Association between Organochlorine Pesticide Levels in Breast Milk and Their Effects on Female Reproduction in a Taiwanese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Data Collection
2.2. Chemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Coker, E.; Chevrier, J.; Rauch, S.; Bradman, A.; Obida, M.; Crause, M.; Bornman, R.; Eskenazi, B. Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort. Environ. Int. 2018, 113, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Ntow, W.J.; Tagoe, L.M.; Drechsel, P.; Kelderman, P.; Gijzen, H.J.; Nyarko, E. Accumulation of persistent organochlorine contaminants in milk and serum of farmers from Ghana. Environ. Res. 2008, 106, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Gangolli, S. Organochlorine chemicals in seafood: Occurrence and health concerns. Food Chem. Toxicol. 2002, 40, 767–779. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.-R. Persistent organochlorine pesticides in aquatic environments and fishes in Taiwan and their risk assessment. Environ. Sci. Pollut. Res. 2018, 25, 7699–7708. [Google Scholar] [CrossRef] [PubMed]
- Okoya, A.A.; Ogunfowokan, A.O.; Asubiojo, O.I.; Torto, N. Organochlorine pesticide residues in sediments and waters from cocoa producing areas of Ondo State, Southwestern Nigeria. ISRN Soil Sci. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- Tsai, W.-T. Current status and regulatory aspects of pesticides considered to be persistent organic pollutants (POPs) in Taiwan. Int. J. Environ. Res. Public Health 2010, 7, 3615–3627. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Altshul, L.; Hauser, R. Serum PCBs, p,p′-DDE and HCB predict thyroid hormone levels in men. Environ. Res. 2007, 104, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Trapp, M.; Baukloh, V.; Bohnet, H.-G.; Heeschen, W. Pollutants in human follicular fluid. Fertil. Steril. (United States) 1984, 42, 146–148. [Google Scholar] [CrossRef]
- Murono, E.P.; Derk, R.C.; Akgul, Y. In vivo exposure of young adult male rats to methoxychlor reduces serum testosterone levels and ex vivo Leydig cell testosterone formation and cholesterol side-chain cleavage activity. Reprod. Toxicol. 2006, 21, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Lindenau, A.; Fischer, B.; Seiler, P.; Beier, H.M. Effects of persistent chlorinated hydrocarbons on reproductive tissues in female rabbits. Hum. Reprod. 1994, 9, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Kadhel, P.; Monnier, P.; Boucoiran, I.; Chaillet, N.; Fraser, W.D. Organochlorine Pollutants and Female Fertility A Systematic Review Focusing on In Vitro Fertilization Studies. Reprod. Sci. 2012, 19, 1246–1259. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.M.; Bauer, O.; Blüthgen, A.; Ludwig, A.K.; Vollersen, E.; Kaisi, M.; Al-Hasani, S.; Diedrich, K.; Ludwig, M. Distribution of persistent organochlorine contaminants in infertile patients from Tanzania and Germany. J. Assist. Reprod. Genet. 2006, 23, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Axmon, A.; Thulstrup, A.-M.; Rignell-Hydbom, A.; Pedersen, H.; Zvyezday, V.; Ludwicki, J.; Jönsson, B.; Toft, G.; Bonde, J.-P.; Hagmar, L. Time to pregnancy as a function of male and female serum concentrations of 2, 2′ 4, 4′ 5, 5′-hexachlorobiphenyl (CB-153) and 1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene (p,p′-DDE). Hum. Reprod. 2006, 21, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Bastos, A.M.X.; Souza Mdo, C.; Almeida Filho, G.L.; Krauss, T.M.; Pavesi, T.; Silva, L.E. Organochlorine compound levels in fertile and infertile women from Rio de Janeiro, Brazil. Arq. Bras. Endocrinol. Metab. 2013, 57, 346–353. [Google Scholar] [CrossRef]
