur. J. Intern. Med. 2009, 20, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E. The kidney, hypertension, and obesity. Hypertension 2003, 41, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Burke, L.E.; Bray, G.A.; Blair, S.; Allison, D.B.; Pi-Sunyer, X.; Hong, Y.; Eckel, R.H. Metabolism. Clinical implications of obesity with specific focus on cardiovascular disease: A statement for professionals from the american heart association council on nutrition, physical activity, and metabolism: Endorsed by the american college of cardiology foundation. Circulation 2004, 110, 2952–2967. [Google Scholar] [PubMed]
- Brown, C.D.; Higgins, M.; Donato, K.A.; Rohde, F.C.; Garrison, R.; Obarzanek, E.; Ernst, N.D.; Horan, M. Body mass index and the prevalence of hypertension and dyslipidemia. Obes. Res. 2000, 8, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Colin-Ramirez, E.; Castillo-Martinez, L.; Orea-Tejeda, A.; Villa Romero, A.R.; Vergara Castaneda, A.; Asensio Lafuente, E. Waist circumference and fat intake are associated with high blood pressure in Mexican children aged 8 to 10 years. J. Am. Diet. Assoc. 2009, 109, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Francischetti, E.A.; Genelhu, V.A. Obesity-hypertension: An ongoing pandemic. Int. J. Clin. Pract. 2007, 61, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Rahmouni, K.; Correia, M.L.; Haynes, W.G.; Mark, A.L. Obesity-associated hypertension: New insights into mechanisms. Hypertension 2005, 45, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Huxley, R.R.; Wildman, R.P.; Woodward, M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: A meta-analysis. J. Clin. Epidemiol. 2008, 61, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Khashayar, P.; Aghaei Meybodi, H.; Rezaei Hemami, M.; Larijani, B. Role of obesity variables in detecting hypertension in an iranian population. High Blood Press. Cardiovasc. Prev. 2017, 24, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.G.; Song, H.J.; Kim, J.M.; Park, K.H.; Paek, Y.J.; Cho, J.J.; Caterson, I.; Kang, J.G. The estimation of cardiovascular risk factors by body mass index and body fat percentage in Korean male adults. Metabolism 2009, 58, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Frankenfield, D.C.; Rowe, W.A.; Cooney, R.N.; Smith, J.S.; Becker, D. Limits of body mass index to detect obesity and predict body composition. Nutrition 2001, 17, 26–30. [Google Scholar] [CrossRef]
- Watanabe, J.; Tochikubo, O. Relationship between visceral fat accumulation and hypertension in obese men. Clin. Exp. Hypertens. 2003, 25, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Ho, S.C.; Yu, A.L.; Sham, A. Is waist circumference a useful measure in predicting health outcomes in the elderly? Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1349–1355. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.D.; Muto, T. Metabolic syndrome in japanese men and women with special reference to the anthropometric criteria for the assessment of obesity: Proposal to use the waist-to-height ratio. Prev. Med. 2006, 42, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Dobbelsteyn, C.J.; Joffres, M.R.; MacLean, D.R.; Flowerdew, G. A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian heart health surveys. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Shiwaku, K.; Anuurad, E.; Enkhmaa, B.; Nogi, A.; Kitajima, K.; Yamasaki, M.; Yoneyama, T.; Oyunsuren, T.; Yamane, Y. Predictive values of anthropometric measurements for multiple metabolic disorders in Asian populations. Diabetes Res. Clin. Pract. 2005, 69, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Magliano, D.; Matsuzawa, Y.; Alberti, G.; Shaw, J. The metabolic syndrome: A global public health problem and a new definition. J. Atheroscler. Thromb. 2005, 12, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Decoda Study, G.; Nyamdorj, R.; Qiao, Q.; Lam, T.H.; Tuomilehto, J.; Ho, S.Y.; Pitkaniemi, J.; Nakagami, T.; Mohan, V.; Janus, E.D.; et al. Bmi compared with central obesity indicators in relation to diabetes and hypertension in Asians. Obesity 2008, 16, 1622–1635. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, N.Y.; Krakauer, J.C. An anthropometric risk index based on combining height, weight, waist, and hip measurements. J. Obes. 2016, 2016, 8094275. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistic of China. The National Economic and Social Development Statistical Bulletin in 2015. Available online: http://www.Stats.Gov.Cn/tjsj/zxfb/201602/t20160229_1323991.html (accessed on 21 May 2017).