- Ribas-Fitó, N.; Cardo, E.; Sala, M.; De Muga, M.E.; Mazón, C.; Verdu, A.; Kogevinas, M.; Grimalt, J.O.; Sunyer, J. Breastfeeding, exposure to organochlorine compounds, and neurodevelopment in infants. Pediatrics 2003, 111, e580–e585. [Google Scholar] [CrossRef] [PubMed]
- Longnecker, M.P.; Klebanoff, M.A.; Zhou, H.; Brock, J.W. Association between maternal serum concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth. Lancet 2001, 358, 110–114. [Google Scholar] [CrossRef]
- Chao, H.-R.; Wang, S.-L.; Lin, T.-C.; Chung, X.-H. Levels of organochlorine pesticides in human milk from central Taiwan. Chemosphere 2006, 62, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, L.; Flanagan, M. The survey of ogranochlorine pesticide residues in breast milk from Taiwan. Plant Prot. Bull. 1983, 25, 191–203. [Google Scholar]
- Jaga, K.; Dharmani, C. Global surveillance of DDT and DDE levels in human tissues. Int. J. Occup. Med. Environ. Health 2003, 16, 7–20. [Google Scholar] [PubMed]
- Kang, J.-H.; Park, H.; Chang, Y.-S.; Choi, J.-W. Distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human serum from urban areas in Korea. Chemosphere 2008, 73, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Quintana, P.J.; Delfino, R.J.; Korrick, S.; Ziogas, A.; Kutz, F.W.; Jones, E.L.; Laden, F.; Garshick, E. Adipose tissue levels of organochlorine pesticides and polychlorinated biphenyls and risk of non-Hodgkin’s lymphoma. Environ. Health Perspect. 2004, 112, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Stuetz, W.; Prapamontol, T.; Erhardt, J.; Classen, H. Organochlorine pesticide residues in human milk of a Hmong hill tribe living in Northern Thailand. Sci. Total Environ. 2001, 273, 53–60. [Google Scholar] [CrossRef]
- Wong, C.; Leung, K.; Poon, B.; Lan, C.; Wong, M. Organochlorine hydrocarbons in human breast milk collected in Hong Kong and Guangzhou. Arch. Environ. Contam. Toxicol. 2002, 43, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Xu, Y.; Li, W.; Han, G.; Ling, B. PCBs and OCPs in human milk and selected foods from Luqiao and Pingqiao in Zhejiang, China. Sci. Total Environ. 2007, 378, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zeng, X.; Zheng, K.; Zhu, X.; Ma, L.; Xu, Q.; Zhang, X.; Yu, Y.; Sheng, G.; Fu, J. Musks and organochlorine pesticides in breast milk from Shanghai, China: Levels, temporal trends and exposure assessment. Ecotoxicol. Environ. Saf. 2012, 84, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Minh, N.H.; Someya, M.; Minh, T.B.; Kunisue, T.; Iwata, H.; Watanabe, M.; Tanabe, S.; Viet, P.H.; Tuyen, B.C. Persistent organochlorine residues in human breast milk from Hanoi and Hochiminh City, Vietnam: Contamination, accumulation kinetics and risk assessment for infants. Environ. Pollut. 2004, 129, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, K.; Koizumi, A.; Inoue, K.; Harada, K.H.; Hitomi, T.; Minata, M.; Tanabe, M.; Kato, Y.; Nishimura, E.; Yamamoto, Y. Levels and regional trends of persistent organochlorines and polybrominated diphenyl ethers in Asian breast milk demonstrate POPs signatures unique to individual countries. Environ. Int. 2009, 35, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.; Lee, H.K.; Lee, I.S.; Park, J.; Kim, H.J.; Lee, J.J.; Choi, G.; Choi, S.; Kim, S.; et al. Contamination of polychlorinated biphenyls and organochlorine pesticides in breast milk in Korea: Time-course variation, influencing factors, and exposure assessment. Chemosphere 2013, 93, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gill, J.; Bedi, J.; Pooni, P. Monitoring of pesticide residues in human breast milk from punjab, india and its correlation with health associated parameters. Bull. Environ. Contam. Toxicol. 2014, 93, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, M.J.; Al-Salam, A. Organochlorine pesticide residues in human milk and estimated daily intake (EDI) for the infants from eastern region of Saudi Arabia. Chemosphere 2016, 164, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Coakley, J.; Mueller, J.F.; Harden, F.; Toms, L.-M.; Douwes, J. Partitioning of persistent organic pollutants (POPs) between human serum and breast milk: A literature review. Chemosphere 2012, 89, 911–918. [Google Scholar]
- Johnson-Restrepo, B.; Addink, R.; Wong, C.; Arcaro, K.; Kannan, K. Polybrominated diphenyl ethers and organochlorine pesticides in human breast milk from Massachusetts, USA. J. Environ. Monit. 2007, 9, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Mamontova, E.A.; Tarasova, E.N.; Mamontov, A.A. PCBs and OCPs in human milk in Eastern Siberia, Russia: Levels, temporal trends and infant exposure assessment. Chemosphere 2017, 178, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Squella, X.; Santos, L.; Baumann, W.; Landaeta, D.; Jaimes, A.; Correa, J.C.; Sarmiento, O.L.; Ramos-Bonilla, J.P. Presence of organochlorine pesticides in breast milk samples from Colombian women. Chemosphere 2013, 91, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Polder, A.; Skåre, J.U.; Skjerve, E.; Løken, K.; Eggesbø, M. Levels of chlorinated pesticides and polychlorinated biphenyls in Norwegian breast milk (2002–2006), and factors that may predict the level of contamination. Sci. Total Environ. 2009, 407, 4584–4590. [Google Scholar] [CrossRef] [PubMed]
- LaKind, J.S.; Berlin, C.M.; Naiman, D.Q. Infant exposure to chemicals in breast milk in the United States: What we need to learn from a breast milk monitoring program. Environ. Health Perspect. 2001, 109, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Ritter, R.; Scheringer, M.; MacLeod, M.; Schenker, U.; Hungerbühler, K. A multi-individual pharmacokinetic model framework for interpreting time trends of persistent chemicals in human populations: Application to a postban situation. Environ. Health Perspect. 2009, 117, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Zietz, B.P.; Hoopmann, M.; Funcke, M.; Huppmann, R.; Suchenwirth, R.; Gierden, E. Long-term biomonitoring of polychlorinated biphenyls and organochlorine pesticides in human milk from mothers living in northern Germany. Int. J. Hyg. Environ. Health 2008, 211, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Achour, A.; Derouiche, A.; Barhoumi, B.; Kort, B.; Cherif, D.; Bouabdallah, S.; Sakly, M.; Rhouma, K.B.; Touil, S.; Driss, M.R.; et al. Organochlorine pesticides and polychlorinated biphenyls in human adipose tissue from northern Tunisia: Current extent of contamination and contributions of socio-demographic characteristics and dietary habits. Environ. Res. 2017, 156, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.R.; Kaushik, A.; Kaushik, C.P. Pesticide residues in bovine milk from a predominantly agricultural state of Haryana, India. Environ. Monit. Assess. 2007, 129, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Gai, N.; Tang, H.; Chen, S.; Chen, D.; Lu, G.; Yang, Y. Organochlorine pesticides and polychlorinated biphenyls in grass, yak muscle, liver, and milk in Ruoergai high altitude prairie, the eastern edge of Qinghai-Tibet Plateau. Sci. Total Environ. 2014, 491–492, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, N.; Ma, M.; Giesy, J.P.; Wang, Z. In vitro profiling of the endocrine disrupting potency of organochlorine pesticides. Toxicol. Lett. 2008, 183, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Bempah, C.K.; Donkor, A.K. Pesticide residues in fruits at the market level in Accra Metropolis, Ghana, a preliminary study. Environ. Monit. Assess. 