- Yimin, C. Relationship of hypertension with BMI, waist circumference, and WHR in 6830 elderly people. Zhejiang J. Integr. Tradit. Chin. Western Med. 2015, 24, 3. [Google Scholar]
- Ma, Y.; Zhang, B.; Wang, H.; Du, W.; Su, C.; Zhai, F. Relationship between adiposity indicators and blood pressure of urban and rural residents in China. Wei Sheng Yan Jiu 2012, 41, 70–74. [Google Scholar] [PubMed]
- Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Who, BMI Classification. 2015. Available online: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html (accessed on 19 April 2018).
- Guangdong Provincial Co-operation Group for Diabetes Epidemiological Study. Waist/height ratio: An effective index for abdominal obesity predicting diabetes and hypertension. Chin. J. Endocrinol. Metab. 2004, 20, 4. [Google Scholar]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- He, Y.H.; Jiang, G.X.; Yang, Y.; Huang, H.E.; Li, R.; Li, X.Y.; Ning, G.; Cheng, Q. Obesity and its associations with hypertension and type 2 diabetes among Chinese adults age 40 years and over. Nutrition 2009, 25, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Magno, C.P.; Lane, K.T.; Hinojosa, M.W.; Lane, J.S. Association of hypertension, diabetes, dyslipidemia, and metabolic syndrome with obesity: Findings from the national health and nutrition examination survey, 1999 to 2004. J. Am. Coll. Surg. 2008, 207, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Lau, D.C. The obesity epidemic and its impact on hypertension. Can. J. Cardiol. 2012, 28, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Baudrand, R.; Goodarzi, M.O.; Vaidya, A.; Underwood, P.C.; Williams, J.S.; Jeunemaitre, X.; Hopkins, P.N.; Brown, N.; Raby, B.A.; Lasky-Su, J.; et al. A prevalent caveolin-1 gene variant is associated with the metabolic syndrome in Caucasians and Hispanics. Metabolism 2015, 64, 1674–1681. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, K.; Suliburska, J.; Skrypnik, D.; Pilarski, L.; Regula, J.; Bogdanski, P. The genetic basis of obesity complications. Acta Sci. Pol. Technol. Aliment. 2017, 16, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, D.; Bogdanski, P.; Madry, E.; Karolkiewicz, J.; Ratajczak, M.; Krysciak, J.; Pupek-Musialik, D.; Walkowiak, J. Effects of endurance and endurance strength training on body composition and physical capacity in women with abdominal obesity. Obes. Facts 2015, 8, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Skrypnik, D.; Ratajczak, M.; Karolkiewicz, J.; Madry, E.; Pupek-Musialik, D.; Hansdorfer-Korzon, R.; Walkowiak, J.; Jakubowski, H.; Bogdanski, P. Effects of endurance and endurance-strength exercise on biochemical parameters of liver function in women with abdominal obesity. Biomed. Pharmacother. 