2011, 175, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.H.; Ganesan, P.; Kumar, S. Y Chromosome microdeletion and altered sperm quality in human males with high concentration of seminal hexachlorocyclohexane (HCH). Chemosphere 2010, 80, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Pant, N.; Kumar, R.; Mathur, N.; Srivastava, S.; Saxena, D.; Gujrati, V.R. Chlorinated pesticide concentration in semen of fertile and infertile men and correlation with sperm quality. Environ. Toxicol. Pharmacol. 2007, 23, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Pant, N.; Shukla, M.; Upadhyay, A.; Chaturvedi, P.; Saxena, D.; Gupta, Y. Association between environmental exposure to p, p′-DDE and lindane and semen quality. Environ. Sci. Pollut. Res. 2014, 21, 11009–11016. [Google Scholar] [CrossRef] [PubMed]
- Upson, K.; De Roos, A.J.; Thompson, M.L.; Sathyanarayana, S.; Scholes, D.; Barr, D.B.; Holt, V.L. Organochlorine pesticides and risk of endometriosis: Findings from a population-based case-control study. Environ. Health Perspect. (Online) 2013, 121, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Chand, S.; Mustafa, M.; Banerjee, B.; Guleria, K. CYP17A1 gene polymorphisms and environmental exposure to organochlorine pesticides contribute to the risk of small for gestational age. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 180, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Elserougy, S.; Beshir, S.; Saad-Hussein, A.; AbouArab, A. Organochlorine pesticide residues in biological compartments of healthy mothers. Toxicol. Ind. Health 2013, 29, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Sharma, E.; Mustafa, M.; Pathak, R.; Guleria, K.; Ahmed, R.S.; Vaid, N.; Banerjee, B. A case control study of gene environmental interaction in fetal growth restriction with special reference to organochlorine pesticides. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 161, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Dailey, A.B.; Talbott, E.O.; Ilacqua, V.A.; Kearney, G.; Asal, N.R. Associations of serum concentrations of organochlorine pesticides with breast cancer and prostate cancer in US adults. Environ. Health Perspect. 2010, 118, 60–66. [Google Scholar] [PubMed]
- Ho, M.-L.; Hsiao, Y.-H.; Su, S.-Y.; Chou, M.-C.; Liaw, Y.-P. Mortality of breast cancer in Taiwan, 1971–2010: Temporal changes and an age–period–cohort analysis. J. Obstet. Gynaecol. 2015, 35, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Airaksinen, R.; Rantakokko, P.; Eriksson, J.G.; Blomstedt, P.; Kajantie, E.; Kiviranta, H. Association between type 2 diabetes and exposure to persistent organic pollutants. Diabetes Care 2011, 34, 1972–1979. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Hwang, J.; Kim, J.Y.; Shin, K.S.; Kang, S.J. Heptachlor induced nigral dopaminergic neuronal loss and Parkinsonism-like movement deficits in mice. Exp. Mol. Med. 2015, 46, e80. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K.; Mora, A.; Barr, D.; Juncos, J.; Roman, N.; Wesseling, C. Organochlorine chemicals and neurodegeneration among elderly subjects in Costa Rica. Environ. Res. 2014, 134, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sánchez, L.; Rothenberg, S.J.; Schnaas, L.; Cebrián, M.E.; Osorio, E.; del Carmen Hernández, M.; García-Hernández, R.M.; del Rio-Garcia, C.; Wolff, M.S.; López-Carrillo, L. In utero p, p′-DDE exposure and infant neurodevelopment: A perinatal cohort in Mexico. Environ. Health Perspect. 2007, 115, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Dewan, P.; Jain, V.; Gupta, P.; Banerjee, B.D. Organochlorine pesticide residues in maternal blood, cord blood, placenta, and breastmilk and their relation to birth size. Chemosphere 2013, 90, 1704–1710. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cheng, Y.; Tang, Q.; Lin, S.; Li, Y.; Hu, X.; Nian, J.; Gu, H.; Lu, Y.; Tang, H. The association between prenatal exposure to organochlorine pesticides and thyroid hormone levels in newborns in Yancheng, China. Environ. Res. 2014, 129, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Sunyer, J.; Torrent, M.; Garcia-Esteban, R.; Ribas-Fitó, N.; Carrizo, D.; Romieu, I.; Antó, J.; Grimalt, J. Early exposure to dichlorodiphenyldichloroethylene, breastfeeding and asthma at age six. Clin. Exp. Allergy 2006, 36, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Dewailly, E.; Ayotte, P.; Bruneau, S.; Gingras, S.; Belles-Isles, M.; Roy, R. Susceptibility to infections and immune status in Inuit infants exposed to organochlorines. Environ. Health Perspect. 2000, 108, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Cohn, B.A.; Wolff, M.S.; Cirillo, P.M.; Sholtz, R.I. DDT and breast cancer in young women: New data on the significance of age at exposure. Environ. Health Perspect. 2007, 115, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, A.R.; Arbuckle, T.E.; Chyou, P.-H. Risk factors for female infertility in an agricultural region. Epidemiology 2003, 14, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Toms, L.-M.L.; Harden, F.A.; Hobson, P.; White, N.M.; Mengersen, K.L.; Mueller, J.F. Concentrations of organochlorine pesticides in pooled human serum by age and gender. Environ. Res. 2017, 154, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Lebel, G.; Dodin, S.; Ayotte, P.; Marcoux, S.; Ferron, L.A.; Dewailly, E. Organochlorine exposure and the risk of endometriosis. Fertil. Steril. 1998, 69, 221–228. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, B.; Li, Q.X.; Wang, J. Organochlorine pesticides in follicular fluid of women undergoing assisted reproductive technologies from central China. Environ. Pollut. 2015, 207, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.R.; Shy, C.G.; Wang, S.L.; Chen, S.C.; Koh, T.W.; Chen, F.A.; Chang-Chien, G.P.; Tsou, T.C. Impact of non-occupational exposure to polybrominated diphenyl ethers on menstruation characteristics of reproductive-age females. Environ. Int. 2010, 36, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.R.; Wang, S.L.; Lin, L.Y.; Lee, W.J.; Papke, O. Placental transfer of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in Taiwanese mothers in relation to menstrual cycle characteristics. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2007, 45, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Porpora, M.G.; Medda, E.; Abballe, A.; Bolli, S.; De Angelis, I.; di Domenico, A.; Ferro, A.; Ingelido, A.M.; Maggi, A.; Panici, P.B.; et al. Endometriosis and organochlorinated environmental pollutants: A case-control study on Italian women of reproductive age. Environ. Health Perspect. 2009, 117, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
- Ingber, S.Z.; Buser, M.C.; Pohl, H.R.; Abadin, H.G.; Murray, H.E.; Scinicariello, F. DDT/DDE and breast cancer: A meta-analysis. Regul. Toxicol. Pharmacol. RTP 2013, 67, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Wielsøe, M.; Kern, P.; Bonefeld-Jørgensen, E.C. Serum levels of environmental pollutants is a risk factor for breast cancer in Inuit: A case control study. Environ. Health 2017, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.K.; Bhat, M.A.; Sharma, T.; Banerjee, B.D.; Guleria, K. Delineating Potential Transcriptomic Association with Organochlorine Pesticides in the Etiology of Epithelial Ovarian Cancer. Open Biochem. J. 2018, 12, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Windham, G.C.; Lee, D.; Mitchell, P.; Anderson, M.; Petreas, M.; Lasley, B. Exposure to Organochlorine Compounds and Effects on Ovarian Function. Epidemiology 2005, 16, 182–190. [Google Scholar] [CrossRef] [PubMed]