2016, 80, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Szulinska, M.; Skrypnik, D.; Ratajczak, M.; Karolkiewicz, J.; Madry, E.; Musialik, K.; Walkowiak, J.; Jakubowski, H.; Bogdanski, P. Effects of endurance and endurance-strength exercise on renal function in abdominally obese women with renal hyperfiltration: A prospective randomized trial. Biomed. Environ. Sci. 2016, 29, 706–712. [Google Scholar] [PubMed]
- Droyvold, W.B.; Midthjell, K.; Nilsen, T.I.; Holmen, J. Change in body mass index and its impact on blood pressure: A prospective population study. Int. J. Obes. 2005, 29, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Wilsgaard, T.; Schirmer, H.; Arnesen, E. Impact of body weight on blood pressure with a focus on sex differences: The tromso study, 1986-1995. Arch. Intern. Med. 2000, 160, 2847–2853. [Google Scholar] [CrossRef] [PubMed]
- Jousilahti, P.; Tuomilehto, J.; Vartiainen, E.; Valle, T.; Nissinen, A. Body mass index, blood pressure, diabetes and the risk of anti-hypertensive drug treatment: 12-year follow-up of middle-aged people in Eastern Finland. J. Hum. Hypertens. 1995, 9, 847–854. [Google Scholar] [PubMed]
- Chen, S.C.; Lo, T.C.; Chang, J.H.; Kuo, H.W. Variations in aging, gender, menopause, and obesity and their effects on hypertension in Taiwan. Int. J. Hypertens. 2014, 2014, 515297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Q.; Deng, J.; He, L.P.; Ling, W.H.; Su, Y.X.; Chen, Y.M. Comparison of various anthropometric and body fat indices in identifying cardiometabolic disturbances in Chinese men and women. PLoS ONE 2013, 8, e70893. [Google Scholar] [CrossRef] [PubMed]
- Snijder, M.B.; Zimmet, P.Z.; Visser, M.; Dekker, J.M.; Seidell, J.C.; Shaw, J.E. Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: The ausdiab study. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hoy, W.E. Waist circumference, body mass index, hip circumference and waist-to-hip ratio as predictors of cardiovascular disease in aboriginal people. Eur. J. Clin. Nutr. 2004, 58, 888–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.J.G.Z.; Hu, X.S.; Wu, M.; Chen, F.M.; Zhou, H.; Kang, G.D. Relationship between multi-metabolic disorders and hip circumference in Jiangsu community population. Chin. J. Public Health 2008, 24, 3. [Google Scholar]