Subject Characteristics | Range | Mean ± SD |
---|---|---|
Maternal age (years) | 19–40 | 30.5 ± 4.30 |
Pre-pregnant BMI (kg·m−2) | 15.4–34.9 | 22.5 ± 4.11 |
Duration of residence (years) | 1–39 | 21.8 ± 11.8 |
Parity (number) | 1–5 | 2.21 ± 0.939 |
Frequency (person) | Percentage | |
Birth year | ||
≤1975 year | 27 | 39.7 |
>1975 year | 41 | 60.3 |
Gravidity | ||
primiparous | 16 | 23.5 |
multiparous | 52 | 77.5 |
Population | ||
Native-born Taiwanese | 51 | 75.0 |
Native-born Aborigines | 12 | 17.6 |
Nonnative-born Taiwanese a | 5 | 7.40 |
Education levels | ||
Pre-senior high school | 6 | 8.8 |
Senior high school | 27 | 39.7 |
Tertiary education | 31 | 45.6 |
Graduate education | 4 | 5.9 |
Annual Income (U.S. Dollars) | ||
Less than 10,000 | 10 | 14.7 |
Between 10,000 and 20,000 | 22 | 32.4 |
Between 20,000 and 34,000 | 25 | 36.8 |
More than 34,000 | 11 | 16.2 |
Duration of breastfeeding | ||
≤2 months | 2 | 2.9 |
>2 months | 66 | 97.1 |
Infertility medical treatment b | ||
Yes | 9 | 13.2 |
No | 59 | 86.8 |
Gynecological surgery b | ||
Yes | 8 | 11.8 |
No | 60 | 88.2 |
Frequency (Person) | Percentage | |
---|---|---|
Dietary habit | ||
Milk consumption | ||
≤625 (mL·week−1) | 51 | 75.0 |
>625 (mL·week−1) | 17 | 25.0 |
Cheese consumption | ||
≤1 (piece·week−1) | 60 | 88.2 |
>1 (piece·week−1) | 8 | 11.8 |
Egg consumption | ||
≤5 (piece·week−1) | 38 | 55.9 |
>5 (piece·week−1) | 30 | 44.1 |
Beef consumption | ||
≤50 (gram·week−1) | 55 | 80.9 |
>50 (gram·week−1) | 13 | 19.1 |
Pork consumption | ||
≤250 (gram·week−1) | 44 | 64.7 |
>250 (gram·week−1) | 24 | 35.3 |
Chicken consumption | ||
≤125 (gram·week−1) | 36 | 52.9 |
>125 (gram·week−1) | 32 | 47.1 |
Menstruation characteristics | ||
Menarche | ||
Before 13 years old | 42 | 61.8 |
After 13 years old | 26 | 38.2 |
Average periods of menstrual cycles | ||
27 to 29 days | 30 | 44.1 |
≤26 and ≥30 days | 38 | 55.9 |
Average menstrual period days | ||
≤5 days | 32 | 47.1 |
>5 days | 36 | 52.9 |
Shortest menstrual period days | ||
≤3 days | 20 | 29.4 |
>3 days | 48 | 70.6 |
Detection Rate (%) | Range | Median | GM a ± SD | |
---|---|---|---|---|
Aldrin | 93 | <MDL c (0.0241)–2.32 | 0.157 | 0.168 ± 0.455 |
ΣHCH b | 100 | 0.110–2.97 | 0.509 | 0.539 ± 0.557 |
α-HCH | 91 | <MDL (0.0416)–1.64 | 0.127 | 0.133 ± 0.290 |
β-HCH | 91 | <MDL (0.0376)–1.33 | 0.115 | 0.120 ± 0.227 |
γ-HCH | 88 | <MDL (0.0320)–0.616 | 0.0967 | 0.0914 ± 0.107 |
δ-HCH | 82 | <MDL (0.0347)–0.472 | 0.103 | 0.0945 ± 0.119 |
ΣCHL a | 93 | <MDL (0.0753)–1.90 | 0.134 | 0.161 ± 0.284 |
cis-Chlordane (cis-CHL) | 78 | <MDL (0.0346)–0.730 | 0.0804 | 0.0740 ± 0.124 |
trans-Chlordane (trans-CHL) | 52 | <MDL (0.0407)–1.90 | 0.0538 | 0.0564 ± 0.251 |
ΣDDT a | 100 | 0.720–51.4 | 10.9 | 9.81 ± 7.52 |
4,4-DDD | 56 | <MDL (0.0271)–8.38 | 0.229 | 0.161 ± 1.64 |
4,4-DDE | 100 | 0.348–44.6 | 9.24 | 8.07 ± 6.53 |
4,4-DDT | 85 | <MDL (0.0536)–3.57 | 0.414 | 0.360 ± 0.798 |
Dieldrin | 96 | <MDL (0.0199)–2.87 | 0.165 | 0.170 ± 0.500 |
ΣEndosulfan a | 100 | 0.0155–5.43 | 0.301 | 0.290 ± 0.776 |
Endosulfan I | 66 | <MDL (0.0440)–2.20 | 0.0908 | 0.0890 ± 0.377 |
Endosulfan II | 46 | <MDL (0.0322)–2.51 | 0.0161 | 0.0497 ± 0.379 |
Endosulfan sulfate | 85 | <MDL (0.0155)–0.735 | 0.0658 | 0.0713 ± 0.169 |
ΣEndrin a | 99 | <MDL (0.108)–4.61 | 0.248 | 0.381 ± 0.701 |
Endrin | 93 | <MDL (0.0449)–3.04 | 0.165 | 0.176 ± 0.435 |
Endrin aldehyde | 69 | <MDL (0.0247)–1.56 | 0.0633 | 0.0618 ± 0.261 |
Endrin ketone | 52 | <MDL (0.0387)–0.867 | 0.0465 | 0.0594 ± 0.180 |
ΣHeptachlor a | 100 | 0.0728–5.01 | 0.705 | 0.645 ± 0.995 |
Heptachlor | 100 | 0.0412–3.48 | 0.372 | 0.376 ± 0.667 |
Heptachlor epoxide (isomer B) | 94 | <MDL (0.0316)–1.53 | 0.227 | 0.217 ± 0.374 |