- Wang, S.L.; Pan, W.H.; Hwu, C.M.; Ho, L.T.; Lo, C.H.; Lin, S.L.; Jong, Y.S. Incidence of niddm and the effects of gender, obesity and hyperinsulinaemia in Taiwan. Diabetologia 1997, 40, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Lao, X.Q.; Thomas, G.N.; Jiang, C.Q.; Zhang, W.S.; Yin, P.; Schooling, M.; Heys, M.; Leung, G.M.; Adab, P.; Cheng, K.K.; et al. Parity and the metabolic syndrome in older Chinese women: The Guangzhou biobank cohort study. Clin. Endocrinol. 2006, 65, 460–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.H.; Huo, Y.N.; Wu, M.B.; Liu, J.D.; Zhang, Y.L. Relationship of parity and other factors with metabolic syndrome in middle-age and elderly women in Nanchang community. Chin. J. Endocrinol. Metab. 2014, 30, 4. [Google Scholar]
- Taing, K.Y.; Farkouh, M.E.; Moineddin, R.; Tu, J.V.; Jha, P. Age and sex-specific associations of anthropometric measures of adiposity with blood pressure and hypertension in India: A cross-sectional study. BMC Cardiovasc. Disord. 2016, 16, 247. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total | Hypertensive | Normotensive | X2 | p |
---|---|---|---|---|---|
(n = 7070) n (%) | (n = 3124) n (%) | (n = 3946) n (%) | |||
Gender | 51.920 | 0.000 | |||
Male | 2846 (40.3) | 1110 (39.0) | 1736 (61.0) | ||
Female | 4224 (59.7) | 2014 (47.7) | 2210 (52.3) | ||
Age | 83.129 | 0.000 | |||
60–64 | 1577 (22.3) | 561 (35.6) | 1016 (64.4) | ||
65–69 | 2129 (30.1) | 941 (44.2) | 1188 (55.8) | ||
70–74 | 1780 (25.2) | 898 (50.4) | 882 (49.6) | ||
75–80 | 975 (13.8) | 469 (48.1) | 506 (51.9) | ||
≥80 | 609 (8.6) | 255 (41.9) | 354 (58.1) | ||
Residence | 0.385 | 0.825 | |||
Rural | 4990 (70.6) | 2203 (44.1) | 2787 (55.9) | ||
Township | 524 (7.4) | 226 (43.1) | 298 (56.9) | ||
City | 1556 (22.0) | 695 (44.7) | 861 (55.3) | ||
Marital status | 19.931 | 0.000 | |||
Single | 1331 (18.8) | 661 (49.7) | 670 (50.3) | ||
Married | 5739 (81.2) | 2463 (42.9) | 3276 (57.1) | ||
Education level | 18.985 | 0.000 | |||
No formal education | 2270 (32.1) | 1083 (47.7) | 1187 (52.3) | ||
Primary education | 2924 (41.4) | 1268 (43.4) | 1656 (56.6) | ||
Secondary or above | 1876 (26.5) | 773 (41.2) | 1103 (58.8) | ||
Employment | 21.085 | 0.000 | |||
Employed | 2176 (30.8) | 873 (40.1) | 1303 (59.9) | ||
Unemployed | 4894 (69.2) | 2251 (46.0) | 2643 (54.0) | ||
Personal income | 10.436 | 0.015 | |||
0–2500 | 1571 (22.2) | 673 (42.8) | 898 (57.2) | ||
2500–5000 | 1689 (23.9) | 792 (46.9) | 897 (53.1) | ||
5000–15,000 | 1908 (27.0) | 860 (45.1) | 1048 (54.9) | ||
≥15,000 | 1902 (26.9) | 799 (42.0) | 1103 (58.0) | ||
Smoking status | 72.709 | 0.000 | |||
Nonsmoker | 5029 (71.1) | 2334 (46.4) | 2695 (53.6) | ||
Ex-smoker | 903 (12.8) | 418 (46.3) | 485 (53.7) | ||
Current smoker | 1138 (16.1) | 372 (32.7) | 766 (67.3) | ||
Drinking status | 57.511 | 0.000 | |||
Never drink | 5365 (75.9) | 2453 (45.7) | 2912 (54.3) | ||
Past drink | 552 (7.8) | 275 (49.8) | 277 (50.2) | ||