Methoxychlor | 47 | <MDL (0.0245)–0.618 | 0.0123 | 0.0388 ± 0.145 |
Independent | Dependent | Adjustment a | |||
---|---|---|---|---|---|
Predictor | Adjusted R2 | B | 95% CI for B b | p Value | |
Dietary habit | |||||
Milk consumption | Log Endrin ketone | 0.053 | 0.308 | (90.3, 863) | 0.016 * |
Beef consumption | 0.313 | <0.001 *** | |||
Log Endosulfan sulfate | 0.366 | (12.8, 48.6) | 0.001 ** | ||
Log cis-CHL | 0.333 | (10.5, 62.9) | 0.007 ** | ||
Log γ-HCH | 0.276 | (−60.1, −7.72) | 0.012 * | ||
Log Endrin ketone | 0.284 | (5.64, 42.5) | 0.011 * | ||
Log Endrin | 0.278 | (−49.9, −5.27) | 0.016 * | ||
Menstruation characteristics | |||||
Shortest menstrual period days | Log trans-CHL | 0.120 | 0.279 | (0.109, 1.40) | 0.023 * |
Odds Ratio a | 95% Confidence Intervals | p-Value | |
---|---|---|---|
Population (native-born Aborigines) b | |||
Log Endosulfan sulfate | 10.8 c | 1.03–113 | 0.047 * |
Annual family income (≤$20,000 U.S. dollar) b | |||
Log α-HCH | 4.20 d | 1.08–16.2 | 0.037 * |
Log ΣHCH | 10.7 d | 1.27–90.1 | 0.029 * |
Gravidity (primiparous) b | |||
Log ΣHCH | 27.3 e | 1.63–457 | 0.021 * |
Cow milk consumption (>625 mL·week−1) b | |||
Log β-HCH | 7.35 | 1.45–37.3 | 0.016 * |
Log ΣCHL | 6.65 | 1.10–40.1 | 0.039 * |
Log Endosulfan I | 3.03 | 1.04–8.83 | 0.043 * |
Log Endosulfan II | 4.53 | 1.56–13.1 | 0.005 ** |
Log ΣEndosulfan | 6.67 | 1.53–28.9 | 0.011 * |
Log Endrin | 6.73 | 1.32–34.4 | 0.022 * |
Log Endrin ketone | 3.72 | 1.18–11.7 | 0.025 * |
Log ΣEndrin | 13.3 | 2.05–86.1 | 0.007 ** |
Log ΣHeptachlor | 9.11 | 1.72–48.4 | 0.010 * |
Beef consumption (>50 g·week−1) b | |||
Log γ-HCH | 0.128 | 0.017–0.946 | 0.044 * |
Log trans-CHL | 5.05 | 1.25–20.4 | 0.023 * |
Log ΣCHL | 10.5 | 1.36–81.2 | 0.024 * |
Log Endosulfan II | 4.18 | 1.27–13.8 | 0.019 * |
Log Endosulfan sulfate | 7.16 | 1.36–37.7 | 0.020 * |
Log ΣEndosulfan | 6.88 | 1.24–38.0 | 0.027 * |
Log Methoxychlor | 4.01 | 1.13–14.2 | 0.032 * |
Average menstrual period days (>5 days) b | |||
Log trans-CHL | 4.73 | 1.12–20.1 | 0.035 * |
Log Endrin ketone | 7.06 | 1.58–31.6 | 0.011 * |
Shortest menstrual period days (≤3 days) b | |||
Log trans-CHL | 14.9 | 1.53–145 | 0.020 * |
Log ΣCHL | 14.5 | 1.07–197 | 0.044 * |
Have taken hormonal drugs b | |||
Log ΣEndosulfan | 18.6 | 1.22–283 | 0.035 * |
Log Heptachlor epoxide (isomer B) | 16.6 | 1.72–160 | 0.015 * |
Log ΣHeptachlor | 21.6 | 1.07–437 | 0.045 * |
Infertility b | |||
Log γ-HCH | 25.6 | 1.26–519 | 0.035 * |
Country | Calendar Period | Measured Compound | Pesticide Level | Reference |
---|---|---|---|---|
Taiwan | 2000–2001 | Aldrin Dieldrin Endrin β-HCH γ-HCH α-CHL Heptachlor Heptachlor epoxide p,p′-DDT p,p′-DDE | <LOD <LOD <LOD 1.2 ng·g−1·lipid−1 0.8 ng·g−1·lipid−1 7.4 ng·g−1·lipid−1 2.3 ng· g−1·lipid−1 4.0 ng·g−1·lipid−1 19 ng·g−1·lipid−1 228 ng·g−1·lipid−1 | Chao, et al. [18] |
Taiwan | 2013–2016 | Aldrin ΣHCH a α-HCH β-HCH γ-HCH δ-HCH ΣCHL a cis-Chlordane (cis-CHL) trans-Chlordane (trans-CHL) ΣDDT a 4,4-DDD 4,4-DDE 4,4-DDT Dieldrin ΣEndosulfan a Endosulfan I Endosulfan II Endosulfan sulfate ΣEndrin a Endrin Endrin aldehyde Endrin ketone ΣHeptachlor a Heptachlor Heptachlor epoxide (isomer B) Methoxychlor | <MDL (0.0241)–2.32 0.110–2.97 <MDL (0.0416)–1.64 <MDL (0.0376)–1.33 <MDL (0.0320)–0.616 <MDL (0.0347)–0.472 <MDL–1.90 <MDL (0.0346)–0.730 <MDL (0.0407)–1.90 0.720–51.4 <MDL (0.0271)–8.38 0.348–44.6 <MDL (0.0536)–3.57 <MDL (0.0199)–2.87 0.0155–5.43 <MDL (0.0440)–2.20 <MDL (0.0322)–2.51 <MDL (0.0155)–0.735 <MDL–4.61 <MDL (0.0449)–3.04 <MDL (0.0247)–1.56 <MDL (0.0387)–0.867 0.0728–5.01 0.0412–3.48 <MDL (0.0316)–1.53 <MDL (0.0245)–0.618 | This study |
Thailand | 1998 | Heptachlor Heptachlor epoxide γ-HCH p,p′-DDT p,p′-DDE p,p′-DDD | 4.3 ng·mL−1 4.4 ng·mL−1 3.6 ng·mL−1 69.4 ng·mL−1 169.4 ng·mL−1 6.8 ng·mL−1 | Stuetz, et al. [23] |