Drink seldom | 377 (16.3) | 126 (33.4) | 251 (66.6) | ||
Drink occasionally | 98 (1.4) | 33 (33.7) | 65 (66.3) | ||
Drink more often | 678 (9.6) | 237 (35.0) | 441 (65.0) | ||
Exercise time (per day) | 3.779 | 0.286 | |||
Never | 2719 (38.5) | 1182 (43.5) | 1537 (56.5) | ||
Less than half hour | 2160 (30.6) | 966 (44.7) | 1194 (55.3) | ||
More than half hour | 1547 (21.9) | 707 (45.7) | 840 (54.3) | ||
More than one hour | 644 (9.1) | 269 (41.8) | 375 (58.2) | ||
Empty nest | 5.790 | 0.016 | |||
Empty nest | 1923 (27.2) | 805 (41.9) | 1118 (58.1) | ||
Non-empty nest | 5147 (72.8) | 2319 (45.1) | 2828 (54.9) | ||
Self-rated health | 336.988 | 0.000 | |||
Very bad | 127 (1.8) | 74 (58.3) | 53 (41.7) | ||
Bad | 1169 (16.5) | 667 (57.1) | 502 (42.9) | ||
Moderate | 1992 (28.2) | 1051 (52.8) | 941 (47.2) | ||
Very good | 2639 (37.3) | 1043 (39.5) | 1596 (60.5) | ||
Excellent | 1143 (16.2) | 289 (25.3) | 854 (74.7) | ||
ADL scores | 57.648 | 0.000 | |||
14 | 5467 (77.3) | 2291 (41.9) | 3176 (58.1) | ||
15–21 | 1283 (18.1) | 646 (50.4) | 637 (49.6) | ||
22+ | 320 (4.5) | 187 (58.4) | 133 (41.6) |
Characteristics | Total | Hypertension | Normotensive | X2 | p |
---|---|---|---|---|---|
(n = 2846) n (%) | (n = 1110) n (%) | (n = 1736) n (%) | |||
Height | 0.256 | 0.968 | |||
Q1 | 162 (5.7) | 61 (37.7) | 101 (62.3) | ||
Q2 | 554 (19.5) | 213 (38.4) | 341 (61.6) | ||
Q3 | 701 (24.6) | 276 (39.4) | 425 (60.6) | ||
Q4 | 1429 (50.2) | 560 (39.2) | 869 (60.8) | ||
Weight | 89.441 | 0.000 | |||
Q1 | 490 (17.2) | 128 (26.1) | 362 (73.9) | ||
Q2 | 630 (22.1) | 212 (33.7) | 418 (66.3) | ||
Q3 | 891 (31.3) | 347 (38.9) | 544 (61.1) | ||
Q4 | 835 (29.3) | 423 (50.7) | 412 (49.3) | ||
WC | 106.522 | 0.000 | |||
<90 | 831 (29.2) | 202 (24.3) | 629 (75.7) | ||
≥90 | 2015 (70.8) | 908 (45.1) | 1107 (54.9) | ||
HC | 91.743 | 0.000 | |||
Q1 | 701 (24.6) | 187 (26.7) | 514 (73.3) | ||
Q2 | 774 (27.2) | 280 (36.2) | 494 (63.8) | ||
Q3 | 640 (22.5) | 274 (42.8) | 366 (57.2) | ||
Q4 | 731 (25.7) | 369 (50.5) | 362 (49.5) | ||
WHR | 27.46 | 0.000 | |||
<0.9 | 713 (25.1) | 219 (30.7) | 494 (69.3) | ||
≥0.9 | 2133 (74.9) | 891 (41.8) | 1242 (58.2) | ||
WHtR | 81.806 | 0.000 | |||
<0.5 | 612 (21.5) | 142 (23.2) | 470 (76.8) | ||
≥0.5 | 2234 (78.5) | 968 (43.3) | 1266 (56.7) | ||
BMI | 107.422 | 0.000 | |||
Underweight | 122 (4.3) | 23 (18.9) | 99 (81.1) | ||
Normal weight | 1684 (59.2) | 568 (33.7) | 1116 (66.3) | ||
Overweight | 910 (32.0) | 434 (47.7) | 476 (52.3) | ||
Obese | 130 (4.6) | 85 (65.4) | 45 (34.6) | ||
ABSI | 5.513 | 0.138 | |||
Q1 | 693 (24.3) | 253 (36.5) | 440 (63.5) | ||
Q2 | 786 (27.6) | 296 (37.7) | 490 (62.3) | ||
Q3 | 735 (25.8) | 294 (40.0) | 441 (60.0) | ||
Q4 | 632 (22.2) | 267 (42.2) | 365 (57.8) | ||
HI | 3.228 | 0.358 | |||
Q1 | 974 (34.2) | 363 (37.3) | 611 (62.7) | ||
Q2 | 913 (32.1) | 353 (38.7) | 560 (61.3) | ||
Q3 | 585 (20.6) | 237 (40.5) | 348 (59.5) | ||
Q4 | 374 (13.1) | 157 (42.0) | 217 (58.0) |
Characteristics | Total | Hypertension | Normotensive | X2 | p |
---|---|---|---|---|---|
(n = 4224) n (%) | (n = 2014) n (%) | (n = 2210) n (%) | |||
Height | 2.326 | 0.508 | |||
Q1 | 1713 (40.6) | 834 (48.7) | 879 (51.3) | ||
Q2 | 1807 (42.8) | 860 (47.6) | 947 (52.4) | ||
Q3 | 560 (13.3) | 252 (45.0) | 308 (55.0) | ||
Q4 | 144 (3.4) | 68 (47.2) | 76 (52.8) | ||
Weight | 79.705 | 0.000 | |||
Q1 | 1324 (31.3) | 516 (39.0) | 808 (61.0) | ||
Q2 | 1129 (26.7) | 523 (46.3) | 606 (53.7) | ||
Q3 | 1110 (26.3) | 613 (55.2) | 497 (44.8) | ||
Q4 | 661 (15.6) | 362 (54.8) | 299 (45.2) | ||
WC | 83.932 | 0.000 | |||
<80 | 527 (12.5) | 153 (29.0) | 374 (71.0) | ||
≥80 | 3697 (87.5) | 1861 (50.3) | 1836 (49.7) | ||
HC | 107.647 | 0.000 | |||
Q1 | 929 (22.0) | 324 (34.9) | 605 (65.1) | ||
Q2 | 1042 (24.7) | 469 (45.0) | 573 (55.0) | ||
Q3 | 939 (22.2) | 482 (51.3) | 457 (48.7) | ||
Q4 | 1314 (31.1) | 739 (56.2) | 575 (43.8) | ||
WHR | 8.319 | 0.004 | |||
<0.8 | 74 (1.8) | 23 (31.1) | 51 (68.9) | ||
≥0.8 | 4150 (98.2) | 1991 (48.0) | 2159 (52.0) | ||
WHtR | 77.75 | 0.000 | |||
<0.5 | 395 (9.4) | 105 (26.6) | 290 (73.4) | ||
≥0.5 | 3829 (90.6) | 1909 (49.9) | 1920 (50.1) | ||
BMI | 112.593 | 0.000 | |||
Underweight | 112 (2.7) | 25 (22.3) | 87 (77.7) | ||
Normal weight | 2001 (47.4) | 832 (41.6) | 1169 (58.4) | ||
Overweight | 1716 (40.6) | 911 (53.1) | 805 (46.9) | ||
Obese | 395 (9.4) | 246 (62.3) | 149 (37.7) | ||
ABSI | 14.533 | 0.002 | |||
Q1 | 1080 (25.6) | 469 (43.4) | 611 (56.6) | ||
Q2 | 1006 (23.8) | 481 (47.8) | 525 (52.2) | ||
Q3 | 991 (23.5) | 513 (51.8) | 478 (48.2) | ||
Q4 | 1147 (27.2) | 551 (48.0) | 596 (52.0) | ||
HI | 10.582 | 0.014 | |||
Q1 | 792 (18.8) | 348 (43.9) | 444 (56.1) | ||
Q2 | 857 (20.3) | 410 (47.8) | 447 (52.2) | ||
Q3 | 1179 (27.9) | 603 (51.1) | 576 (48.9) | ||
Q4 | 1396 (33.0) | 653 (46.8) | 743 (53.2) |
Characteristics | Model 1 | p | Female (n = 4224) | p | Model 2 | p | Female (n = 4224) | p |
---|---|---|---|---|---|---|---|---|
Male (n = 2846) | Male (n = 2846) | |||||||
Weight a | 0.000 | 0.000 | 0.224 | 0.205 | ||||
Q2 | 1.609 (1.223, 2.115) | 0.001 | 1.502 (1.268, 1.779) | 0.000 | 1.120 (0.817, 1.534) | 0.481 | 0.964 (0.778, 1.195) | 0.738 |
Q3 | 2.125 (1.642, 2.750) | 0.000 | 2.241 (1.884, 2.667) | 0.000 | 1.117 (0.792, 1.575) | 0.527 | 1.083 (0.810, 1.449) | 0.589 |
Q4 | 3.590 (2.749, 4.688) | 0.000 | 2.283 (1.861, 2.800) | 0.000 | 1.436 (0.949, 2.174) | 0.087 | 0.850 (0.586, 1.232) | 0.390 |