China | 1999–2000 | p,p′-DDT p,p′-DDE β-HCH | 0.70 μg·g−1·fat−1 2.85 μg·g−1·fat−1 1.11 μg·g−1·fat−1 | Wong, et al. [24] |
China | 2003–2005 | α-HCH γ-HCH β-HCH p,p′-DDE | 76.16 ng·g−1·lipid−1 16.67 ng·g−1·lipid−1 214.33 ng·g−1·lipid−1 1528.20 ng·g−1·lipid−1 | Zhao, et al. [25] |
China | 2006, 2008, 2010 | α-HCH β-HCH γ-HCH δ-HCH HCB 2,4′-DDE 4,4′-DDE 2,4′-DDD 4,4′-DDD | <LOD 67.1 ng·g−1·lipid−1 <LOD >LOD 25.5 ng·g−1·lipid−1 <LOD <LOD <LOD 10.5 ng·g−1·lipid−1 | Zhou, et al. [26] |
Vietnam | 2000–2001 | p,p′-DDT p,p′-DDE p,p′-DDD β-HCH | 34 –6900 ng·g−1·lipid·wt−1 420–6300 ng·g−1·lipid·wt−1 3–50 ng·g−1·lipid·wt−1 11–160 ng·g−1·lipid·wt−1 | Minh, et al. [27] |
Korea | 2011 | p,p′-DDT p,p′-DDE p,p′-DDD β-HCH Heptachlor epoxide | 91.7 ng·g−1·lipid·wt−1 0.94 ng·g−1·lipid·wt−1 6.51 ng·g−1·lipid·wt−1 20.5 ng·g−1·lipid·wt−1 2.22 ng·g−1·lipid·wt−1 | Lee, et al. [29] |
USA, Mexico and Russia | 1999, 2002, 2007, 2009, 2011 | HCB β-HCH p,p′-DDT p,p′-DDE | 0.80–3.00 ng·g−1·lipid·wt−1 0.51–2.57 ng·g−1 ·lipid·wt−1 0.42–1.41 ng·g−1·lipid·wt−1 0.56–1.40 ng·g−1·lipid·wt−1 | Coakley, et al. [32] |
USA | 2004 | p,p′-DDT p,p′-DDE p,p′-DDD α-HCH β-HCH γ-HCH δ-HCH | <0.6 ng·g−1·lipid·wt−1 35.3 ng·g−1·lipid·wt−1 2.7 ng·g−1·lipid·wt−1 1.4 ng·g−1 lipid·wt−1 4.4 ng·g−1·lipid·wt−1 5.1 ng·g−1·lipid·wt−1 <1.6 ng·g−1·lipid·wt−1 | Johnson-Restrepo, et al. [33] |
Russia | 1997–2009 | HCB α-HCH γ-HCH p,p′-DDT p,p′-DDE p,p′-DDD | 29 ng·g−1·lipid−1 3.1 ng·g−1·lipid−1 0.56 ng·g−1·lipid−1 32 ng·g−1·lipid−1 491 ng·g−1·lipid−1 1.9 ng·g−1·lipid−1 | Mamontova, et al. [34] |
Colombia | Unspecified | 4,4′ DDE 4,4′ DDE | 126 ng·g·lipid·wt 203 ng·g·lipid·wt | Rojas-Squella, et al. [35] |
Norway | 2002–2006 | p,p′-DDE HCB β-HCH Oxychlordane | 41 ng·g·lipid·wt 11 ng·g·lipid·wt 4.7 ng·g·lipid·wt 2.8 ng·g·lipid·wt | Polder, et al. [36] |
Vietnam, China, and Japan | 2007–2008 | p,p′-DDT p,p′-DDE p,p′-DDD o,p′-DDT Oxychlordane β-HCH HCB | 5.8 ng·g−1·lipid−1 160 ng·g−1·lipid−1 1.4 ng·g−1·lipid−1 0.84 ng·g−1·lipid−1 3.7 ng·g−1·lipid−1 140 ng·g−1·lipid−1 13 ng·g−1·lipid−1 | Haraguchi, et al. [28] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.-W.; Santos, H.M.; Que, D.E.; Gou, Y.-Y.; Tayo, L.L.; Hsu, Y.-C.; Chen, Y.-B.; Chen, F.-A.; Chao, H.-R.; Huang, K.-L. Association between Organochlorine Pesticide Levels in Breast Milk and Their Effects on Female Reproduction in a Taiwanese Population. Int. J. Environ. Res. Public Health 2018, 15, 931. https://doi.org/10.3390/ijerph15050931
Chen M-W, Santos HM, Que DE, Gou Y-Y, Tayo LL, Hsu Y-C, Chen Y-B, Chen F-A, Chao H-R, Huang K-L. Association between Organochlorine Pesticide Levels in Breast Milk and Their Effects on Female Reproduction in a Taiwanese Population. International Journal of Environmental Research and Public Health. 2018; 15(5):931. https://doi.org/10.3390/ijerph15050931
Chicago/Turabian StyleChen, Men-Wen, Harvey M. Santos, Danielle E. Que, Yan-You Gou, Lemmuel L. Tayo, Yi-Chyun Hsu, Young-Bin Chen, Fu-An Chen, How-Ran Chao, and Kuo-Lin Huang. 2018. "Association between Organochlorine Pesticide Levels in Breast Milk and Their Effects on Female Reproduction in a Taiwanese Population" International Journal of Environmental Research and Public Health 15, no. 5: 931. https://doi.org/10.3390/ijerph15050931
APA StyleChen, M.-W., Santos, H. M., Que, D. E., Gou, Y.-Y., Tayo, L. L., Hsu, Y.-C., Chen, Y.-B., Chen, F.-A., Chao, H.-R., & Huang, K.-L. (2018). Association between Organochlorine Pesticide Levels in Breast Milk and Their Effects on Female Reproduction in a Taiwanese Population. International Journal of Environmental Research and Public Health, 15(5), 931. https://doi.org/10.3390/ijerph15050931