WC | 2.716 (2.240, 3.293) | 0.000 | 2.497 (2.034, 3.066) | 0.000 | 1.936 (1.360, 2.756) | 0.000 | 1.257 (0.899, 1.757) | 0.182 |
HC a | 0.000 | 0.000 | 0.898 | 0.003 | ||||
Q2 | 1.620 (1.283, 2.044) | 0.000 | 1.600 (1.325, 1.933) | 0.000 | 0.922 (0.679, 1.252) | 0.605 | 1.356 (1.076, 1.708) | 0.010 |
Q3 | 2.143 (1.681, 2.732) | 0.000 | 2.103 (1.731, 2.555) | 0.000 | 0.889 (0.618, 1.277) | 0.524 | 1.682 (1.255, 2.253) | 0.000 |
Q4 | 2.923 (2.305, 3.708) | 0.000 | 2.584 (2.153, 3.101) | 0.000 | 0.947 (0.642, 1.396) | 0.782 | 1.972 (1.371, 2.836) | 0.000 |
WHR | 1.623 (1.343, 1.961) | 0.000 | 1.863 (1.116, 3.110) | 0.017 | 0.976 (0.774, 1.230) | 0.837 | 0.884 (0.500, 1.565) | 0.673 |
WHtR | 2.509 (2.022, 3.113) | 0.000 | 2.654 (2.090, 3.371) | 0.000 | 1.166 (0.834, 1.631) | 0.368 | 1.311 (0.905, 1.899) | 0.152 |
BMI b | 0.000 | 0.000 | 0.000 | 0.004 | ||||
Normal weight | 2.599 (1.600, 4.223) | 0.000 | 2.888 (1.816, 4.593) | 0.000 | 1.693 (0.991, 2.890) | 0.054 | 1.713 (1.037, 2.828) | 0.035 |
Overweight | 4.617 (2.811, 7.583) | 0.000 | 4.898 (3.068, 7.818) | 0.000 | 2.026 (1.124, 3.652) | 0.019 | 2.055 (1.188, 3.555) | 0.010 |
Obese | 10.682 (5.813, 19.631) | 0.000 | 6.819 (4.123, 11.280) | 0.000 | 4.327 (2.138, 8.758) | 0.000 | 2.927 (1.584, 5.410) | 0.001 |
ABSI c | 0.036 | 0.388 | ||||||
Q2 | 1.136 (0.950, 1.360) | 0.163 | 1.024 (0.841, 1.247) | 0.813 | ||||
Q3 | 1.292 (1.078, 1.549) | 0.006 | 1.162 (0.942, 1.434) | 0.161 | ||||
Q4 | 1.063 (0.889, 1.271) | 0.503 | 1.018 (0.813, 1.276) | 0.875 | ||||
HI c | 0.031 | 0.028 | ||||||
Q2 | 1.170 (0.956, 1.432) | 0.128 | 0.902 (0.714, 1.138) | 0.384 | ||||
Q3 | 1.281 (1.061, 1.547) | 0.010 | 0.910 (0.707, 1.172) | 0.464 | ||||
Q4 | 1.052 (0.875, 1.263) | 0.590 | 0.701 (0.521, 0.943) | 0.019 |
Characteristics | Male | 70–80 (n = 1199) | 80+ (n = 261) | Female | 70–80 (n = 1556) | 80+ (n = 348) |
---|---|---|---|---|---|---|
60–70 (n = 1386) | 60–70 (n = 2320) | |||||
Weight a | ||||||
Q2 | 1.076 (0.634–1.827) | 1.446 (0.918–2.276) | 0.427 (0.145–1.255) | 1.042 (0.786–1.383) | 0.952 (0.672–1.349) | 1.309 (0.663–2.581) |
Q3 | 1.099 (0.621–1.944) | 1.346 (0.816–2.220) | 0.898 (0.261–3.083) | 1.194 (0.829–1.718) | 1.113 (0.689–1.799) | 0.894 (0.335–2.389) |
Q4 | 1.501 (0.774–2.911) | 1.639 (0.885–3.036) | 1.095 (0.230–5.217) | 0.896 (0.575–1.394) | 1.000 (0.533–1.876) | 2.650 (0.324–21.683) |
WC | 2.454 (1.423–4.233) ** | 1.454 (0.862–2.452) | 2.578 (0.802–8.284) | 0.927 (0.576–1.492) | 1.718 (0.980–3.011) | 1.286 (0.504–3.280) |
HC a | ||||||
Q2 | 0.873 (0.545–1.397) | 0.821 (0.521–1.292) | 2.094 (0.652–6.726) | 1.263 (0.935–1.707) | 1.507 (1.028–2.209) ** | 1.009 (0.532–1.912) |
Q3 | 0.954 (0.554–1.644) | 0.730 (0.422–1.265) | 0.989 (0.226–4.323) | 1.389 (1.001–1.928) ** | 1.992 (1.228–3.231) ** | 1.199 (0.517–2.781) |
Q4 | 0.794 (0.442–1.429) | 0.989 (0.549–1.781) | 1.257 (0.237–6.676) | 1.331 (0.935–1.896) | 2.364 (1.287–4.342) ** | 2.655 (1.142–6.169) ** |
WHR | 0.791 (0.562–1.114) | 1.218 (0.854–1.738) | 1.023 (0.491–2.131) | |||
WHtR | 1.059 (0.637–1.761) | 1.228 (0.748–2.018) | 1.474 (0.424–5.126) | 1.727 (1.033–2.887) ** | 0.766 (0.406–1.445) | 1.457 (0.514–4.134) |
BMI b | ||||||
Normal weight | 2.032 (0.735–5.616) | 1.665 (0.813–3.410) | 1.628 (0.725–3.654) | 2.181 (0.988–4.815) | 1.172 (0.390–3.522) | |
Overweight | 2.588 (0.876–7.644) | 1.934 (0.862–4.341) | 2.602 (1.103–6.139) ** | 2.077 (0.871–4.948) | 0.855 (0.229–3.197) | |
Obese | 6.745 (1.975–23.040) ** | 4.372 (1.582–12.082) ** | 3.614 (1.441–9.067) ** | 3.049 (1.123–8.281) ** | 3.563 (0.488–26.005) | |
ABSI c | ||||||
Q2 | 1.191 (0.841–1.686) | |||||
Q3 | 1.466 (1.025–2.097) ** | |||||
Q4 | 1.179 (0.808–1.720) | |||||
HI c | ||||||
Q2 | 1.233 (0.491–3.097) | 0.792 (0.538–1.166) | ||||
Q3 | 1.123 (0.406–3.108) | 0.869 (0.572–1.321) | ||||
Q4 | 2.322 (0.653–8.262) | 0.553 (0.341–0.898) ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Xu, L.; Li, J.; Sun, L.; Qin, W.; Ding, G.; Zhu, J.; Zhang, J.; Yu, Z.; Xie, S. Association of Anthropometric Indices of Obesity with Hypertension in Chinese Elderly: An Analysis of Age and Gender Differences. Int. J. Environ. Res. Public Health 2018, 15, 801. https://doi.org/10.3390/ijerph15040801
Wang Q, Xu L, Li J, Sun L, Qin W, Ding G, Zhu J, Zhang J, Yu Z, Xie S. Association of Anthropometric Indices of Obesity with Hypertension in Chinese Elderly: An Analysis of Age and Gender Differences. International Journal of Environmental Research and Public Health. 2018; 15(4):801. https://doi.org/10.3390/ijerph15040801
Chicago/Turabian StyleWang, Qian, Lingzhong Xu, Jiajia Li, Long Sun, Wenzhe Qin, Gan Ding, Jing Zhu, Jiao Zhang, Zihang Yu, and Su Xie. 2018. "Association of Anthropometric Indices of Obesity with Hypertension in Chinese Elderly: An Analysis of Age and Gender Differences" International Journal of Environmental Research and Public Health 15, no. 4: 801. https://doi.org/10.3390/ijerph15040801
APA StyleWang, Q., Xu, L., Li, J., Sun, L., Qin, W., Ding, G., Zhu, J., Zhang, J., Yu, Z., & Xie, S. (2018). Association of Anthropometric Indices of Obesity with Hypertension in Chinese Elderly: An Analysis of Age and Gender Differences. International Journal of Environmental Research and Public Health, 15(4), 801. https://doi.org/10.3390/ijerph15040801